2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia


1Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Str. 49a, D-50674 Cologne, Germany.
2Department of Geosciences, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003, USA.
3Far East Branch Russian Academy of Sciences, North-East Interdisciplinary Scientific Research Institute, 16 Portovaya St., 685000, Magadan, Russia.
4Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg C321, D-14473 Potsdam, Germany.
5Earth & Space Sciences, University of Washington, Box 351310, Seattle, WA 98195–1310, USA.
6Climate Impacts Research Centre, Umeå University, SE-981 07 Abisko, Sweden.
7Institute of Geological Sciences, Free University Berlin, Malteserstr. 74-100, Haus D, D-12249 Berlin, Germany.

*To whom correspondence should be addressed. E-mail: mmelles@uni-koeln.de
†Present address: Department of Physical and Earth Sciences, Worcester State University, Worcester, MA 01602, USA.
‡Present address: Department of Geology, Lund University, Sövde, S-223 62, Lund, Sweden.

The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El’gygytgyn (NE Russia) provides a continuous high-resolution record from the Arctic spanning the past 2.8 Ma. The core reveals numerous “super interglacials” during the Quaternary, with maximum summer temperatures and annual precipitation during marine benthic isotope stages (MIS) 11c and 31 ~4–5°C and ~300 mm higher than those of MIS 1 and 5e. Climate simulations show these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.

The effects of global warming are documented and predicted to be most pronounced in the Arctic, a region which plays a crucial, but not yet well understood role within the global climate system (1). Reliable climate projections for high northern latitudes are, however, hampered by the complexity of the underlying natural variability and feedback mechanisms (2, 3). To date, information concerning the natural climate variability in the Arctic is widely restricted to the last glacial-interglacial cycle, the period covered by the longest ice-core records from the Greenland ice cap (4). A limited number of records extend deeper in time, both from the marine realm (5) and from the Arctic borderland (6), but these records are restricted in terms of age control and temporal resolution.

Here we present a time-continuous and high-resolution record of environmental history from the Arctic spanning the past 2.8 Ma, from Lake El’gygytgyn, located ~100 km to the north of the Arctic Circle in northeastern Russia (67.5°N, 172°E; Fig. 1). The length, temporal continuity, and centennial to millennial-scale temporal resolution (Fig. 2 and supplementary materials) provide a detailed view of natural climatic and environmental variability in the terrestrial Arctic, a better understanding of the representative nature of the last climate cycle for the Quaternary, and how sensitive the terrestrial Arctic reacts to a range of forcing mechanisms.

Lake setting, drilling, and core analyses. Lake El’gygytgyn is located in a meteorite impact crater formed 3.58 Ma ago (7). The 170 m deep lake has a bowl-shaped morphology with a diameter of ca. 12 km, a surface area of 110 km², and a relatively small catchment of 293 km² (8). The modern continental Arctic climate produces herb-dominated tundra in the catchment, nine months per year of lake-ice cover, and oligotrophic to ultra-oligotrophic conditions in the lake. Low productivity in combination with complete overturning of the water column during the ice-free period in summer leads to well-oxygenated bottom waters throughout the year.

Scientific deep drilling was performed in the El’gygytgyn Crater in winter 2008/09 (9). The core composite from Site 5011-1 (Fig. 1) of the International Continental Scientific Drilling Program (ICDP) was investigated for lithology as well as selected physical, chemical and biological proxies using advanced high-resolution (logging/scanning) technologies along with standard techniques (10). According to the age model (Fig. 2), which is based on magnetostratigraphy and tuning of proxy data to the regional insolation and global marine isotope stratigraphy (fig. S1), the upper 135.2 m of the sediment record continuously represents the environmental history of the past 2.8 Ma. To display the obtained data versus time (Fig. 3) volcanic ashes and other event layers caused by mass movement deposits were removed (10). While highly varied in nature, the resultant record of pelagic sedimentation consists of three dominant lithofacies (see supplementary materials). Climate and environmental interpretation of the pelagic sedimentation record is based on complementary biological and geochemical indicators, which show that distinct facies reflect end-member glacial-interglacial climatic conditions (9, 11).

