Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra

William C. Daniels a,b,⇑, James M. Russell a, Anne E. Giblin b, Jeffrey M. Welker c, Eric S. Klein c, Yongsong Huang a,⇑

a Brown University, Department of Earth, Environment, and Planetary Sciences, 324 Brook St., Providence, RI 02906, United States
b Marine Biological Laboratory, The Ecosystems Center, 7 MBL St., Woods Hole, MA 02543, United States
c University of Alaska-Anchorage, Department of Biological Sciences, 3211 Providence Dr., Anchorage, AK 99508, United States

Received 24 August 2016; accepted in revised form 17 June 2017; Available online 23 June 2017

Abstract

Leaf wax hydrogen isotopes (δD_wax) are increasingly utilized in terrestrial paleoclimate research. Applications of this proxy must be grounded by studies of the modern controls on δD_wax, including the ecophysiological controls on isotope fractionation at both the plant and landscape scales. Several calibration studies suggest a considerably smaller apparent fractionation between source water and waxes (ε_app) at high latitudes relative to temperate or tropical locations, with major implications for paleoclimatic interpretations of sedimentary δD_wax. Here we investigate apparent fractionation in the Arctic by tracing the isotopic composition of leaf waxes from production in modern plants to deposition in lake sediments using isotopic observations of precipitation, soil and plant waters, living leaf waxes, and waxes in sediment traps in the Brooks Range foothills of northern Alaska. We also analyze a lake surface sediment transect to compare present-day vegetation assemblages to ε_app at the watershed scale. Source water and ε_app were determined for live specimens of Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch), two dominant tundra plants in the Brooks Range foothills. The δD of these plants’ xylem water closely tracks that of surface soil water, and reflects a summer-biased precipitation source. Leaf water is enriched by 23 ± 15‰ relative to xylem water for E. vaginatum and by 41 ± 19‰ for B. nana. Evapotranspiration modeling indicates that this leaf water enrichment is consistent with the evaporative enrichment expected under the climate conditions of northern Alaska, and that 24-h photosynthesis does not cause excessive leaf water isotope enrichment. The ε_app determined for our study species average −89 ± 14‰ and −106 ± 16‰ for B. nana n-alkanes and n-acids, respectively, and −182 ± 10‰ and −154 ± 26‰ for E. vaginatum n-alkanes and n-acids, which are similar to the ε_app of related species in temperate and tropical regions, indicating that apparent fractionation is similar in Arctic relative to other regions, and there is no reduced fractionation in the Arctic. Sediment trap data suggest that waxes are primarily transported into lakes from local (watershed-scale) sources by overland flow during the spring freshet, and so δD_wax within lakes depends on watershed-scale differences in water isotope compositions and in plant ecophysiology. As such, the large difference between our study species suggests that the relative abundance of graminoids and shrubs is potentially an important control on δD_wax in lake sediments. These inferences are supported by δD_wax data from surface sediments of 24 lakes where ε_app, relative to δD_xylem, averages −128 ± 13‰ and

⇑ Corresponding authors at: Brown University, Department of Earth, Environment, and Planetary Sciences, 324 Brook St., Providence, RI 02906, United States (W.C. Daniels).
E-mail addresses: william_daniels@brown.edu (W.C. Daniels), james_russell@brown.edu (J.M. Russell), agiblin@mbl.edu (A.E. Giblin), jmwelker@uaa.alaska.edu (J.M. Welker), esklein@uuaa.alaska.edu (E.S. Klein), yongsong_huang@brown.edu (Y. Huang).

http://dx.doi.org/10.1016/j.gca.2017.06.028
0016-7037/© 2017 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Hydrogen and oxygen isotope ratios in meteoric water (δD and δ18O) are well-established tracers of environmental processes (Dansgaard, 1964; Ehleringer and Dawson, 1992; Vachon et al., 2010; Welker, 2012). When preserved in the geologic record, these isotopes serve as robust tools for paleoclimate reconstructions (Feakins et al., 2012; Jasechko et al., 2015; Klein et al., 2016; Konecky et al., 2016). Hydrogen isotope ratios of plant leaf waxes are an increasingly utilized proxy because they are abundant in many sediments (Huang et al., 2004; Sachse et al., 2004), are stable over long time periods (Yang and Huang, 2003), and their isotopic composition (δDwax) primarily reflects the δD of precipitation (δDprecipitation) (Sternberg, 1988; Sauer et al., 2001; Huang et al., 2004; Sachse et al., 2004; Sachse et al., 2010). The δDwax is depleted by a fractionation factor (εapp) relative to δDprecipitation, due to several isotope-discriminating processes that occur between precipitation and leaf wax synthesis and deposition (Sessions et al., 1999; Chikaraishi et al., 2004; Sachse et al., 2004; Jäger et al., 2013b). Accurate estimates of εapp are therefore fundamentally important to guide climatic interpretations of ancient δDwax (Polissar and Freeman, 2010; Yang et al., 2011; Garcin et al., 2012; Feakins, 2013; Niedermeyer et al., 2016), and ideally, to quantitatively determine δDprecipitation and climate variations in geological time.

Numerous analyses of δDwax from lake sediments and living plants in temperate and tropical regions have begun to converge on average εapp values of −100 to −130‰ (Sauer et al., 2001; Sachse et al., 2004; Smith and Freeman, 2006; Hou et al., 2008; Garcin et al., 2012; Kahmen et al., 2013a; Liu et al., 2016), with n-alkanes displaying greatly greater isotope discrimination than n-alkanoic acids (Chikaraishi and Naraoka, 2007). Recent estimates of εapp at high-latitude sites, however, are dramatically different. Shanahan et al. (2013) estimated εapp of −61‰ for C28 and C29 alkanoic acids using lake surface sediment samples from Baffin Island in the High Arctic (latitude: 63–73 °N) compared against mean annual precipitation isotopes compositions for source water estimated from the Online Isotopes in Precipitation Calculator (OIPC) geospatial model (Bowen and Revenaugh, 2003). Porter et al. (2016) produced similar εapp values for both long-chain n-acids and long-chain n-alkanes by comparing fossil waxes to adjacent fossil water (interpreted as mean annual precipitation formed simultaneously with the waxes) in loess sections in the Canadian sub-Arctic (latitude: 63.5 °N). Based on growth chamber experiments, these low εapp values in high-latitude, continuous light environments have been suggested to result from plant stomata remaining open throughout the 24-hour sunlit period, thus driving high daily rates of evapotranspiration and high leaf water isotope enrichment (Yang et al., 2009).

In contrast, Wilkie et al. (2012) studied lake sediment waxes (n-acids) in northern Siberia (latitude: 67°N) and reported εapp of −101‰ with respect to estimates of mean annual precipitation isotope composition, and εapp of −110‰ with respect to the measured isotopic composition of spring streamflow. Sachse et al. (2004) report εapp of −100 to −135‰ for long chain n-alkanes from Arctic Europe using similar methods. These contrasting results raise the following questions: (1) is εapp latitude-dependent? (2) is εapp highly variable across high latitude biomes? and (3) are observations of small εapp an artifact of relying on estimated, rather than measured, source water isotope compositions?

The apparent fractionation of Arctic δDwax is extremely important to understanding past and current polar climate change. δDwax records in polar regions have been interpreted as both summer and mean annual temperature change on time-scales from the Holocene to the Paleocene (Pagani et al., 2006; Feakins et al., 2012; Thomas et al., 2012; Pautler et al., 2014; Porter et al., 2016), with implications for the Earth’s equilibrium climate sensitivity and future response to rising greenhouse gases. For example, calculations of Paleocene/Eocene δDprecipitation from ancient wax δD and an εapp of −100‰ to −130‰ reveal extreme warmth and moisture convergence in the Arctic during the Paleocene/Eocene thermal maximum (PETM) (Pagani et al., 2006). If a smaller εapp of −60‰ is used, however, the estimated δDprecipitation during this time period was similar to modern δDprecipitation, and not strongly enriched, casting doubt on our understanding of Arctic climate during the PETM. Paleoclimate inferences for Antarctica during the mid-Miocene (Feukins et al., 2012) are likewise sensitive to whether an εapp value of −100‰ or −60‰ is used to calculate δDprecipitation. Similarly, two temperature anomaly estimates for the last glacial maximum in western Canada (Pautler et al., 2014; Porter et al., 2016), which rely on the same δDwax data but different values of εapp, differ by 14 °C. Clearly, large deviations of εapp caused either by inaccurate assessment of plant source water δD values, by enhanced leaf water isotope enrichment during 24-h transpiration, or by large changes in vegetation assemblages, would complicate interpretations of polar δDwax.

With the exception of the study by Wilkie et al. (2012), investigations of εapp in the Arctic have thus far relied on estimated δDprecipitation values from the OIPC model (Bowen and Revenaugh, 2003; Yang et al., 2011; Shanahan et al., 2013) or measurements of relict (frozen) water in permafrost (Porter et al., 2016). Both of these methods could be insufficient for determining εapp consider-
ing the complexity of precipitation seasonality, soil water dynamics, and plant water use dynamics (Alstad et al., 1999; Welker et al., 2005; Young et al., 2017). Moreover, previous efforts to quantify the effects of 24-h photosynthesis in greenhouse experiments used plants that do not currently grow in the Arctic, such as Metasequoia (redwood), and the hypothesized increase in leaf water isotopic values due to greater transpiration was not accompanied by leaf water isotopic measurements (Yang et al., 2009). Direct measurements of plant xylem and leaf waters in Arctic field conditions would provide a more robust estimate of plant source water isotope values (Welker, 2000; Leffler and Welker, 2013). To our knowledge, no previous study has traced Arctic D/H fractionation from precipitation to leaf wax production in living plant tissues, changes in δDwax through the growing season, nor variations in δDwax associated with native Arctic vegetation, ecosystem integration, and sedimentation.

