Hydrometeorology and lacustrine sedimentary processes at Bear Lake, Devon Island, Nunavut

by

Ted Lewis

A thesis submitted to the Department of Geography
in conformity with the requirements for
the degree of Master of Science

Queen's University
Kingston, Ontario, Canada
October, 2000

copyright © Ted Lewis, 2000
Abstract

A lacustrine process study was undertaken at Bear Lake (75° 28’ N, 85° 13’ W), Devon Island, Nunavut from May 22 to August 19, 1999. Air temperature, precipitation, water temperature, mass accumulation rates (MARs), discharge and bottom currents were monitored in an attempt to spatially and temporally characterize lacustrine processes and the sedimentary response to environmental forcings.

Air temperature datasets reveal that the Bear Lake record is statistically significantly related to records from Resolute and Eureka. Bear Lake is warmer than both these stations, though it is likely that Bear Lake thermistors were improperly shielded from solar radiation, artificially elevating temperatures.

Precipitation at Bear Lake was dominated by an extreme storm event on June 29, when 50.8 mm of rain fell in 18 hours. The lacustrine effects of the precipitation on June 29 were magnified by its timing (early melt season). Runoff was derived from precipitation, but also had a strong snowmelt component. Turbidity currents were generated in front of all of the tributaries of Bear Lake, producing extremely high MARs in near-bottom sediment traps.

A deposit of sandy niveo-aeolian material quickly melted through the lake ice. MARs under the deposit generally decreased with depth; gradually becoming less concentrated as it spread out in deeper water. On short time scales, lacustrine deposits of aeolian material are of little paleoenvironmental use at Bear Lake, since the location of deposits changes interannually, and
their position is not predictable. However, they are potentially valuable indicators of changes over longer periods when considered in aggregate.

Turbidity currents were monitored in the late melt season at a sandur-proximal site. Underflow velocities were mostly low, but from July 23-25, high velocities (up to 21 cm/s) were associated with a large discharge event. At the same location, small near-bottom temperature anomalies were associated with diurnal discharge peaks. These are the first turbidity currents ever recorded in a High Arctic lake.

This project serves to improve the understanding of sedimentary processes in High Arctic glacial lakes, and to more confidently interpret the paleoenvironmental record. It is part of a larger research project at Bear Lake, which includes the analysis of sediment cores and a sub-bottom acoustic survey.
Acknowledgements

Dr. Robert Gilbert and Dr. Scott Lamoureux continuously provided thoughtful ideas, advice and support related to this project. Their love of lakes and the Arctic environment was infectious, and was always evident.

This research was possible thanks to the absolute efficiency and competence of the pilots, managers, labourers, and cooks of the Polar Continental Shelf Project, who make travels to Resolute and environs a joy.

Thanks to the Arctic Institute of North America Grant-in-Aid program, the Northern Scientific Training Program, and the Natural Sciences and Engineering Research Council of Canada, who provided financial support to this project. The staff and students at INSTAAR, in conjunction with the National Science Foundation, provided a superb forum for feedback and inspiration during the 30th Arctic Workshop.

Heather Nicholson unfailingly put up with three months of oatmeal and textured vegetable protein, not to mention a grumpy researcher with a terrible singing voice. Her help, advice and ideas ensured the work got done. Also, the help of Nicole Auty and Jackie Cockburn was invaluable.

Thanks to the grad students of geography and PEARL, whose scholarly enthusiasm is contagious, and who made Saturday morning hockey a cherished event. The editing skills of Chloë Stuart, Rich Butler and David Mazzucchi are particularly appreciated. Thanks also to Brandon Beierle, whose computing skills meant this thesis was not written on a ten-year-old
computer (the new one knows that there are two hyphens in “ten-year-old”, so I don’t have to).

Dave Tryon and Lloyd Rhymer from the Queen’s University Department of Civil Engineering were extremely helpful in allowing the use of their flume and current meter. Also from Civil Engineering, Dr. Ana da Silva provided advice on the various forms of the Chezy equation.

Guidance and elbow grease during the construction of sediment traps was greatly appreciated from Mark Publicover.