Glacial variability and proxies. Facies A is characterized by dark gray to black, finely laminated (~5 mm) silt and clay and may contain elongated sediment clasts of coarser grain sizes (supplementary materials, fig. S2). This facies was deposited during times of heavy global marine isotopic values (12) and low regional July insolation (Fig. 3, A, B, D) (13). It represents peak glacial conditions, when perennial lake ice persisted, requiring mean annual air temperatures at least 4 (± 0.5) °C lower than today (14). This resulted in a stagnant water column with oxygen-depleted bottom waters, as reflected by low manganese/iron
Fig. 1. Location of Lake El’gygytgyn in northeastern Russia (inserted map) and schematic cross-section of the El’gygytgyn basin stratigraphy showing the location of ICDP Sites 5011-1 and 5011-3. At Site 5011-1, three holes (1A, 1B, and 1C) were drilled to replicate the Quaternary and uppermost Pliocene sections. Hole 1C further penetrated through the remaining lacustrine sequence down to 318 m depth and then ~200 m into the impact rock sequence underneath. Lz1024 is a 16-m long percussion piston core taken in 2003 that fills the stratigraphic gap between the lake sediment surface and the top of drill cores 1A and 1B.

(Mn/Fe) ratios (Fig. 3G) and minima in magnetic susceptibility (MS) (Fig. 3E), indicating reducing conditions with magnetite dissolution (see supplementary materials). Dark laminations along with maxima in the content of total organic carbon (TOC) (Fig. 3F) reflect the absence of bioturbation and enhanced preservation of organic matter. Low silicon/titanium (Si/Ti) ratios (Fig. 3H) and a robust correlation between Si/Ti ratios and biogenic silica contents (see supplementary materials), however, suggest relatively low primary production.

Facies A first appears 2.602-2.598 Ma ago, during MIS 104 (Fig. 3D), corresponding with pollen assemblages that indicate a significant cooling at the Pliocene/Pleistocene boundary (see supplementary materials). This cooling coincides with distinct climatic deterioration at Lake Baikal (15), and may be associated with the poorly dated Okananagan Glaciation in eastern Chukotka at the beginning of the Pleistocene (16). On the other hand, the first occurrence of Facies A at Lake El’gygytgyn clearly postdates the onset of stratification across the western subarctic Pacific Ocean at 2.73 Ma, an event believed to have triggered the intensification of Northern Hemispheric glaciation (17). Hence, the onset of full glacial cycles in central Chukotka cannot directly be linked to changes in thermohaline circulation in the Pacific.

From the long-term succession of Facies A (Fig. 3D) and Mn/Fe ratios (Fig. 3G) pervasive glacial episodes at Lake El’gygytgyn gradually increase in frequency from ~2.5 to ~1.8 Ma, eventually concuring with all glacial and several stadials reflected globally in stacked marine isotope records (12). The full establishment of glacial/interglacial cycles by ~1.8 Ma at Lake El’gygytgyn coincides well with enhanced glacial erosion in British Columbia (18) and the onset of subpolar cooling in both hemispheres with an average bipolar temperature drop of 4 to 5°C due to the emergence of the tropical Pacific cold tongue (19). Nevertheless, it clearly predates the Mid-Pleistocene Transition (MPT), when the dominance of 41 ka obliquity was globally replaced by the 100 ka cycle between 1.25 and 0.7 Ma ago (20).