Three ecophysiological controls are particularly important to estimating εapp. First, the seasonal fluctuations in δDprecipitation relative to the timing of wax synthesis by plants can lead to differences in source water isotope composition for different regions or plant types (Alstad et al., 1999; Vachon et al., 2010). Accurate determination of seasonal changes in plant source water is especially important in the Arctic, where δDprecipitation can change drastically through the year. Secondly, although the δD of xylem water (δDxylem) generally reflects δDprecipitation (White et al., 1985), the δD of leaf water (δDleaf) is sensitive to factors that govern leaf water evaporation including relative humidity (Kahmen et al., 2013a; Tinkle et al., 2015), species effects (leaf morphology, canopy height, water use efficiency) (Sullivan and Welker, 2007), and possibly day length (Yang et al., 2009). Again, quantifying enrichment in δDleaf in the Arctic could test whether strong apparent fractionation results from 24-h photosynthesis. Third, biosynthetic fractionation during leaf wax generation varies by plant type. Eudicots are typically characterized by εapp value of ~156 to ~85‰ while monocotyledons have a larger fractionation ranging from ~190 to ~120‰ (Hou et al., 2007; Gao et al., 2014a; Liu et al., 2016). Fractionation values of arctic plants tend to fall into these ranges (Wilkie et al., 2012; Thomas et al., 2016), although there is also support for lower values as small as 60‰ at the plant-scale in the Arctic (Yang et al., 2011). Biosynthetic fractionation has generally been treated as a species-specific constant, but Newberry et al. (2015) indicate that biosynthetic fractionation varies seasonally because of the greater contribution of H atoms from stored carbohydrates during the period of leaf flush. Together, these effects may help explain the discrepancies in high-latitude estimates of εapp, and also suggest that shifting vegetation communities can significantly alter values of εapp.

The main objectives of this study are (1) to assess the importance of 24-h daylight on D/H fractionation by determining εapp at the plant and landscape scales in the Arctic tundra, and (2) to describe the environmental controls, especially vegetation assemblages, on δDwax. We report paired measurements of the δD of precipitation, soil water, xylem water, leaf water, and leaf waxes of two dominant plant taxa from the Alaskan Arctic that constrain the apparent fractionation in these Arctic plants. We use sediment trap data to assess changes in δDwax through the growing season, and a regional survey of leaf waxes preserved in lake surface sediment to estimate εapp and evaluate whether local vegetation variations explain between-lake variation in εapp. Together, these results provide a comprehensive framework for interpreting δDwax in the Arctic tundra and illustrate the utility of combining plant-level and ecosystem-level studies of D/H fractionation.

2. SITES, SAMPLES, AND METHODS

2.1. Site description

The study area is located in the northern foothills of the Brooks Range at the Toolik Lake Natural Research Area (68.5 °N, 149.5 °W; Fig. 1). Annual temperature averages −8.5 °C, while the summer (JJA) averages 9 °C. Monthly temperatures are above zero from mid-May to early-September. Precipitation averages 312 mm, with roughly 60% of precipitation occurring primarily as rain during summer months (JJA; Fig. 2) (Cherry et al., 2014). Summer relative humidity averages 75%. The soils are characterized by continuous permafrost with summer thaw depths ranging from 30 to 200 cm (Shaver et al., 2014). The growing season is characterized by an average date for first leaf appearance of June 3, with full spring green-up occurring in late-June and plant senescence occurring in late August and September (Toolik Environmental Data Center Team, 2016).

Glacier activity emanating from the Brooks Range was spatially and temporally variable through the late Pleistocene, giving rise to three landscape surfaces of varying age and vegetation in our study area (Fig. 1) (Walker and Walker, 1996; Hamilton, 2003). These consist of the Sagavanirktok (>125 ka), Itkillik I (~60 ka), and the Itkillik II surfaces. The Sagavanirktok surface is gently sloping, has substantial organic soil accumulations, and contains few lakes. The most recently deglaciated terrain (Itkillik II) in contrast, has steeper slopes, shallow bedrock, and contains a higher density of lakes; the Itkillik I surface is intermediate with regards to geomorphology. Vegetation distributions across our study region are presented by Walker and Maier (2008), who identify nine major vegetation classes. Of these, moist acidic tundra (MAT) is the most prevalent and occurs on all landscapes (Fig. 1). MAT consists of tussock-sedges (Eriophorum vaginatum), non-tussock sedges (Carex bigelowii), mosses, and dwarf shrubs (primarily Betula nana). The younger glacial surfaces, being better drained, more poorly weathered, and having shallower organic soils, tend to contain greater areas of dry tundra complex and non-acidic tundra dominated by prostrate shrubs (Salix arctica, S. reticulata) with a general absence of mosses and sedges, although MAT can also be found on the younger surface. Salix and Betula complexes are commonly found along streams and in watertracks. In general, similar plant communities can be found around much of the Arctic (CAVM Team, 2003).
2.2. Sample collection

2.2.1. Vegetation and water isotopes

Precipitation isotopes were collected on a year-round event basis from 1993 to present (Klein et al., 2016). Not all events were measured, but in total, the isotopic composition of 254 precipitation events were measured. We calculated an amount-weighted mean annual precipitation isotope signature using binned monthly values of $\delta^D_{\text{precipitation}}$ and monthly values of precipitation amount (Toolik LTER Environmental Data Center).

Soil water and vegetation samples were collected on August 6, 2013, July 17/19, 2014, and August 7/8, 2014 between 10:00 and 16:00. Sampling sites were located within the Innnavait Creek watershed (68.61 °N, 149.30 °W) on the Sagavanirktok glacial surface and the Toolik Lake watershed (68.62 °N, 149.61 °W) on the Iktilik I glacial surface. Both sites are characterized as moist acidic tundra, the most prevalent vegetation community in the region. Soil water isotope profiles (δ^D_{soil}) were collected during each sampling. Soil water was collected to a depth of 92.5 cm using two methods. We used soil probes fit with a 50 mL syringe to extract water from the thawed organic horizon at 0, 5, 10, 15, and 20 cm soil depth. Water was pushed through a combusted GFF filter into plastic scintillation vials and frozen. Where soil was too dry or frozen to use this method we collected 5–10 cm3 soil samples from pits to be melted or distilled. Permafrost soil samples were provided from soil pits dug by Collin Ward, Jason Dubkowski, and Katherine Harrold of the ARC LTER (Ward and Cory, 2015).

We measured the δ^D_{xylem}, $\delta^D_{\text{leaf water}}$, and δ^D_{wax} for two tundra plants, Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch). These species are two of...
the most dominant species in the Arctic tundra (Walker et al., 1994; Chapin III et al., 1995) and serve as model species for monocots (E. vaginatum) and dicots (B. nana), which are two major plant groupings with respect to D/H fractionation (Gao et al., 2014a). From the same sites where soil water was collected, sets of roots, stems, and leaves from individual plants were collected. A total of 14 sets of B. nana and 9 sets of E. vaginatum samples were collected across all sampling efforts. Live roots were separated from aboveground components and immediately cleaned of clinging soil and soil water. For B. nana, several 5-cm segments of stem were cut from each plant and processed. Likewise, ≥20 B. nana leaves were collected and composited to ensure sufficient leaf water yield for isotopic analyses and to homogenize variability among leaves. For E. vaginatum, stems were not distinguished from leaves, and approximately 20 leaves were composited for each plant. All plant parts were stored frozen in Whirlpak™ bags until processing.

2.2.2. Sedimentary waxes

We analyzed δDmax from surface sediment samples from 24 lakes near Toolik Field Station to compare to our eapp values from individual plants and to assess the ecosystem-integrated values of eapp (Fig. 1). Lakes were selected that are accessible by foot and that span the various glacial surfaces and vegetation types (Table 2). Surface sediments were collected from lake depocenters in 2011 and 2013 using a gravity corer, sectioned in the field, and kept frozen until analysis (Longo et al., 2016). We analyzed the surface 1.0 cm from all lakes, which based on 210Pb-based accumulation rates from Toolik Lake (Cornwell and Kipphut, 1992), integrates approximately 10–25 years. To test if local (watershed-scale) differences in vegetation assemblages can affect the eapp observed in lake sediments, we compared the eapp with the relative abundance of major vegetation types within each lake’s watershed using single and multiple linear regression. Vegetation distributions were derived from vegetation maps, which translate aerial photographs into nine discrete plant complexes, downloaded from the Alaska Geobotany Center (Walker and Maier, 2008) (Fig. 1, Table 2).

Sediments were also collected from sediment traps deployed in Toolik Lake and Lake E5 (ARC LTER). Sediment traps were deployed in May 2014 and collection vials were replaced 4 times during the summer giving 2–6 week resolution. Traps were deployed approximately 2 m above the lake floor.

2.3. Sample processing and analysis

2.3.1. Water isotopes

Water was extracted from plant tissues and bulk soils using cryogenic vacuum distillation (Gao et al., 2012). Soil and plant samples were heated under vacuum in extraction vials to 100 °C and the resulting vapor was collected in a vial in liquid nitrogen. Samples were immediately thawed and transferred into 4 mL vials, sealed with parafilm, and stored at 4 °C. For all soil water samples, 3 mg of activated charcoal (particle size <150 μm) was added to the samples to remove excessive dissolved organic matter. Samples reacted overnight and the charcoal was filtered using a GFF filter. Precipitation, soil water, and plant samples were analyzed with Picarro ChemCorrect software to test for the effects of organic contaminants and no samples were flagged as problematic. The 1σ analytical error determined from replicate standards was 0.09‰ for δ18O and 0.57‰ for δD.

