





Fig. 2. Age/depth model with resulting sedimentation rates for
the ICDP 5011-1 core composite based upon
magnetostratigraphy and correlation between sediment proxy
data, the LRO4 marine isotope stack (12), and regional spring
and summer insolation (13). Initial 1st order tie points are
indicated by black diamonds, 2nd and 3rd order tie points by
blue squares. The red star marks the time of the impact
inferred from “°Ar/*°Ar dating (7) at 3.58 (+0.04) ka. Black and
white bars denote normal and reversed polarity, respectively.
Mass movement deposits and core gaps > 50 cm in thickness
are indicated in the right bar with gray and blue colors,
respectively.

ed for the Pacific sector (3, 22). The warmer climate across the Arctic
during MIS 5e compared to MIS 1 is thought to have caused a size re-
duction of the Greenland Ice Sheet equivalent to 1.6-2.2 m in global sea-
level rise (23).

Strongly enhanced primary productivity during the super
interglacials MIS 11c and 31 compared to MIS 1 and 5e, as inferred
from higher Si/Ti ratios (Fig. 3K), is associated with comparable maxi-
ma in tree and shrub pollen, but marked by distinct differences in pollen
composition (Fig. 3L and supplementary materials). For instance, sub-
stantial spruce pollen is present during MIS 11c and 31, but is missing
during shrub-dominated MIS 1 and Se interglacials. According to the
BMA (best modern analog) climate reconstruction, maximum MTWM
and PANN were up to 4-5°C and ~300 mm higher than those of MIS 1
and Se, respectively (Fig. 3, I and J).

Sediment records of MIS 11 are rare in the Arctic and their recon-
structed temperature signals are inconclusive (22). However, there are
indications that the Greenland Ice Sheet was much smaller or even ab-
sent (24, 25), with forests covering at least South Greenland (26). Rela-

tive sea level may have been significantly higher than today (25, 27).
Particularly warm conditions are also suggested by records from Lake
Biwa (28), Lake Baikal (29), the mid-latitude Atlantic (30), and the Be-
lize Reef (31), and may have been associated with megadroughts in the
southwestern USA (32).

MIS 31 as yet is not unambiguously recorded in the Arctic, but is
known for significant changes in and around Antarctica, including a
southward shift of the subtropical front and warmer waters in the South-
ern Ocean (33, 34), and the collapse of the West Antarctic Ice Sheet
(WAIS) (35). In the Northern Hemisphere, the Plio/Pleistocene Gubik
Formation of northern Alaska includes at least five high sea-level stands
associated with episodes of warm climate and reduced sea ice (36). One
of these episodes, the Fishcreekian transgression, is now thought to be
ca. 1.2 Ma (37) and thus may be correlative with MIS 31. Another pos-
sibly correlative site is at Fosheim Dome on Ellesmere Island. This site
includes terrestrial deposits dated to about 1.1 Ma, which enclose fossil
beetle (Coleoptera) assemblages suggesting temperatures 8 to 14°C
above modern values (38).

Other Arctic sites potentially correlative with one or more of the
older Early Pleistocene super interglacials recorded in Lake El’gygytgyn
(Fig. 3) include the Kap Kebenhavn Formation in northern Greenland,
currently dated to about 2.4 Ma. At this time, sea ice was strongly re-
duced and forests reached the Arctic Ocean about 1000 km further to the
north than today (39). Another candidate is the balmy Bigbendian
Transgression of the Gubik Formation dated to about 2.6 Ma (36).

Interglacial forcings and feedbacks. Comparing the relative
warmth of the Pleistocene interglacials recorded at Lake El’gygytgyn
(Fig. 31) in the context of orbital and greenhouse gas (GHG) forcing
(40), we find that peak summer warmth during MIS 5e and MIS 31 cor-
responds to the congruence of high obliquity, high eccentricity, and pre-
cession aligning perihelion with boreal summer. The net effect of this
orbital configuration produces high-intensity summer insolation at the
lake, >50 Wm * greater than today (Fig. 3K). Similarly, peak warmth
during MIS 1 and MIS 11c¢ also coincides with perihelion during boreal
summer, but lower eccentricity (and lower obliquity at MIS 11c¢) attenu-
ates the effect of precession relative to MIS 5e and MIS 31, making
summer insolation forcing less intense, albeit longer in duration.