Interglacial variability and proxies. Facies B is characterized by massive to faintly banded silt of olive gray to brownish colors (supplementary materials, fig. S2). This facies comprises the majority of sediment that accumulated in Lake El’gygytgyn during the past 2.8 Ma, representing 79% of the Quaternary history (Fig. 3D). It reflects a wide range of glacial to interglacial settings and includes the style of modern sedimentation. As such, a seasonal ice cover promotes higher diatom productivity, as indicated by high Si/Ti ratios (Fig. 3H, see supplementary materials). TOC content, in contrast, is low (Fig. 3F), suggesting high organic matter decomposition due to oxygenation of bottom waters as a consequence of wind and density-driven mixing. Complete water-column ventilation is also indicated in the sediment colors, maxima in MS (Fig. 3E), and high Mn/Fe ratios (Fig. 3G). In addition, the lack of stratification indicates minor sediment homogenization by bioturbation.

Facies C consists of reddish-brown silt-sized sediment with distinct fine laminations (<5 mm; supplementary materials, fig. S2). This facies is irregularly distributed in the record compared to Facies A and B (Fig. 3D). It coincides with some periods of light values in the global marine isotope record and high regional July insolation (Fig. 3, A and B). The characteristics of Facies C suggest that it represents particularly warm interglacials. High Mn/Fe ratios (Fig. 3G) along with reddish-brown sediment colors imply well-oxygenated bottom waters. In contrast with Facies B, however, the sediments are distinctly laminated. This is traced back to a combination of factors including a particularly high primary production in spring and summer and anoxic bottom water conditions during winter stratification under a seasonal ice cover, which excludes bioturbation despite annual oxygenation. High primary production, presumably caused by a longer ice-free season and enhanced nutrient supply from the catchment relative to other interglacials, is indicated by exceptionally high Si/Ti ratios (Fig. 3H). Anoxic bottom water conditions during winter are implied by high TOC contents (Fig. 3F), reflecting high primary production and incomplete decomposition compared to Facies B, and variable MS values (Fig. 3E), reflecting partial dissolution of magnetite.

The described characteristics of Facies C are most pronounced for MIS 11c, 31, 49, 55, 77, 87, 91, and 93 (red bars in Fig. 3), suggesting that these interglacials represent unusual “super interglacials” in the Arctic throughout the Quaternary. The exceptional character of these interglacial conditions becomes evident based upon a comparison of MIS 1 and 5e (Facies B) with MIS 11c and 31 (super interglacials of Facies C), using additional biological proxies and pollen-based climate reconstructions (Fig. 3, I to L).

Sediments formed in Lake El’gygytgyn during MIS 1 and 5e have Si/Ti ratios only slightly higher than those formed during glacial and stadial conditions of MIS 2, 5d, and 6 (Fig. 3K). Pollen data show distinct increases in tree and shrub pollen (Fig. 3L) and suggest that notably birch and alder shrubs dominated the vegetation (fig. S4). Pollen-based climate reconstructions (see supplementary materials) suggest that the mean temperature of the warmest month (MTWM; i.e., July) and the annual precipitation (PANN) during the peak of MIS 1 and 5e were only ~1.2°C and, with one exception, ~50 mm higher than today, respectively (Fig. 3, I and J).

This is consistent with temperature reconstructions for the Holocene thermal maximum, which indicate +1.6 (+0.8) °C warming in the western Arctic (27) and +1.7 (+0.8) °C across the entire Arctic (3) relative to modern, confirming that Lake El’gygytgyn records regional rather than just local climate change (14). Temperature reconstructions for the MIS 5e thermal maximum, in contrast, are more variable, indicating +5 (+1) °C across the entire Arctic, although with smaller anomalies reconstruct-
ed for the Pacific sector (3, 22). The warmer climate across the Arctic during MIS 5e compared to MIS 1 is thought to have caused a size reduction of the Greenland Ice Sheet equivalent to 1.6-2.2 m in global sea-level rise (23).