2.3.2. Biomarker processing

Lipids were extracted from leaf residues after removing leaf water. Approximately 100 mg of leaf material was sonicated for 15 min in dichloromethane:methanol (1:1 v/v), with three solvent rinses. Lipids were extracted from freeze-dried surface sediments and sediment trap samples using a Dionex Accelerated Solvent Extractor (ASE) 350 with dichloromethane:methanol (9:1 v/v). Lipids were separated following the methods of Gao et al. (2011). The total lipid extract (TLE) was split into a acid and neutral fractions using aminopropyl silica gel chromatography with dichloromethane:Isopropanol and 5% glacial acetic acid in ether as eluents. An internal standard (7 μg cis-eicosenoic acid) was then added to the acid fraction. Acids were methylated overnight at 60 °C with acidified anhydrous.

Fig. 2. Climatology and δDprecipitation at Toolik Lake including monthly precipitation isotopes (blue – precipitation event measurements; teal – OIPC estimate; the horizontal dashed line is the weighted mean annual δDprecipitation value of −166‰), air temperature (red), relative humidity (orange), and precipitation (gray bars). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Source: Toolik Environmental Data Center; accessed Nov. 2016.
methanol of a known isotopic composition. δD values of individual n-acids were later corrected for the isotopic contribution incurred during methylolation. Aliphatic compounds were isolated from the neutral fraction by silica gel chromatography with sequential elution by hexane (N1), dichloromethane (N2), and methanol (N4). The N1 fraction was spiked with an internal standard of hexamethylbenzene. A sample blank was analyzed with every batch.

The n-alkane and n-acid distributions of all samples were determined using an Agilent 6890 gas chromatograph with a flame ionization detector (GC-FID). Compound-specific isotope ratios (δD\text{wax}) of long chain (C_{22}-C_{31}) molecules were measured on a Thermo Finnigan Delta + XL isotope ratio mass spectrometer with a HP 6890 gas chromatograph and a high-temperature pyrolysis reactor for sample introduction. For both GC-FID and GC-IRMS analyses, the GC was fit with a 30 m HP1-MS column and the heating protocol was as follows: injector was set to pulsed splitless mode at 320 °C; the oven temperature was held at 70 °C for 1 min, then ramped by 25 °C min\(^{-1}\) to 230 °C, then by 6 °C min\(^{-1}\) to 315 °C min. The pyrolysis reactor temperature was set to 1445 °C and the flow rate was held constant at 1.4 ml min\(^{-1}\). The H3+ factor was determined every other day and averaged 2.7 (1σ = 0.3) during the course of analysis. Each sample was measured once on GC-FID and at least twice on GC-IRMS. Isotopic values were accepted if the voltage response was between 2 and 6 volts. A standard mixture containing either C\(_{16}\), C\(_{18}\), C\(_{22}\), C\(_{26}\), and C\(_{28}\) n-acids or C\(_{25}\), C\(_{27}\), C\(_{29}\), C\(_{30}\), and C\(_{32}\) n-alkanes was analyzed between every six injections to monitor instrument accuracy, and corrections were made on daily batches for offsets between measured and reported standard values. Analytical uncertainty was calculated using the pooled standard deviation (Eq. (1)). The 1σ uncertainties are reported in Table A1 and are consistently smaller than 3‰.

\[
\sigma = \sqrt{\frac{\sum(n_i - 1) \cdot s_i^2}{\sum(n_i - 1)}},
\]

where \(i\) = day for standards and \(i\) = sample for samples.

2.3.3. Notation and statistics

The carbon preference index (CPI), a metric of wax degradation and contamination (Bray and Evans, 1961), is calculated using Eqs. (2) and (3), while average change length (ACL) data is calculated using Eq. (4).

\[
\text{CPI}_\text{n-acids} = \frac{2 \cdot \sum_{i=1}^{n} \frac{C_i}{n} \cdot C_i(i = \text{evens})}{\sum_{i=1}^{n} C_i + \sum_{i=1}^{n} C_i(i = \text{odds})},
\]

\[
\text{CPI}_\text{n-alkanes} = \frac{2 \cdot \sum_{i=1}^{n} \frac{C_i}{n} \cdot C_i(i = \text{odds})}{\sum_{i=1}^{n} C_i + \sum_{i=1}^{n} C_i(i = \text{evens})},
\]

\[
\text{ACL} = \frac{\sum_{i=1}^{n} C_i}{\sum_{i=1}^{n} C_i}
\]

The isotopic composition of water and waxes is described in delta-notation (Eq. (5)). Hydrogen isotope enrichment factors, \(e\), were calculated between two reservoirs as in Eq. (6).

\[
\delta D (\% e) = \left(\frac{R_\text{sample}}{R_\text{standard}} - 1 \right) \times 1000,
\]

where \(R = \frac{\text{D}}{\text{H}}\), and the standard is Vienna standard mean ocean water (VSMOW).

\[
e_{\Delta - \text{B}} = \left[\frac{\delta D_a + 1000}{\delta D_b + 1000} - 1 \right] \times 1000.
\]

3. RESULTS

3.1. Plant source water

The δD\text{precipitation} is most enriched during summer and most depleted during winter (Fig. 2), with a precipitation-weighted mean annual value of −166‰ and a mean summer value of −139‰. The mean annual δD\text{precipitation} determined by the Online Isotope in Precipitation Calculator is −159‰ (Bowen and Revenaugh, 2003; Bowen, 2015), slightly enriched relative to observations. OIPC modeled monthly values are also somewhat enriched, with a RMSE of 32‰ relative to observations.

In July the surface (0–1 cm) δD\text{soil} averages −161.5‰, not significantly different than mean annual δD\text{precipitation} (\(p = 0.27\)) whereas in August, surface δD\text{soil} is more enriched than annual δD\text{precipitation} with values averaging
Vertical profiles in d_{Dsoil} also differ between months. In July, there is a shift at intermediate (10–30 cm) depth to values more negative than the permafrost, possibly a result of residual winter precipitation. In contrast, in August there is a steady D-depletion with depth. Permafrost d_{Dsoil} is assumed to be constant and has a value of 162 ± 6‰, the same as mean annual precipitation ($p = 0.54$). Soil water isotopes fall on the local meteoric water line (LMWL), indicating little effect of soil evaporation (Fig. 4). As such, the progressive enrichment of surface soil water isotopes from July to August likely reflects an increasing contribution of summer rains to the soil water pool.

Xylem water isotopes overlap with the LMWL and with soil water isotopes in $\delta^{18}O$-D space (Fig. 4), indicating there is little to no fractionation during plant uptake, consistent with previous studies (Ehleringer and Dawson, 1992). Overall, there is no difference in δD_{xylem} between E. vaginatum and B. nana ($p = 0.084$). The δD_{xylem} increases from -160 ± 8‰ to -147 ± 9‰ between July and August, tracking the enrichment in d_{Dsoil} (Fig. 5).

Evaporative enrichment increases δD and $\delta^{18}O$ values of leaf water relative to xylem water. The δD_{leaf} is enriched relative to δD_{xylem} by 40 ± 17‰ in B. nana and 22 ± 16‰ in E. vaginatum (Fig. 4). The intersection between the leaf water $\delta D-\delta^{18}O$ line and the LMWL can be used to infer the isotopic composition of source water for plant uptake (Polissar and Freeman, 2010), and occurs at $\delta^{18}O = -19$‰ and $\delta D = -148$‰. This isotopic composition lies between the July and August xylem water measurements.

3.2. Leaf waxes

3.2.1. Modern plant waxes

Leaves from both B. nana and E. vaginatum contain n-acids from C20 to C30 and n-alkanes from C23 to C33 (Fig. 6). CPI results show a strong even-over-odd predominance for n-acids for both B. nana and E. vaginatum (CPI$_{B\text{ nana}}$ = 14.2 ± 2.8; CPI$_{E\text{ vaginatum}}$ = 6.3 ± 1.5) and vice versa for n-alkanes (CPI$_{B\text{ nana}}$ = 7.4 ± 3.1; CPI$_{E\text{ vaginatum}}$ = 32.3 ± 8.1), reflecting the freshness of the sampled leaf waxes. Averaging all B. nana samples, we find that even-chain n-acids are roughly equally distributed from C22 to C28, whereas the n-alkane distribution has two peaks at C27 and C31. For C20-C30 n-acids, the average chain length...
(ACL) is 24.5 ± 0.7 while for n-alkanes, the C_{20}-C_{33} ACL averages 28.7 ± 0.4. *E. vaginatum* lipids are, on average, unimodally distributed and dominated by C_{26} n-acid and C_{31} n-alkane. ACL averages 24.8 ± 0.5 for n-acids and 30.1 ± 0.7 for n-alkanes. No difference in ACL was observed between sampling months for either species (p = 0.59 for *E. vaginatum* and p = 0.16 for *B. nana*). While *B. nana* and *E. vaginatum* have similar concentrations of total n-alkanes (1960 µg g^{-1} leaf and 1482 µg g^{-1} leaf, respectively; two-sample t-test p = 0.167), *B. nana* leaves contained significantly more n-acids than *E. vaginatum* (965 µg g^{-1} leaf and 142 µg g^{-1} leaf, respectively; two-sample t-test p = 0.037).

For isotopic analyses, we focus on the most abundant long chain n-acids (C_{22}-C_{30}) and n-alkanes (C_{25}-C_{31}). Across all sampling periods, the δ_{D_{wax}} of *B. nana* n-alkanes and n-acids average −232‰ and −248‰, respectively, while *E. vaginatum* n-alkanes and n-acids average −305‰ and −278‰, thus revealing discernible differences between plant species, but inconsistent differences between lipid classes. Further differences are apparent between homologues (Table 1 and Fig. 7). Calculations of δ_{app} from paired measurements of xylem water and leaf waxes show that δ_{app} is more negative for leaf waxes of *E. vaginatum* (n-alkane average: −182‰, n-acid average: −154‰) than for waxes of *B. nana* (n-alkane average: −89‰, n-acid average: −106‰) (Table 1). The difference in fractionation between the two species decreases with decreasing chain length (Fig. 7). Furthermore, we note that δ_{app} is less negative during July than August sampling, particularly for *E. vaginatum* (Fig. 5).