GHG radiative forcing from a combination of CO,, CHy, and N,O
atmospheric mixing ratios determined from ice cores (see supplementary
materials) is similar during MIS 5e and MIS 11c (+0.16 Wm 2 and +0.19
Wm 2 relative to pre-industrial GHG concentrations, respectively). Early
MIS 1 is clearly an exception, with substantially lower CO, levels (~260
ppmv) around the time of peak Holocene warmth (~9 ka) producing —
0.44 Wm? less radiative forcing relative to pre-industrial. MIS 31
(~1.072 Ma) lies beyond the oldest ice cores, so no direct information on
atmospheric composition is available. However, a proxy-based recon-
struction of mid-Pleistocene pCO, based on boron isotopes in planktonic
foraminifera (41) indicates that the highest mid-Pleistocene CO, levels
(~325 ppmv) occurred around 1 Ma, roughly coinciding with the excep-
tional warmth of MIS 31. While uncertain, these reconstructed CO, lev-
els at MIS 31 would have added ~0.84 Wm 2 of radiative forcing, even
if CH; and N,O mixing levels remained close to pre-industrial values,
which is unlikely considering the ubiquitous correlation of elevated CH,4
and N,O during late Pleistocene interglacials. In sum, much of the
warmth during MIS 31 can be explained by elevated greenhouse gas
levels (42).

To investigate potential reasons for the super interglacials at Lake
El’gygytgyn, we tested the equilibrated response of a Global Climate
Model (GCM) with an interactive vegetation component (see supple-
mentary materials) to the orbital and greenhouse gas forcing correspond-
ing to the timing of peak summer warmth at MIS 1, Se, 11c, and 31.
Comparisons with a pre-industrial control simulation (Fig. 4) show that
differences in MTWM maxima at Lake El’gygytgyn during MIS 1 and
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Fig. 4. Simulated interglacial warming (2-m surface
temperature in °C) relative to pre-industrial. (A) MIS 1 (9 ka
orbit and GHGs). (B) MIS 5e (127 ka orbit and GHGs). (C)
MIS 11c (409 ka orbit, GHGs, no Greenland Ice Sheet, and 8
W m2 enhanced oceanic heat convergence under Arctic sea
ice). (D) MIS 31 (1072 ka orbit, GHGs, and no Greenland Ice
Sheet). Orbital and GHG forcing for MIS 5e and 11c follow
that used in (40). Forcing for MIS 31 follows that used by
(42). The location of Lake EI'gygytgyn is shown with a star
near the bottom-center of each panel. Areas of no shading
(white) roughly correspond to statistically insignificant
anomalies at the 95% confidence interval.
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S5e (+2.1 and +4.2°C) were in the same range as those during MIS 11c
and 31 (+2.2 and +3.5°C) (Fig. 31, red dots, Fig. 4, and supplementary
materials). The same holds true for the modeled differences in PANN (0
and —37 mm/a, and +38 and 0 mm/a, respectively). The results are simi-
lar to previous interglacial simulations using an intermediate complexity
model (40), with the combined effect of orbital and GHG forcing at MIS
Se producing the greatest summer warming among the four interglacials
modeled here. Our simulated summer warming (4.2°C) over the
Beringian interior at MIS 5Se also closely matches the warming simulated
by a coupled atmosphere-ocean GCM (43). Consequently, the distinctly
higher observed values of MTWM and PANN at MIS 11c cannot readily
be explained by the local summer orbital forcing or GHG concentrations
alone, and suggest that other processes and feedbacks contributed to the
extraordinary warmth at this interglacial, and the relatively muted re-
sponse to the strongest forcing at MIS Se.

Vegetation-land surface feedbacks are accounted for in our model,
and the simulated poleward advance of evergreen needle-leaf forest dur-
ing the interglacials provides a good match with our reconstructions (see
supplementary materials), yet the warming effect of boreal forest expan-
sion does not provide a satisfactory explanation for the warmth of MIS
11c. A deglaciated Greenland has been shown to have important regional
effects on surrounding sea surface temperatures (SSTs) and sea ice con-
ditions, but widespread warming in the circum-Arctic (and Beringia in
particular) has been shown to be minimal (43, 44). This is supported by
our simulations, showing that the loss of the Greenland Ice Sheet at MIS
11c raises summer temperatures at Lake El’gygytgyn by only 0.3°C.
Furthermore, Greenland was likely reduced in size during MIS 5e and
perhaps other interglacials, offering little help in differentiating
Beringia’s response from one interglacial to the next. Meltwater impacts
on ocean overturning (ignored in our simulations) generally have a cool-
ing effect on the Northern Hemisphere, adding to the difficulty in ex-
plaining the exceptional warmth at MIS 11c¢ relative to MIS 1 and 5Se.