Strongly enhanced primary productivity during the super interglacials MIS 11c and 31 compared to MIS 1 and 5e, as inferred from higher Si/Ti ratios (Fig. 3K), is associated with comparable maximum MTWM daily temperature and sea level rising 2°C (Fig. 3K). Similarly, peak warmth during MIS 1 and MIS 11c coincides with perihelion during boreal summer, but lower eccentricity (and lower obliquity at MIS 11c) attenuates the effect of precession relative to MIS 5e and MIS 31, making summer insolation forcing less intense, albeit longer in duration.

Interglacial forcings and feedbacks. Comparing the relative warmth of the Pleistocene interglacials recorded at Lake El’gygytgyn (Fig. 3I) in the context of orbital and greenhouse gas (GHG) forcing (40), we find that peak summer warmth during MIS 5e and MIS 31 corresponds to the congruence of high obliquity, high eccentricity, and precession aligning perihelion with boreal summer. The net effect of this orbital configuration produces high-intensity summer insolation at the lake, >50 W m⁻² greater than today (Fig. 3K). Similarly, peak warmth during MIS 1 and MIS 11c also coincides with perihelion during boreal summer, but lower eccentricity (and lower obliquity at MIS 11c) attenuates the effect of precession relative to MIS 5e and MIS 31, making summer insolation forcing less intense, albeit longer in duration.

GHG radiative forcing from a combination of CO₂, CH₄, and N₂O atmospheric mixing ratios determined from ice cores (see supplementary materials) is similar during MIS 5e and MIS 11c (+0.16 W m⁻² and +0.19 W m⁻² relative to pre-industrial GHG concentrations, respectively). Early MIS 1 is clearly an exception, with substantially lower CO₂ levels (~260 ppmv) around the time of peak Holocene warmth (~9 ka) producing ~0.44 W m⁻² less radiative forcing relative to pre-industrial. MIS 31 (~1.072 Ma) lies beyond the oldest ice cores, so no direct information on atmospheric composition is available. However, a proxy-based reconstruction of mid-Pleistocene CO₂ based on boron isotopes in planktonic foraminifera (41) indicates that the highest mid-Pleistocene CO₂ levels (~325 ppmv) occurred around 1 Ma, roughly coinciding with the exceptional warmth of MIS 31. While uncertain, these reconstructed CO₂ levels at MIS 31 would have added ~0.84 W m⁻² of radiative forcing, even if CH₄ and N₂O mixing levels remained close to pre-industrial values, which is unlikely considering the ubiquitous correlation of elevated CH₄ and N₂O during late Pleistocene interglacials. In sum, much of the warmth during MIS 31 can be explained by elevated greenhouse gas levels (42).

To investigate potential reasons for the super interglacials at Lake El’gygytgyn, we tested the equilibrated response of a Global Climate Model (GCM) with an interactive vegetation component (see supplementary materials) to the orbital and greenhouse gas forcing corresponding to the timing of peak summer warmth at MIS 1, 5e, 11c, and 31. Comparisons with a pre-industrial control simulation (Fig. 4) show that differences in MTWM maxima at Lake El’gygytgyn during MIS 1 and
Fig. 4. Simulated interglacial warming (2-m surface temperature in °C) relative to pre-industrial. (A) MIS 1 (9 ka orbit and GHGs). (B) MIS 5e (127 ka orbit and GHGs). (C) MIS 11c (409 ka orbit, GHGs, no Greenland Ice Sheet, and 8 W m\(^{-2}\) enhanced oceanic heat convergence under Arctic sea ice). (D) MIS 31 (1072 ka orbit, GHGs, and no Greenland Ice Sheet). Orbital and GHG forcing for MIS 5e and 11c follow that used in (40). Forcing for MIS 31 follows that used by (42). The location of Lake El'gygytgyn is shown with a star near the bottom-center of each panel. Areas of no shading (white) roughly correspond to statistically insignificant anomalies at the 95% confidence interval.
5e (+2.1 and +4.2°C) were in the same range as those during MIS 11c and 31 (+2.2 and +3.5°C) (Fig. 3L, red dots, Fig. 4, and supplementary materials). The same holds true for the modeled differences in PANN (0 and −37 mm/a, and +38 and 0 mm/a, respectively). The results are similar to previous interglacial simulations using an intermediate complexity model (40), with the combined effect of orbital and GHG forcing at MIS 5e producing the greatest summer warming among the four interglacials modeled here. Our simulated summer warming (4.2°C) over the Beringian interior at MIS 5e also closely matches the warming simulated by a coupled atmosphere-ocean GCM (43). Consequently, the distinctly higher observed values of MTWM and PANN at MIS 11c cannot readily be explained by the local summer orbital forcing or GHG concentrations alone, and suggest that other processes and feedbacks contributed to the extraordinary warmth at this interglacial, and the relatively muted response to the strongest forcing at MIS 5e.