3.2.2. Sedimentary waxes

Sediment traps in Lake E5 collected between 0.05 and 0.3 g of solids during the deployment periods, equivalent to a mass flux of 0.1–0.85 g m^{-2} d^{-1}. The concentration of n-acids (ΣC_{20}-C_{33}) averaged 219 µg g sediment^{-1}, while the concentration of n-alkanes (ΣC_{20}-C_{33}) averaged 248 µg g sediment^{-1}. The fluxes of sediment, n-acids, and n-alkanes peak in June, during and shortly after the spring thaw (Fig. 8), with values of 0.85 g m^{-2} d^{-1}, 230 µg m^{-2} d^{-1}, and 304 µg m^{-2} d^{-1}, respectively. The carbon preference index of sediment trap waxes (CPI_{n-acids} = 2.7 ± 1.3; CPI_{n-alkanes} = 3.1 ± 2.9) are lower than the waxes from live vegetation, but still show strong even/odd differences that reflect the relatively low degradation state of the waxes (Fig. 6). The n-acids exhibit a unimodal distribution with a peak at the C_{24} homologue and an ACL of 23.3 ± 0.7. The n-alkanes are bimodal with peaks at C_{20} and C_{27}, and have an ACL of 25.2 ± 1.5. The low abundance of waxes required that sediment trap replicates be composited into early and late summer samples for isotopes analysis. In Lake E5, δD_{C_{28}-acid} varies by 15‰ throughout the summer, ranging from −256‰ in May/June and August/September to −243‰ in July (Fig. 8). The flux-weighted input of C_{28} n-acid during the summer has a δD value −253.7‰, which is
indistinguishable from the C\textsubscript{28} n-acid in Lake E5 surface sediment of -254.8%.

In Toolik Lake, sediment flux and lipid fluxes were lower than in Lake E5, such that wax abundance was too low for isotope analysis. The maximum sediment collected was 0.05 g, and the maximum sediment flux was 0.05 g m-2 d-1. The concentration of n-acids (C\textsubscript{20}-C\textsubscript{30}) averaged 226 \textmu g g-1 sediment-1 while the concentration of n-alkanes (C\textsubscript{23}-C\textsubscript{33}) averaged 438 \textmu g g-1 sediment-1. Lipid distributions were similar between the two lakes.

Like sediment trap samples, the C\textsubscript{24} n-acid is the most abundant wax homologue in surface sediments from all lakes. The ACL for n-acids is 24.8 ± 0.8 and the CPI is 5.2 ± 1.0 in the lake sediment samples, consistent with a terrestrial plant wax origin. The C\textsubscript{27} to C\textsubscript{31} are the most abundant n-alkanes and present in roughly equal

Fig. 6. Concentration of long chain n-acids (C\textsubscript{20}-C\textsubscript{32}) and n-alkanes (C\textsubscript{20}-C\textsubscript{33}) in live specimens of *Betula nana* (panels a and b), *Eriophorum vaginatum* (panels c and d), sediment trap samples in Lake E5 (panels e and f), and surface sediments from lakes around Toolik Field Station (panels g and h). For plant samples, concentrations are given relative to grams of dry leaf material, and for sediments it is relative to grams of dry sediment. Error bars represent standard error of the mean, while the n represents the total number of vegetation, sediment trap, and surface sediment samples.
Table 1
The average δDmax (‰) and net apparent fractionation (‰) of leaf waxes on living plants from all sites for each sampling date. Standard deviations in parentheses reflect variance between field samples, and n is the number of samples collected with each effort. Fractionation is calculated using paired xylem water measurements leaf wax measurements for each sample. Dashes mean not available.

<table>
<thead>
<tr>
<th></th>
<th>Xylem water</th>
<th>n-acids</th>
<th>n-alkanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C22</td>
<td>C24</td>
</tr>
<tr>
<td>B. nana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δD (1σ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 6, 2013 (n = 1)</td>
<td>−131 (−)</td>
<td>−252 (−)</td>
<td>−243 (−)</td>
</tr>
<tr>
<td>July 17/19, 2014 (n = 7)</td>
<td>−165 (3)</td>
<td>−271 (7)</td>
<td>−252 (8)</td>
</tr>
<tr>
<td>Aug 7/8, 2014 (n = 6)</td>
<td>−152 (5)</td>
<td>−263 (6)</td>
<td>−245 (3)</td>
</tr>
<tr>
<td>Average (n = 14)</td>
<td>−156 (11)</td>
<td>−267 (7)</td>
<td>−248 (7)</td>
</tr>
<tr>
<td>eapp (1σ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 6, 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 17/19, 2014</td>
<td>−123 (6)</td>
<td>−100 (6)</td>
<td>−90 (9)</td>
</tr>
<tr>
<td>Aug 7/8, 2014</td>
<td>−131 (6)</td>
<td>−109 (4)</td>
<td>−104 (7)</td>
</tr>
<tr>
<td>Average</td>
<td>−127 (7)</td>
<td>−108 (12)</td>
<td>−100 (13)</td>
</tr>
<tr>
<td>E. vaginatum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δD (1σ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 6, 2013 (n = 2)</td>
<td>−134 (−)</td>
<td>−282 (1)</td>
<td>−298 (1)</td>
</tr>
<tr>
<td>July 17/19, 2014 (n = 3)</td>
<td>−150 (5)</td>
<td>−248 (−)</td>
<td>−243 (25)</td>
</tr>
<tr>
<td>Aug 7/8, 2014 (n = 4)</td>
<td>−150 (8)</td>
<td>−267 (20)</td>
<td>−278 (6)</td>
</tr>
<tr>
<td>Average (n = 9)</td>
<td>−145 (9)</td>
<td>−266 (20)</td>
<td>−272 (21)</td>
</tr>
<tr>
<td>eapp (1σ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 6, 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 17/19, 2014</td>
<td>−108 (−)</td>
<td>−108 (22)</td>
<td>−127 (34)</td>
</tr>
<tr>
<td>Aug 7/8, 2014</td>
<td>−136 (28)</td>
<td>−150 (9)</td>
<td>−170 (7)</td>
</tr>
<tr>
<td>Average</td>
<td>−136 (28)</td>
<td>−148 (27)</td>
<td>−164 (36)</td>
</tr>
</tbody>
</table>
Table 2
Location, depths, and watershed characteristics of the 24 lakes from which we sampled surface sediment. S: Sagavanirktok (>125 ka), IK I: Itkillik I (~60 ka), IK II: Itkillik II (25–11.5 ka), IK-mix: mix of IK I and IK II. The sum of watershed cover classes are less than one because not shown is the area covered by lakes.