Finally, the support of my family is treasured. Their continuous encouragement and love were subtly expressed, but strongly felt. They also gave up their house to troops of Arctic researchers on numerous occasions. Thanks for not asking too many times “what kind of job can you get as a limnologist”?
Table of Contents

Abstract .. i
Acknowledgements ... iii
Table of Contents ... v
List of Figures .. viii
List of Tables ... x
List of Abbreviations ... xi

Chapter 1 – Introduction

1.1 Objectives ... 1
1.2 Bear Lake ... 2
1.3 Context .. 6
1.4 Focus .. 9
1.5 The Bear Lake watershed .. 10
 1.5.1 Geology, physiography and geomorphology ... 10
 1.5.2 Terrestrial biology ... 12
 1.5.3 Climate and weather ... 12
 1.5.4 Hydrology .. 14

Chapter 2 – Literature Review

2.1 Introduction ... 15
2.2 Geology and physiography ... 16
2.3 Glaciation .. 17
2.4 Climate and vegetation ... 18
2.5 Terrestrial sedimentation in the Arctic ... 20
 2.5.1 Mechanical and chemical erosion and deposition 20
 2.5.2 Aeolian activity ... 20
 2.5.3 Periglacial landforms and processes ... 21
 2.5.4 Paraglacial activity and the “geologic norm” .. 22
2.6 Fluvial and lacustrine hydrology ... 23
 2.6.1 Arctic nival hydrology ... 24
 2.6.2 Arctic proglacial hydrology ... 25
2.7 Suspended sediment and discharge in proglacial and nival regimes 27
2.8 Lacustrine processes in arctic lakes ... 29
 2.8.1 Stratification ... 30
 2.8.2 The role of lake ice ... 31
 2.8.3 Overflow ... 32
 2.8.4 Interflow .. 34
 2.8.5 Underflow .. 35
 2.8.6 Homopycnal flow .. 38
 2.8.7 Winter flow ... 38
2.9 Conclusion ... 39
Chapter 3 – Methods

3.1 Field methods

3.1.1 Bathymetric survey

3.1.2 Sediment traps

3.1.3 Hydrographs and the estimation of discharge

3.1.4 Current meters

3.1.5 Near-bottom water temperature

3.1.6 Water temperature profiles

3.1.7 Air temperature

3.1.8 Precipitation

3.2 Laboratory methods

3.2.1 Determination of grain-size, mass accumulation and mass accumulation rate

3.2.2 Loss on ignition and carbonate determination

3.2.3 Current meter calibration

Chapter 4 – An assessment of the hydrometeorology of the Bear Lake watershed

4.1 Introduction

4.2 Physical setting

4.3 Methods

4.4 Results

4.4.1 Air temperature

4.4.2 Precipitation

4.4.3 Lake level, outlet level and discharge

4.5 Discussion

4.5.1 Air temperature

4.5.2 Precipitation

4.5.3 Lake level, Qin and Qout

4.6 Conclusion

Chapter 5 – Sedimentary processes and intraseasonal change at Bear Lake, Devon Island, Nunavut

5.1 Introduction

5.2 Methods

5.3 Site description

5.4 Hydrology and limnology

5.5 Results

5.5.1 Settling of niveo-aeolian deposits

5.5.2 Rainfall-generated sedimentary processes

5.5.3 Proximal sedimentation

5.5.3a Underflow records
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Regional map of the High Arctic.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Photograph of the Bear Lake sandur, July 1998.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Bear Lake watershed; inset: the location of Bear Lake, and its position relative to points of interest on Devon Island.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Bathymetric and topographic map of Bear Lake and surroundings.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>1947-1991 mean monthly rain and snow at recorded at Resolute.</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Bathymetric and topographic map of Bear Lake and surroundings, showing monitoring sites.</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Sediment trap design A) Diagram of a mooring where three traps were used; B) Photograph of a sediment trap.</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Figures used in the calculation of Q_{in} and Q_{out}. A) Cross-section of the Bear Lake outlet; B) Comparison of simultaneous records from T_l and T_p; C) Rating curve for the Bear Lake outlet.</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagram of a current meter mooring, and a photograph of a current meter.</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Photographs of: A) the T_p station; B) rain gauge station.</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Current meter calibration using a flume.</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Hydrometeorological conditions at Bear Lake in the summer of 1999. A) Mean daily T_p and T_l; B) Q_{out} and precipitation.</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Summer 1999 air temperatures recorded at Bear Lake (T_p and T_l), Resolute and Eureka.</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>1999 melt season at Bear Lake. A) Q_{in} and precipitation; B) T_p plotted with a 47-point running average.</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 4.4 Recurrence interval for the June 29 precipitation event using 1947-1991 records of precipitation from Resolute.

Figure 5.1 Hydrometeorological conditions at Bear Lake in the summer of 1999. A) Q_{in} and precipitation; B) T_p plotted with a 47-point running average. Trap rotation periods are shaded.

Figure 5.2 Bear Lake water temperature profiles from: A) the north basin; B) the south basin.

Figure 5.3 Photographs of niveo-aeolian deposits at Bear Lake A) Oblique photograph from July, 1999; B) Air photograph from 1959.