Vegetation-land surface feedbacks are accounted for in our model, and the simulated poleward advance of evergreen needle-leaf forest during the interglacials provides a good match with our reconstructions (see supplementary materials), yet the warming effect of boreal forest expansion does not provide a satisfactory explanation for the warmth of MIS 11c. A deglaciated Greenland has been shown to have important regional effects on surrounding sea surface temperatures (SSTs) and sea ice conditions, but widespread warming in the circum-Arctic (and Beringia in particular) has been shown to be minimal (43, 44). This is supported by our simulations, showing that the loss of the Greenland Ice Sheet at MIS 11c raises summer temperatures at Lake El’gygytgyn by only 0.3°C. Furthermore, Greenland was likely reduced in size during MIS 5e and perhaps other interglacials, offering little help in differentiating Beringia’s response from one interglacial to the next. Meltwater impacts on ocean overturning (ignored in our simulations) generally have a cooling effect on the Northern Hemisphere, adding to the difficulty in explaining the exceptional warmth at MIS 11c relative to MIS 1 and 5e.

The super interglacials at Lake El’gygytgyn coincide remarkably with diatomite layers in the Antarctic ANDRILL 1B record (see supplementary materials), which reflect periods of a diminished West Antarctic Ice Sheet (WAIS) and open water in the Ross Embayment (35, 45). The higher number of events at Lake El’gygytgyn does not necessarily reflect a higher frequency, but could also reflect the discontinuity of the ANDRILL 1B record (46).

Linkages between extraordinary warmth at Lake El’gygytgyn and Antarctic ice volume imply strong intra-hemispheric climate coupling that could be related to reductions in Antarctic Bottom Water (AABW) formation (47) during times of ice sheet/shelf retreat and elevated fresh water input into the Southern Ocean. This is supported by distinct minima in AABW inflows into the southwest Pacific during MIS 11 and MIS 31 (48). As a consequence, changes in thermohaline circulation (THC) during MIS 11 and MIS 31 might have reduced upwelling in the northern North Pacific (49), as indicated by distinctly lower BSi concentrations compared to other interglacials at ODP Site 882 (50, 51). A stratified water column during the super interglacials would have resulted in higher sea surface temperatures in the northern North Pacific, with the potential to raise air temperatures and precipitation rates over adjacent land masses via effects on the dominant pressure patterns (Siberian High and Aleutian Low) that dominate the modern climatology at the lake (52).