<table>
<thead>
<tr>
<th>Lake Name</th>
<th>Lat.</th>
<th>Long.</th>
<th>Glacial Surface</th>
<th>Mean Depth (m)</th>
<th>Watershed area (ha)</th>
<th>Vegetation types (fraction of watershed)</th>
<th>Barren</th>
<th>Dry tundra</th>
<th>Snowbed</th>
<th>Moist non-acidic tundra</th>
<th>Moist acidic tundra</th>
<th>Shrub tundra</th>
<th>Riparian shrubland</th>
<th>Wetland</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCL</td>
<td>68.629</td>
<td>-149.413</td>
<td>S</td>
<td>–</td>
<td>264</td>
<td>0.01</td>
<td>0.06</td>
<td>0</td>
<td>0.02</td>
<td>0.42</td>
<td>0.07</td>
<td>0.38</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>68.643</td>
<td>-149.458</td>
<td>S</td>
<td>6.3</td>
<td>129</td>
<td>0</td>
<td>0.21</td>
<td>0</td>
<td>0</td>
<td>0.69</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>68.644</td>
<td>-149.439</td>
<td>S</td>
<td>1.6</td>
<td>26</td>
<td>0</td>
<td>0.21</td>
<td>0.34</td>
<td>0</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>68.626</td>
<td>-149.554</td>
<td>IK I</td>
<td>3.1</td>
<td>87</td>
<td>0.13</td>
<td>0.17</td>
<td>0.04</td>
<td>0.16</td>
<td>0.32</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I6HW</td>
<td>68.581</td>
<td>-149.619</td>
<td>IK I</td>
<td>3.6</td>
<td>56</td>
<td>0</td>
<td>0.13</td>
<td>0.07</td>
<td>0.31</td>
<td>0.16</td>
<td>0.23</td>
<td>0</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Fog1</td>
<td>68.684</td>
<td>-149.079</td>
<td>IK II</td>
<td>8.4</td>
<td>22</td>
<td>0</td>
<td>0.06</td>
<td>0.07</td>
<td>0</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fog2</td>
<td>68.679</td>
<td>-149.089</td>
<td>IK II</td>
<td>7.8</td>
<td>37</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>0</td>
<td>0.58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fog4</td>
<td>68.680</td>
<td>-149.072</td>
<td>IK II</td>
<td>2.1</td>
<td>55</td>
<td>0</td>
<td>0.23</td>
<td>0.08</td>
<td>0.02</td>
<td>0.59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Galbraith</td>
<td>68.460</td>
<td>-149.420</td>
<td>IK II</td>
<td>4.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>68.569</td>
<td>-149.588</td>
<td>IK II</td>
<td>3.9</td>
<td>133</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0.16</td>
<td>0.53</td>
<td>0.04</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>68.571</td>
<td>-149.566</td>
<td>IK II</td>
<td>7.2</td>
<td>97</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0.06</td>
<td>0.77</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I3</td>
<td>68.575</td>
<td>-149.581</td>
<td>IK II</td>
<td>1.8</td>
<td>343</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.11</td>
<td>0.65</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>I4</td>
<td>68.580</td>
<td>-149.583</td>
<td>IK II</td>
<td>3.0</td>
<td>421</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.10</td>
<td>0.66</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>68.587</td>
<td>-149.590</td>
<td>IK II</td>
<td>3.9</td>
<td>597</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0.07</td>
<td>0.69</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>I6</td>
<td>68.597</td>
<td>-149.593</td>
<td>IK II</td>
<td>5.7</td>
<td>924</td>
<td>0</td>
<td>0.06</td>
<td>0.01</td>
<td>0.11</td>
<td>0.63</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>I7</td>
<td>68.601</td>
<td>-149.593</td>
<td>IK II</td>
<td>3.7</td>
<td>965</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0.11</td>
<td>0.60</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>I8</td>
<td>68.610</td>
<td>-149.582</td>
<td>IK II</td>
<td>2.7</td>
<td>2970</td>
<td>0.03</td>
<td>0.12</td>
<td>0.03</td>
<td>0.12</td>
<td>0.45</td>
<td>0.12</td>
<td>0.09</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Iswamp</td>
<td>68.611</td>
<td>-149.597</td>
<td>IK II</td>
<td>2.3</td>
<td>1227</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
<td>0.12</td>
<td>0.57</td>
<td>0.03</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>68.640</td>
<td>-149.604</td>
<td>IK II</td>
<td>4.8</td>
<td>32</td>
<td>0</td>
<td>0.53</td>
<td>0</td>
<td>0.22</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>68.641</td>
<td>-149.622</td>
<td>IK II</td>
<td>5.0</td>
<td>21</td>
<td>0</td>
<td>0.28</td>
<td>0.20</td>
<td>0.07</td>
<td>0.31</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>68.631</td>
<td>-149.648</td>
<td>IK II</td>
<td>3.3</td>
<td>24</td>
<td>0</td>
<td>0.36</td>
<td>0.03</td>
<td>0</td>
<td>0.54</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>68.630</td>
<td>-149.639</td>
<td>IK-mix</td>
<td>3.0</td>
<td>796</td>
<td>0.02</td>
<td>0.29</td>
<td>0.08</td>
<td>0.35</td>
<td>0.14</td>
<td>0.04</td>
<td>0.03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>68.630</td>
<td>-149.643</td>
<td>IK-mix</td>
<td>0.8</td>
<td>40</td>
<td>0</td>
<td>0.44</td>
<td>0.1</td>
<td>0.13</td>
<td>0.33</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TLK</td>
<td>68.632</td>
<td>-149.602</td>
<td>IK-mix</td>
<td>7.4</td>
<td>6486</td>
<td>0.02</td>
<td>0.16</td>
<td>0.2</td>
<td>0.15</td>
<td>0.42</td>
<td>0.07</td>
<td>0.08</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>
abundances. The ACL and CPI for n-alkanes average 27.2 ± 0.4 and 5.0 ± 0.8, respectively. Similar to observations from the nearshore Beaufort Sea (Drenzek et al., 2007), n-alkanes are more abundant than n-alkenes. The δDmax of lipids in surface sediments averages −264.5 ± 7.1‰ for all measured n-alkanes and −261.3 ± 11.0‰ for all measured n-alkanes and has a range of 49‰ (Table 3) across all lakes and lipid homologues.

To calculate a watershed-scale εapp, we compared the δDmax of lake surface sediments from 24 lakes to the δD of plant source water. We provide three estimates of εapp, based on different estimates of δDsource water. Using precipitation-weighted mean annual δDprecipitation (−166‰), εapp averages −118 ± 9‰ for n-alkanes and −114 ± 13‰ for n-akcids. Using precipitation-weighted mean summer δDprecipitation (−139‰), εapp averages −146 ± 8‰ for n-alkanes and −142 ± 13‰ for n-acids. Using the average δDxylem values measured in this study (−153‰), εapp averages −132 ± 8‰ for n-alkanes and −128 ± 13‰ for n-acids. Values of εapp tend to be slightly more negative for smaller carbon number homologues than larger homologues (Fig. 7). Our estimates of sedimentary wax εapp suggest that n-alkanes are more strongly fractionated relative to source water than are n-acids—the C29 n-alkane is depleted by 15‰ relative to C30 n-acid (paired t-test, p < 0.0001), while C27 n-alkane is just 4‰ depleted relative to C28 n-acid (paired t-test, p = 0.060). Thus while our plant samples exhibited opposing offsets between n-alkanes and n-acids, the sedimentary waxes are in general agreement with expectations from previous work on individual plants (Chikaraishi and Naraoka, 2007; Hou et al., 2007) and marine sediments (Li et al., 2009).

3.3. Vegetation effects on apparent fractionation

Isotopic differences between study lakes most likely arise from watershed-scale differences in soil water evaporation and/or plant distributions. Due to limited evidence for evaporative fractionation observed in our soil samples, large observed differences in εapp between plant types, and the large variation in plant types across watersheds (Table 2), vegetation is likely the primary cause of the large εapp variability (Table 2). Based on single and multi-variate regressions, we find that the best predictor of εapp for nearly all wax homologues is the relative abundance of barren and dry tundra vegetation. While barren tundra (bedrock) is dominated by lichens, the dry tundra is dominated by eudicot shrubs and forbs such as Salix spp. The positive correlation is consistent with the hypothesis that greater eudicot cover should result in less negative εapp. In contrast, the abundance of moist and shrub tundra, which contain an
Table 3

δD_{wax} and apparent fractionation (‰) of lake surface sediments. Fractionation is calculated using a source water value of −153‰ based on xylem observations for the two plant species. Dashes mean not measured.

<table>
<thead>
<tr>
<th>Lake name</th>
<th>Lat.</th>
<th>Long.</th>
<th>n-acids</th>
<th>n-alkanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C_{22}</td>
<td>C_{24}</td>
</tr>
<tr>
<td>UCL</td>
<td>68.629</td>
<td>−149.413</td>
<td>−270</td>
<td>−265</td>
</tr>
<tr>
<td>E5</td>
<td>68.643</td>
<td>−149.458</td>
<td>−268</td>
<td>−263</td>
</tr>
<tr>
<td>E6</td>
<td>68.644</td>
<td>−149.439</td>
<td>−268</td>
<td>−270</td>
</tr>
<tr>
<td>E1</td>
<td>68.626</td>
<td>−149.554</td>
<td>−260</td>
<td>−265</td>
</tr>
<tr>
<td>I6HW</td>
<td>68.581</td>
<td>−149.619</td>
<td>−265</td>
<td>−271</td>
</tr>
<tr>
<td>FOG1</td>
<td>68.684</td>
<td>−149.079</td>
<td>−268</td>
<td>−267</td>
</tr>
<tr>
<td>FOG2</td>
<td>68.679</td>
<td>−149.089</td>
<td>−265</td>
<td>−264</td>
</tr>
<tr>
<td>FOG4</td>
<td>68.680</td>
<td>−149.072</td>
<td>−284</td>
<td>−269</td>
</tr>
<tr>
<td>GALBRAITH</td>
<td>68.460</td>
<td>−149.420</td>
<td>−267</td>
<td>−262</td>
</tr>
<tr>
<td>I1</td>
<td>68.569</td>
<td>−149.588</td>
<td>−279</td>
<td>−277</td>
</tr>
<tr>
<td>I2</td>
<td>68.571</td>
<td>−149.566</td>
<td>−271</td>
<td>−271</td>
</tr>
<tr>
<td>I3</td>
<td>68.575</td>
<td>−149.581</td>
<td>−272</td>
<td>—</td>
</tr>
<tr>
<td>I4</td>
<td>68.580</td>
<td>−149.583</td>
<td>−272</td>
<td>—</td>
</tr>
<tr>
<td>I5</td>
<td>68.587</td>
<td>−149.590</td>
<td>−272</td>
<td>—</td>
</tr>
<tr>
<td>I6</td>
<td>68.597</td>
<td>−149.593</td>
<td>−262</td>
<td>—</td>
</tr>
<tr>
<td>I7</td>
<td>68.601</td>
<td>−149.593</td>
<td>−284</td>
<td>−279</td>
</tr>
<tr>
<td>I8</td>
<td>68.610</td>
<td>−149.582</td>
<td>−274</td>
<td>−273</td>
</tr>
<tr>
<td>ISWAMP</td>
<td>68.611</td>
<td>−149.597</td>
<td>−278</td>
<td>—</td>
</tr>
<tr>
<td>N1</td>
<td>68.640</td>
<td>−149.604</td>
<td>−253</td>
<td>—</td>
</tr>
<tr>
<td>N2</td>
<td>68.641</td>
<td>−149.622</td>
<td>−252</td>
<td>—</td>
</tr>
<tr>
<td>S11</td>
<td>68.631</td>
<td>−149.648</td>
<td>—</td>
<td>−250</td>
</tr>
<tr>
<td>S6</td>
<td>68.630</td>
<td>−149.639</td>
<td>−247</td>
<td>—</td>
</tr>
<tr>
<td>S7</td>
<td>68.630</td>
<td>−149.643</td>
<td>−274</td>
<td>—</td>
</tr>
<tr>
<td>TLK</td>
<td>68.632</td>
<td>−149.602</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Average δD_{wax} (‰)</td>
<td>−268</td>
<td>−268</td>
<td>−263</td>
<td>−261</td>
</tr>
<tr>
<td>Average ε_{app} (‰)</td>
<td>−136</td>
<td>−136</td>
<td>−130</td>
<td>−127</td>
</tr>
</tbody>
</table>

Fig. 9. The relationship between surface sediment ε_{app} and the relative area of each watershed comprised of dry or barren tundra (Alaska Geobotany Center, http://www.arcticatlas.org/). Dry and barren tundra are dominated by shrubs and forbs and have shallow organic soil layers (Walker et al., 1994). Fractionation factors are calculated using a source water isotopic composition of −153‰, the average of all xylem water measurements.
abundance of moss and the sedges Eriophorum spp. and Carex spp., is negatively correlated with \(e_{\text{app}} \) (Fig. 9, Table A2).