The super interglacials at Lake El’gygytgyn coincide remarkably
with diatomite layers in the Antarctic ANDRILL 1B record (see supple-
mentary materials), which reflect periods of a diminished West Antarctic
Ice Sheet (WAIS) and open water in the Ross Embayment (35, 45). The
higher number of events at Lake El’gygytgyn does not necessarily re-
flect a higher frequency, but could also reflect the discontinuity of the
ANDRILL 1B record (46).

Linkages between extraordinary warmth at Lake El’gygytgyn and
Antarctic ice volume imply strong intra-hemispheric climate coupling
that could be related to reductions in Antarctic Bottom Water (AABW)
formation (47) during times of ice sheet/shelf retreat and elevated fresh
water input into the Southern Ocean. This is supported by distinct mini-
ma in AABW inflows into the southwest Pacific during MIS 11 and MIS
31 (48). As a consequence, changes in thermohaline circulation (THC)
during MIS 11 and MIS 31 might have reduced upwelling in the north-
ern North Pacific (49), as indicated by distinctly lower BSi concentra-
tions compared to other interglacials at ODP Site 882 (50, 51). A
stratified water column during the super interglacials would have result-
ed in higher sea surface temperatures in the northern North Pacific, with
the potential to raise air temperatures and precipitation rates over adja-
cent land masses via effects on the dominant pressure patterns (Siberian
High and Aleutian Low) that dominate the modern climatology at the
lake (52).

An alternative mechanism linking Lake EI’gygytgyn with Antarctica
could be related to higher relative sea level due to the combined retreats
of the WAIS (44) and the Greenland Ice Sheet (24), resulting in en-
hanced warm-water intrusion into the Arctic Ocean. Potential gateways
are the Denmark Strait and Barents Sea from the Atlantic Ocean and the
Bering Strait from the Pacific Ocean. In the northeastern Atlantic, how-
ever, SSTs at least during MIS 11 were lower than during MIS 9, Se, and
1 (53). Bering Strait throughflow today is restricted by shallow waters of

only ~50 m depth, resulting in an average northward transport of ~0.8 Sv
(1 Sv=10°m’ s™") (54). Substantial interannual variability in flow rate
can produce elevated heat fluxes (5-6 x 10%° J/yr in 2007), which can be
amplified in the Arctic by internal feedback mechanisms (3). No evi-
dence as yet exists for substantial changes in temperature or flow rates
during super interglacials, however, as a first exploration of this idea, we
increased the heat flux convergence under Arctic sea ice in our intergla-
cial climate model simulations by 8 W m™? (reflecting an extreme ~4-
fold increase in warmer Bering Strait throughflow). The additional heat
flux results in substantial reductions in seasonal sea ice and warmer Arc-
tic SSTs, but contributes little additional warming (<0.7°C; Figs. 31 and
4C) in the Beringian interior.

Fully testing these ideas will require additional climate-ocean model-
ing, explicitly accounting for glacial-interglacial changes in regional sea
level (paleobathymetry and gateways), changes in land-ice distributions,
and melt-water inputs in both polar regions, as well as contemporaneous
sediment records from the Arctic and North Pacific Oceans.

The paleoclimatic record from Lake El’gygytgyn provides a bench-
mark of Arctic change from an area that has otherwise been a data desert
for time-continuous terrestrial records of the Pliocene and Pleistocene.
The sediments provide a fresh window into the environmental dynamics
of the Arctic from a terrestrial high latitude site for comparison with
other Arctic records. Marine cores from the Arctic basin, such as those
from the ACEX/Lomonosov Ridge or HOTRAX expeditions [(55) and
references therein] still lack the comparable resolution and length to test
for perennial versus seasonal sea ice conditions during interglacials over
the past 2.8 Ma. The attenuated response of Arctic SSTs in model simu-
lations of the interglacials (Fig. 4) (43) relative to surrounding continents
hints that deep Arctic Ocean cores might not provide a complete per-
spective of the pacing or magnitude of climate change in the Arctic bor-
derlands. The observed response of the region’s climate and terrestrial
ecosystems to a range of interglacial forcing provides a challenge for
modeling and important constraints on climate sensitivity and polar am-
plification. The remarkable coherence of interglacial warmth across the
western Arctic with repeated deglaciation events in West Antarctica
supports the notion of strong teleconnections between the polar regions
over the last 2.8 million years.
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