An alternative mechanism linking Lake El’gygytgyn with Antarctica could be related to higher relative sea level due to the combined retreats of the WAIS (44) and the Greenland Ice Sheet (24), resulting in enhanced warm-water intrusion into the Arctic Ocean. Potential gateways are the Denmark Strait and Barents Sea from the Atlantic Ocean and the Bering Strait from the Pacific Ocean. In the northeastern Atlantic, however, SSTs at least during MIS 11 were lower than during MIS 9, 5e, and 1 (53). Bering Strait throughput today is restricted by shallow waters of only ~50 m depth, resulting in an average northward transport of ~0.8 Sv (1 Sv = 10⁶ m³ s⁻¹) (54). Substantial interannual variability in flow rate can produce elevated heat fluxes (5.6 × 10¹¹ J/yr) in 2007), which can be amplified in the Arctic by internal feedback mechanisms (3). No evidence as yet exists for substantial changes in temperature or flow rates during super interglacials, however, as a first exploration of this idea, we increased the heat flux convergence under Arctic sea ice in our interglacial climate model simulations by 1 W m⁻² (reflecting an extreme ~4-fold increase in warmer Bering Strait throughput). The additional heat flux results in substantial reductions in seasonal sea ice and warmer Arctic SSTs, but contributes little additional warming (<0.7°C; Figs. 3L and 4C) in the Beringian interior.

Fully testing these ideas will require additional climate-ocean modeling, explicitly accounting for glacial-interglacial changes in regional sea level (paleobathymetry and gateways), changes in land-ice distributions, and melt-water inputs in both polar regions, as well as contemporaneous sediment records from the Arctic and North Pacific Oceans.

The paleoclimatic record from Lake El’gygytgyn provides a benchmark of Arctic change from an area that has otherwise been a data desert for time-continuous terrestrial records of the Pliocene and Pleistocene. The sediments provide a fresh window into the environmental dynamics of the Arctic from a terrestrial high latitude site for comparison with other Arctic records. Marine cores from the Arctic basin, such as those from the ACEX/Lomonosov Ridge or HOTRAX expeditions (55 and references therein) still lack the comparable resolution and length to test for perennial versus seasonal sea ice conditions during interglacials over the past 2.8 Ma. The attenuated response of Arctic SSTs in model simulations of the interglacials (Fig. 4) (45) relative to surrounding continents hints that deep Arctic Ocean cores might not provide a complete perspective of the pacing or magnitude of climate change in the Arctic and Greenland Ice Sheet (Cambridge, 2005).

References and Notes

10. Materials and methods are available as supplementary materials on Science Online.


Downloaded from www.sciencemag.org on June 22, 2012


Acknowledgments: Drilling operations were funded by the International Continental Scientific Drilling Program (ICDP), the U.S. NSF, the German Federal Ministry of Education and Research (BMBF), Alfred Wegener Institute (AWI) and Helmholtz Centre Potsdam (GFZ), the Russian Academy of Sciences Far East Branch (RAS FEB), the Russian Foundation for Basic Research (RFBR), and the Austrian Ministry of Science and Research (BMW). The Russian GLAD 800 drilling system was developed and operated by DOSECC Inc. We thank all participants of the expedition for their engagement during recovery of the ICDP 5011-1 cores. Funding of core analyses was provided by BMBF (grant no. 03G0642), German Research Foundation (DFG, grant no. ME 1169/21 and /24), U.S. NSF (grant no. 0602471), Vetenskapsrådet, FORMAS, the Kempe Foundation, and the Civilian Research and Development Foundation (CRDF, grant no. RUG1-2987-MA-10). We are grateful to N. Mantke, A. Shahnazarian, and numerous students (Univ. Cologne) for their competent help in core processing; T. Matrosova for contributing modern surface pollen data; and R. McKay for providing a modified lithological log of the ANDRILL 1B record. We also thank four anonymous reviewers for supportive and constructive comments that greatly improved the manuscript. The data reported in this paper are available in the databases of PANGAEA via www.pangaea.de (doi:10.1594/PANGAEA.783305) and of the U.S. National Climatic Data Center via www.ncdc.noaa.gov/paleo/paleolim/paleolim_data.html.

Supplementary Materials

www.sciencemag.org/cgi/content/full/science.1222135/DC1

Materials and Methods

Supplementary Text

Figs. S1 to S6

Tables S1 to S5

References (57–106)

19 March 2012; accepted 1 June 2012

Published online 21 June 2012

10.1126/science.1222135