4. DISCUSSION

4.1. Apparent fractionation in the Alaskan Arctic is similar to temperate and tropical settings

A pressing question in the application of leaf wax hydrogen isotopes for paleoclimate reconstructions is whether apparent D/H fractionation is affected by enhanced transpiration in polar regions due to 24-h photosynthesis, as suggested by previous studies (Yang et al., 2011; Shanahan et al., 2013; Porter et al., 2016), or, if there is little effect of latitude on \(e_{\text{app}} \) as recently suggested by Liu et al. (2016). Our study site is within the Arctic circle (68°N), at a similar latitude to previous studies on sub-Arctic and Arctic leaf wax fractionation, which are here considered those studies above 63°N (Sachse et al., 2004; Hou et al., 2011; Wilkie et al., 2012; Shanahan et al., 2013; Porter et al., 2016). We find that \(e_{\text{app}} \) of Arctic n-alkanes and n-acids are generally similar to those observed at mid- and low-latitude locations (Sachse et al., 2004; Hou et al., 2007; Garcin et al., 2012), suggesting that the effect of 24-h photosynthesis is of limited importance and that the fundamental controls on \(e_{\text{app}} \) in the Arctic are similar to those in temperate and tropical regions, with the exceptions that the Arctic is differentiated by its extremely short growing season, unique flora, and the presence of permafrost.

With the exception of the study by Yang et al. (2011), our estimates of \(e_{\text{app}} \) at the plant scale are in general agreement with results from plants of the same growth forms from regions both with and without a summer diel light cycle. For example, across a latitudinal transect which included 24-hour daylight sites, Sachse et al. (2006) found that Betula pubescens and B. pendula exhibited \(e_{\text{alkane-water}} \) of −138 to −86‰, a range which brackets our estimate of −108‰ for the closely related B. nana. Sachse et al. (2006) did not observe a consistent latitudinal effect on \(e_{\text{app}} \) within either Betula species, which would also suggest day length has little effect on \(e_{\text{app}} \). The average n-acid D/H fractionation for B. nana specimens at our site (\(e_{\text{acid-water}} = -89\% \)) falls within the range reported for a variety of eudicot plants (\(e_{\text{acid-water}} = -156 \) to −85‰) collected from a mid-latitude site in Massachusetts, USA by Hou et al. (2007). The Alaskan \(e_{\text{alkane-water}} (-105\%) \) is at least 10‰ enriched compared to Massachusetts specimens (\(e_{\text{alkane-water}} = -180 \) to −115‰), and slightly enriched relative to the \(e_{\text{app}} \) of −117‰ reported for C27 n-alkanes of dominant shrub taxa in western Greenland (Thomas et al., 2016). Fractionation values for E. vaginatum (\(e_{\text{alkane-water}} = -182\% \) and \(e_{\text{acid-water}} = -153\% \)) fall within the ranges for other graminoids reported by Hou et al. (2007) (\(e_{\text{alkane-water}} = -206 \) to 154‰ and \(e_{\text{acid-water}} = -195 \) to −148‰). Our results also overlap with \(e_{\text{app}} \) measurements from living plants in Arctic Siberia, where Wilkie et al. (2012) report \(e_{\text{app}} \) values ranging from −135 to −97‰ for n-acids from seven tundra species, comprising both eudicots and monocots. Unlike at our sampling sites, however, Wilkie et al. (2012) did not observe a significant D-depletion in monocots relative to eudicots. This between-site difference may arise because, while Eriophorum in the Toolik Lake region is found primarily in mesic soils, Pounceae, the monocot studied by Wilkie et al. (2012), can be found across diverse soil types in the Arctic (Oswald et al., 2003) and may be more susceptible to evaporation effects on D/H ratios.

In our study region, the ecosystem-scale \(e_{\text{app}} \) inferred from waxes in lake sediments averages −132‰ for n-alkanes and −128‰ for all n-acid homologues when the average \(D_{\text{xylem}} \) is used as a baseline for source water. The average source water \(D \) value is undoubtedly a mix of precipitation across seasons, and as discussed below, is likely biased towards summer values in the Arctic. The \(D_{\text{xylem}} \) values reported here represent a snapshot in mid-summer and may be unique to the plant species studied here. Nonetheless, because the soil thaw layer is shallow (<50 cm), plants are generally drawing water from the same pool. The \(D_{\text{xylem}} \) may also be enriched relative to xylem waters in May/June when leaf flush occurs, thereby biasing \(e_{\text{app}} \) to be slightly less negative than the growing-season average. Nonetheless, the application of \(D_{\text{xylem}} \) as an estimate of source water is justified for a few reasons. First, the presence of some residual cold season (D-depleted) water in soil profiles implies that mean summer \(D_{\text{precipitation}} \) as a source water would over estimate \(D_{\text{source water}} \), while using a mean annual \(D_{\text{precipitation}} \) would likely underestimate \(D_{\text{source water}} \) because it would not account for the summer bias in the growing season. Because the xylem water estimates fall intermediate between mean annual and mean summer rainfall, we propose that the \(D_{\text{xylem}} \) measurements provide the most reasonable baseline value of the source water. While better constraining the \(D_{\text{xylem}} \) during the period of leaf flush would further aid the assessment of source water seasonality, the \(D_{\text{app}} \) of newly formed leaves is more dependent on the D/H ratios of stored carbohydrates and NADPH than on xylem waters (Newberry et al., 2015), and so spring \(D_{\text{xylem}} \) is not critical in this analysis.

The ecosystem-scale \(e_{\text{app}} \) values are intermediate between our estimates of \(e_{\text{app}} \) from B. nana and E. vaginatum, and, for n-acids, slightly more negative than the \(e_{\text{app}} \) estimate of −110.5‰ in Arctic Siberia (Wilkie et al., 2012). The \(e_{\text{app}} \) estimates for long chain (C27, C29, C31) n-alkanes in northern Alaska fall within the range of −141 to −122‰ found in high latitude lakes of Europe (Sachse et al., 2004). Our estimates are slightly more negative than those reported from southern USA, where the C27-C30 n-acids exhibit \(e_{\text{app}} \) values of −98 to −102‰ relative to precipitation (Hou et al., 2008), but more positive than a report from West Africa, where \(e_{\text{app}} \) for C29 and C31 n-alkanes was between −168 and −142‰. Regardless of the comparison with the tropics, our estimates are dramatically more negative than the \(e_{\text{app}} \) estimates of −55 to −60‰ for both n-alkanes and n-acids from some prior work in sub-Arctic and Arctic sites (Shanahan et al., 2013; Porter et al., 2016).

We postulate that the large discrepancy in \(e_{\text{app}} \) between our study and previous Arctic field studies derives from
differences in the assumed seasonality and estimated isotope compositions of plant source waters. Some prior studies that found small Arctic e_{app} use source water δD values estimated to represent mean annual ΔDprecipitation (Yang et al., 2011; Shanahan et al., 2013; Porter et al., 2016). For the Baffin Island study (Shanahan et al., 2013), this assumption is compounded with the use of estimated rather than measured ΔDprecipitation, values, as well as low humidity and a predominance of dicotyledonous species (forbs) in their study area, all of which might reduce apparent D/H fractionation. In Central Canada, Porter et al. (2016) calculated e_{app} of −59‰ by comparing fossil waxes to mean annual precipitation preserved in pore ice. However, it is unclear whether pore ice records water frozen \textit{in situ} at the same time and in the same season as that when the plant waxes were formed. Moreover, application of this e_{app} value to δD wax of modern soils in their study area (Pautler et al., 2014) results in an underestimation of modern mean annual ΔDprecipitation by 28‰ and a resulting underestimation of modern mean annual temperature by 13 °C (Porter et al., 2016). While it is possible that source water for plants can partially come from snowmelt (Alstad et al., 1999; Leffler and Welker, 2013), the ground is often frozen during the season of snow melt and water from snowmelt in Arctic spring is mostly lost through runoff. It is more likely that the fossil pore water isotopes used by Porter et al. (2016) reflect cold season (D-depleted) precipitation rather than precipitation during the plant growing season (D-enriched) (Blok et al., 2015).

Low apparent fractionation values have been previously explained by the 24-h sunlit conditions that characterize the Arctic summer, which allow photosynthesis throughout the Arctic summer, which allow photosynthesis throughout the 24-h day that might drive strong isotopic fractionation of leaf waters due to 24-h evaporation. This hypothesis is supported by greenhouse experiments that indicate e_{app} values from −87 to −62‰ for plants grown in 24-h light conditions (Yang et al., 2009). These values are difficult to explain. It is possible that the exceptionally small fractionation values that Yang et al. (2009) observed partly resulted from their choice of study species – \textit{Metasequoia}, \textit{Larix}, and \textit{Taxodium} are expected to exhibit relatively small e_{app} values based on their phylogenetic lineages (Gao et al., 2014a). Thus, in cases where arctic forests are dominated by these conifers, a reduced fractionation value may be appropriate for calculating ancient ΔDprecipitation from ancient ΔD wax. Nonetheless, for the modern arctic tundra plants studied here, our data argue against a 24-h photosynthesis effect of leaf water isotopes.