Figure 5.4 Intraseasonal changes in mass accumulation rates from under the niveo-aeolian deposit (H5).

Figure 5.5 Grain-size characteristics of wet-sieved sediment from surficial niveo-aeolian material and from trapped H5 sediment.

Figure 5.6 Tributary-proximal (H2 and H15) intraseasonal changes in mass accumulation rates.

Figure 5.7 Photographs of the Camp Stream in 1999: A) June 29; B) July 4.

Figure 5.8 Underflow records from site C2_2 (July 17-August 9, 1999): A) T_p; B) Q_{in} and near-bottom water temperature; C) Underflow velocity.

Figure 5.9 Sandur-proximal (H3, H7 and H8) intraseasonal changes in mass accumulation rates.

Figure 5.10 Central-lake (H10, H12 and H14) intraseasonal changes in mass accumulation rates.

Figure 5.11 Distal-lake (H1, H16 and H17) intraseasonal changes in mass accumulation rates.
List of Tables

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>The physical characteristics of Bear Lake and its watershed.</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>The accuracies, locations and dates of use for air temperature loggers used at Bear Lake.</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Mean daily air temperature in the northeastern High Arctic, May 30-Aug. 16, 1999</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Correlation coefficients (r^2) between Bear Lake daily mean, maximum and minimum air temperature and northeastern High Arctic meteorological station data: May 30 – Aug. 16, 1999.</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Mean timing of diurnal highs and lows for T_p, T_l, Q_{in}, Q_{out}, L_s, and L_o recorded in the 1999 melt season.</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Mean hydrometeorological conditions for the four trap deployment intervals (R1-R4).</td>
<td>85</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Submerged area of the outlet</td>
<td></td>
</tr>
<tr>
<td>ASL</td>
<td>Above sea level</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Current monitoring site</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Camp stream</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Underflow thickness</td>
<td></td>
</tr>
<tr>
<td>DIIC</td>
<td>Devon Island Ice Cap</td>
<td></td>
</tr>
<tr>
<td>Fm.</td>
<td>Geological formation</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Sediment trap mooring</td>
<td></td>
</tr>
<tr>
<td>Hp</td>
<td>Density difference (%) between an underflow and overlying water</td>
<td></td>
</tr>
<tr>
<td>ka</td>
<td>Thousand years</td>
<td></td>
</tr>
<tr>
<td>LGM</td>
<td>Last Glacial Maximum</td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>Loss on ignition</td>
<td></td>
</tr>
<tr>
<td>Lo</td>
<td>Outlet water level</td>
<td></td>
</tr>
<tr>
<td>Ls</td>
<td>Lake level</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>Mass accumulation rate</td>
<td></td>
</tr>
<tr>
<td>MSC</td>
<td>Meteorological Service of Canada</td>
<td></td>
</tr>
<tr>
<td>NAPL</td>
<td>National Air Photo Library</td>
<td></td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
<td></td>
</tr>
<tr>
<td>PRPM</td>
<td>Propellor rotations per minute</td>
<td></td>
</tr>
<tr>
<td>Qin</td>
<td>Discharge into Bear Lake</td>
<td></td>
</tr>
<tr>
<td>Qin(max 24-h)</td>
<td>Maximum rise in 24-hours of discharge into the lake</td>
<td></td>
</tr>
<tr>
<td>Qout</td>
<td>Discharge out of Bear Lake</td>
<td></td>
</tr>
<tr>
<td>R1-4</td>
<td>Trap deployment intervals</td>
<td></td>
</tr>
<tr>
<td>r²</td>
<td>Square of Pearson product moment correlation coefficient</td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>Rain gauge</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Suspended sediment</td>
<td></td>
</tr>
<tr>
<td>SSC</td>
<td>Suspended sediment concentration</td>
<td></td>
</tr>
<tr>
<td>SSQ</td>
<td>Suspended sediment discharge</td>
<td></td>
</tr>
<tr>
<td>Tl</td>
<td>Air temperature recorded at lake level (~45 m) ASL</td>
<td></td>
</tr>
<tr>
<td>Tp</td>
<td>Air temperature recorded at plateau level (~430 m) ASL</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Recurrence interval</td>
<td></td>
</tr>
<tr>
<td>Vest</td>
<td>Estimated water flow through the outlet</td>
<td></td>
</tr>
<tr>
<td>Vf</td>
<td>Flow velocity of bottom currents</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Water depth</td>
<td></td>
</tr>
<tr>
<td>Φ</td>
<td>Phi, grain size units (Φ=-log₂S; where S is grain-size in mm)</td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O</td>
<td>Del of oxygen-18</td>
<td></td>
</tr>
</tbody>
</table>