Direct observations of δleaf - xylem do not indicate that continuous daylight has a significant impact on δD wax. Although evaporative enrichment at the leaf surface increases δDleaf relative to δDxylem (Roden and Ehleringer, 1999; Tipple et al., 2015), the magnitude of this enrichment observed at Toolik (40‰ and 21‰ for \textit{B. nana} and \textit{E. vaginatum}, respectively) is within the range of isotope model predictions for Alaska (Kahmen et al., 2013a). The observed enrichment of leaf water over xylem water is also similar to field and growth chamber observations in temperate environments (Massachusetts and New York) with diel light cycles and relative humidity similar to where Gao et al. (2014a) found that δleaf - xylem is slightly greater for eudicots (34 ± 13‰) than \textit{Poales} (20 ± 11‰). We hypothesize that the species difference in δDleaf may result from differences in plant height and leaf physiology, with \textit{B. nana} somewhat taller and more susceptible to leaf water enrichment due to a longer flow path of water during transpiration (Gao and Huang, 2013). Regardless of the differences between plant types, both plant water isotope measurements show little effect of continuous daylight on leaf water isotopes, and by extension, net apparent fractionation.

While leaf water measurements are useful for assessing the importance of evaporative enrichment, leaf waters can display large diel isotope variations (Flanagan and Ehleringer, 1991) which were not captured in our sampling scheme. To circumvent the uncertainties of spot sampling, we further tested the effect of changing leaf transpiration on the isotope values of leaf water using the modified Craig-Gordon model for leaf water (Flanagan and Ehleringer, 1991; Tipple et al., 2015). This model calculates the isotopic composition of water at the site of evaporation, rather than water in the bulk leaf tissue, which can also contain a fraction of unevaporated xylem water. Nevertheless, the model can qualitatively describe the potential impact of diel or continuous transpiration on leaf water isotopic enrichment. Using average JJA meteorological conditions from Toolik Field Station (Toolik Environmental Data Center Team, 2016), and atmospheric vapor δD at Toolik (Klein et al., 2015), we modeled δDleaf for the range of transpiration rates of Arctic grasses (Gebauer et al., 1998). We find that δDleaf decreases with increasing transpiration rates, but the overall variation is small, less than 1‰ (Fig. 10). These model results support the findings of

![Fig. 10. Modeled leaf water isotopes under varying (a) transpiration and (b) humidity conditions. The model used in this sensitivity analysis was developed by Tipple et al. (2015) and uses JJA meteorological inputs from Toolik Lake Field Station (Toolik Environmental Data Center Team, 2016), an initial source water isotope value of −153‰ (this study), and atmospheric vapor δD measured at Toolik Lake (Klein et al., 2015).](image-url)
W.C. Daniels et al. / Geochimica et Cosmochimica Acta 213 (2017) 216–236

Sullivan and Welker (2007), who demonstrated that, for arctic willow (*Salix arctica*), increasing transpiration results in lower, not higher, leaf water δ18O. Furthermore, findings of Roden and Ehleringer (1999) indicate that leaf water at the site of evaporation reaches isotopic equilibrium within two hours under constant evaporation, and so prolonged (24 h) transpiration should not lead to anomalously enriched leaf water isotope values. Thus, our modeling and prior observational data suggest that 24-h transpiration in the Arctic would, if anything, decrease δDleaf and thereby make ϵapp more negative, rather than the opposite.

Model results also suggest a relatively small humidity effect on leaf water isotopes. For a 1% increase in relative humidity, δDleaf decreases by 0.33‰ (Fig. 10). Based on the δDprecipitation-temperature relationship of 3.1‰°C−1 reported by Porter et al. (2016), this equates to approximately a 1 °C inferred temperature change per 10% change in relative humidity. As such, the effect of humidity change on δDwax interpretations may be relatively insignificant in the Arctic.

The ϵapp values for leaf waxes from *E. vaginatum* and *B. nana* align well with previous studies that find waxes in graminoids are D-depleted relative to those from forbs, shrubs, and trees (Sachs et al., 2012; Gao et al., 2014a; Liu et al., 2016) and that waxes in monocots are depleted relative to eudicots (Gao et al., 2014a). Interestingly, however, fractionation values for the shorter chain length n-acids (C24 and C26) were similar for our two study species. This result suggests that shorter chain lengths may be more resilient to vegetation effects in the geologic record. However, with the knowledge that other species, particularly *Sphagnum* moss (Nichols et al., 2009) and aquatic macrophytes (Gao et al., 2011), contribute substantial C24 n-acid and other short-chain waxes to lake sediments, it remains uncertain if this finding can be extrapolated across all relevant plant types.

It is possible that D/H fractionation in this study is overestimated (more negative than true ϵapp), due to seasonally biased sampling of waxes and source waters. To evaluate this, we consider a wider range of possible source water δD values. For sedimentary waxes in Toolik and the surrounding lakes, if the plant source water is equal to the mean annual amount-weighted δDprecipitation (−166‰) rather than summer xylem water (−153‰), ϵapp ranges from −99‰ for C30 n-acid to −122‰ for C22 and C24 n-acids. This is still similar to ϵapp in non-polar regions (Sachs et al., 2004; Hou et al., 2008) and very different from the small values observed at Baffin Island and Central Canada (Shanahan et al., 2013; Porter et al., 2016). To generate δDvalues as small as −60‰ at our site, it is necessary to invoke source water δD values of −213‰. Such a strong winter-biased source water isotope value is unlikely considering that δD xylem during the growing season averaged −153‰, that 60% of annual precipitation occurs in the three summer months, and that most of the snowmelt is lost as runoff during the spring thaw (Woo, 2012).

4.2. Constraining the seasonality of δDwax signals in the Arctic

It is challenging to accurately identify the isotope value of the source water involved in plant wax synthesis in the Arctic because of the extreme seasonal changes in δDprecipitation and the uncertainty surrounding the timing of leaf wax synthesis. For our location, we estimate that the δD of source water used for plant growth averages −153‰, based upon both direct measurements of xylem water as well as the intersection between the leaf evaporation line with the LMWL (Fig. 4). Although soil and xylem water collections occurred during peak seasonal warmth and peak δDprecipitation, their isotopic composition was intermediate between the mean annual amount-weighted δDprecipitation (−166‰) and the summer δDprecipitation (JJA average = −139‰). In regions of continuous permafrost, soil infiltration of snowmelt is variable, but generally inhibited during cold months by the impermeability of soil ice (Woo, 2012). As a result, considerable snowmelt is lost as surface runoff and the spring/summer soil water during the period of leaf flush is mostly composed of spring (May and June) precipitation. The predominance of growing-season precipitation over cold-season precipitation in surface soil waters is evident in both July and August, as the δDsoil is isotopically similar to spring and summer rains (Fig. 4). Nevertheless, δDsoil increases from July to August, and, D-depleted water is present at intermediate soil depths in July, which suggest that complete replacement of remnant fall, winter, and spring precipitation requires several weeks to months and that cold-season precipitation, or a mixture of cold- and growing season precipitation, may be available for plant growth. The seasonal change in δDsoil profiles seems to have a stronger influence on the δDwax of *Betula nana*, which as a shrub has a deeper rooting depth than the sedge *Eriophorum vaginatum* (Fig. 5). Indeed, there are indications that snowmelt can contribute over 30% of source water to plants (Ebbs, 2016). Nevertheless, xylem water isotope measurements in this study and another study in Greenland (Sullivan and Welker, 2007) indicate that arctic plants primarily utilize water from the shallow, thawed soil zones, where soil water is isotopically similar to growing season precipitation events (Fig. 3).

The Lake E5 sediment trap results provide additional insight into seasonal variations in the source water that plants use for biosynthesis (Fig. 8). Since the highest flux of waxes to the sediment occurs during the spring freshet, we suggest that waxes entering the lake are primarily produced during previous year(s) and are flushed from soil by snowmelt. There are reports from the Mackenzie River delta and other high-latitude localities that waxes can be pre-aged by years to millennia at the time of deposition (Drenzek et al., 2007). Considering the primary transport mechanism (particulate transport via snowmelt) and lack of degradation inferred from CPI values, we suspect that the majority of waxes entering the lake can be considered recent. The leaf litter reflects the complex integration of the seasonal production, isotopic evolution, and ablation, of waxes from a variety of species. Importantly, the amplitude of the sediment trap δDwax variability throughout the summer (15%) is greater than we observed in the monthly change in δDwax of living plants, which is surprising, but may be because we did not measure δDwax of plants in the earliest part of the growing season (May or June).
Despite the enrichment of xylem water in August relative to July, δDxylem of plants did not change between July and August (Fig. 5). To explain the stable δDxylem values, there are multiple plausible scenarios. First, de novo wax biosynthesis may have occurred only during the brief period of leaf flush, which occurs in mid-June at our site, as has been reported from greenhouse studies of *Populus trichocarpa* (Kahmen et al., 2011). If this is the case, δDwax would be insensitive to seasonal change in δDxylem in field settings, however, weeks to months are required for δDwax to stabilize (Newberry et al., 2015) because of a greater need to replenish lost waxes in more harsh conditions. The Lake E5 sediment trap results show seasonal changes in δDwax, implying some seasonal regeneration of waxes (Fig. 8).

In the process of de novo wax regeneration during the growing season, δDwax and biosynthetic fractionation at the time of budbreak tend to be less negative than during mid/late-summer because of a greater contribution of D-enriched material from the recycling of stored carbohydrates early in the season (Newberry et al., 2015). Biosynthetic changes during the growing season are also reported to depress mid-summer D/H ratios in saltmarshes (Sessions, 2006). As such, a second plausible scenario to explain the seasonal progression of sediment trap waxes relative to living plant waxes is that spring (June) waxes at our site were more D-enriched than the late-summer waxes, similar to what Newberry et al. (2015) observed in the UK. This model of seasonal δDwax progression resolves the discrepancy between our leaf and sediment trap samples. That is, waxes entering the lake in mid-summer (July), when δDwax was at a maximum, were likely produced during spring (mid-June), when biosynthetic fractionation is minimal. As the initial waxes were ablated over the weeks following budbreak, they were replaced by more D-depleted waxes, despite increasingly D-enriched xylem waters. δDwax was then relatively stable during our limited sampling window between July and August. This hypothesis is most parsimonious with the relatively D-depleted waxes which enter the lake in late fall and during the spring freshet because the waxes overwintering on land are somewhat depleted relative to the early season waxes and would have been derived from litterfall originating in August and September. We cannot confirm this hypothesis without further sampling May/June leaves. Nonetheless, this point argues for a mixed-season, summer biased precipitation source.

An alternative explanation for the seasonal cycle in sediment trap δDwax is that a subset of plant species on the landscape produce a relatively large quantity of D-enriched waxes during mid-summer, but these waxes do not contribute substantially to the soil/particular leaf matter washed into the lake in spring. If this is the case, our vegetation survey was not broad enough to observe these plant types.

Overall, our observations support the hypothesis that δD of long chain n-acids and n-alkanes records a summer-biased mean annual precipitation isotope signal in the Arctic. Wilkie et al. (2012) found that the isotopic composition of spring precipitation and streamwater is a good representation of plant source water during the growing season in Siberia. In their study the streamwater isotope values were intermediate between mean annual and summer precipitation values, and the resulting value of eapp was approximately −10‰. We find strong evidence that plants use summer precipitation in the Toolik region, and to a lesser extent, fall and winter precipitation stored in the soil. However, we note that the average composition of plant source waters is similar to δDprecipitation during spring (May and June). The use of summer precipitation by plants was also observed in Arctic Svalbard, where the δD of plant annual growth rings is more strongly correlated with summer δDprecipitation than with either winter δDprecipitation or with the amount of snow accumulation during winter (Blok et al., 2015). These findings have important implications for the interpretation of δDwax records of Arctic paleoclimate, given the potential importance of seasonality in governing high-latitude climate change (Denton et al., 2005).

4.3. Constraining landscape-scale vegetation effects on sedimentary δDwax

Surface sediment δDwax varies by up to 37‰ across our 24 study lakes for a given n-acid homologue and by up to 32‰ for a given n-alkane homologue. These ranges are substantial, especially if δDwax is to be used for reconstructing paleoclimate – 37‰ is equivalent to ~12 °C of temperature variability based on the modern relationship between temperature and δDprecipitation of ~3.1‰ °C⁻¹ across northern North America (Porter et al., 2016). In the absence of climatic and δDprecipitation gradients in our constrained study area, we assume that the variability arises principally from local (watershed-scale) variations in vegetation. Quantifying the vegetation effect is therefore important because in Alaska and around the Arctic, deglacial and modern climate warming have been accompanied by vegetation changes, especially an expansion of shrub vegetation (Livingstone, 1955; Tape et al., 2012), which could alter the ecosystem value of eapp and impact reconstructions of past δDprecipitation.

The different glacial landscapes in the Toolik Lake area support diverse and well-characterized vegetation assemblages with varying relative abundances of monocot and eudicot plants over a very small area (Walker et al., 1994), allowing a test of whether catchment-scale differences in vegetation affect δDwax independent of climatic influences. In general, we find that for lakes situated in watersheds with a high abundance of dry and barren tundra, δDwax is 10–30‰ less negative than for those lakes surrounded by sedge and grass-dominated vegetation classes such as moist acidic tundra and wetlands.

Of the nine vegetation classes defined by Walker and Maier (2008), dry tundra and barren/heath tundra are the two classes with the least abundance of monocots. The vegetation in these units predominantly support lichens, dicotyledonous forbs and prostrate shrubs such as *Sulix reticulata*. Based on the eapp difference between *E. vaginatum* and *B. nana* in this study and the previously well-described difference between monocots and dicots (Gao et al., 2014a), we expect waxes in lakes surrounded
predominantly by dry tundra to be relatively D-enriched. In contrast, wetland areas and moist tundra contain a mix of shrubs, forbs, monocotyledonous graminoids (ex. *Eriophorum* spp. and *Carex* spp.), and *Sphagnum* moss, with graminoids and mosses dominating the biomass (Walker et al., 1994) and so lake sediments in this setting should be relatively D-depleted.

While the vegetation classes are blunt instruments for describing species assemblages, the correlations observed here (Fig. 9, Table A2) are consistent with a vegetation effect. Our study is limited in that we did not track soil and or plant water D/H values from dry tundra ecotypes, and it is possible that differences in δD_soil also contributes to the positive relationship of ε_app with abundance of dry tundra. Evaporative effects are expected to be small based on our soil water isotope measurements from most acidic tundra (Fig. 4). However, the extremely shallow organic soils in the dry/barren tundra could result in short soil water residence time, such that δD_soil ratios would closely track the seasonal pattern in δD_{precipitation} and the contribution of winter precipitation (D-depleted) to soil water is relatively small. Whether δD_soil differs across land cover types or not, we suggest that the predominance of eudicots on the dry tundra influences the δD_wax we observe in lake sediments via the lower ε_app values that characterize eudicot vegetation (Fig. 9).

Watershed scale vegetation effects should be most prominent if waxes are primarily transported through runoff, and least prominent if aeolian transport prevails, as the latter should result in exchange of waxes between watersheds and reduced variability across lakes. While waxes can be transported via wind over long ranges as aerosols (Conte and Weber, 2002; Gao et al., 2014b; Nelson et al., 2017) or particulates (Fahnestock et al., 2000), the large range in sediment δD_wax observed among our study lakes suggests that hydraulic transport causes the lake sediment δD_wax signal to primarily record watershed scale effects of vegetation and soil. Local transport is further substantiated by the seasonal pattern in wax transport and deposition observed in the lake sediment traps (Fig. 8). Approximately 65% of the total n-alkanoids (C_{29}-C_{30}) were deposited between May 16 and July 1, during the spring freshet for Arctic lakes. The most likely explanation for this peak is that waxes are transported by runoff during the period of high snowmelt and mass movement. A predominance of local hydrologic transport contrasts with that of temperate European lakes, where Nelson et al. (2017) find that aeolian transport is most important. The difference could arise because the short stature of Arctic vegetation limits windborne material, or because the snowmelt runoff event is more intense in our study lake catchments than in the European lake catchments. As the summer progresses and snowmelt-derived inputs decline, long-distance aerosol waxes may become more important relative to local hydraulic inputs. Since the late summer wax flux is small, however, watershed scale heterogeneity is preserved in lake sediments.

Overall, the range in the ecosystem scale ε_app between lakes is substantially smaller than the potential range based on end-member monocot and eudicot fractionations that we found at the plant scale. The reduced range could be due to some aerosol transport homogenizing the isotope signal between lakes, or simply because within each watershed, plant communities contain a mixture of monocot and eudicot species, and true monocot/dicot end-members are never achieved at the watershed scale. It is evident, based on the scatter in the ε_app – vegetation relationship and on the different lipid distributions between *E. vaginatum*, *B. nana*, and the surface sediment waxes, that other plant species contribute a considerable portion of the sedimentary waxes. Thus, while our study species may provide a reasonable representation of two major plant classes, they do not completely capture the variability in δD_wax of the contributing tundra plants. In particular, the sedimentary waxes are characterized by dominant chain lengths of C_{27} n-alkane and C_{24} n-alkane, a feature not observed in either study species. A survey of all tundra plant types will help further refine vegetation-based ε_app correction methods. Nonetheless, the impact of vegetation assemblages is consistent with expectations based on fractionation among plant types. These data stress the importance of considering independent estimates of paleovegetation, such as pollen (Feakins, 2013) or plant macrofossils (Nichols et al., 2014) when quantitatively determining Arctic δD_{precipitation} based on sediment or soil δD_wax measurements.

5. Conclusions

Here we assessed the effects of water uptake, transpiration, biosynthesis, and landscape integration as controls on the D/H fractionation associated with leaf wax formation in Arctic Alaska, and provide estimates of ε_app under different vegetation regimes.

We find that ε_app values of two of the most abundant plants in the Arctic tundra, *B. nana* and *E. vaginatum*, are similar to shrubs and grasses in non-Arctic sites. This finding is substantiated by direct observations of leaf water isotope enrichment and ε_app at the plant-scale as well as ε_app at the ecosystem-scale. Likewise, modeled leaf water shows no particularly strong enrichment in a continuous light regime. We propose that the effect of prolonged, 24-h photosynthesis during the Arctic summer on the hydrogen isotopic composition of waxes is small in the low Arctic tundra despite 24-h day lengths.

We take advantage of the strong edaphic control on vegetation assemblages in the Brooks Range foothills to produce the first analysis of a vegetation effect on ε_app in the absence of a climatic gradient. Across 24 lakes within 10 km of each other, ε_app varied by 44‰. This result suggests that (1) wax transport between watersheds as aerosols is small compared to the hydraulic transport within watersheds and (2) variation in plant assemblages between watersheds plays a significant role in the observed ε_app. Using vegetation maps, we demonstrate a positive correlation between the abundance of dry tundra (eudicot-dominant) and ε_app for long-chain n-alkanes and n-alkanes. The relationship illustrates the necessity of correcting δD_wax changes for changes in vegetation, and serves as a guide for such corrections. We propose that for sedimentary records of δD_wax, a sliding scale of ε_app can be appropriately applied if the relative abundance of eudicots is known.
ACKNOWLEDGEMENTS

Thanks to Alice Carter, Dan White, and William Longo for assistance with field collection. Joe Orchard, Rafael Tarozo, and Josue Crowther helped with laboratory analyses. This work was partially supported by the ARC LTER (NSF-DEB-1026843), NSF OPP award (1503846), the National Geographic Society, the Brown-MBL joint graduate program, and research grants to Will Daniels from the Geologic Society of American and the Institute at Brown in Environment and Society. The Toolik Lake precipitation isotope data is partially supported by J. Welker’s NSF OPP MRI award (0953271) and the Alaska Water Isotope Network (AKWIN).

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2017.06.028.

REFERENCES

Associate editor: Alex L. Sessions