Lecture 15 Trace Element Modeling

Friday, March 11th, 2005

Trace elements are useful tools for modeling magmatic processes

- Batch Melting
- Incremental Melting
- Crystal Fractionation
- Magma Mixing
Models of Magma Evolution

- Batch Melting
 - The melt remains resident until at some point it is released and moves upward from the residue
 - Equilibrium melting process with variable % melting

\[\frac{C_L}{C_O} = \frac{1}{D_i(1 - F) + F} \]

\(C_L \) = trace element concentration in the liquid (melt)
\(C_O \) = trace element concentration in the original rock before melting began
\(F \) = wt fraction of melt produced = melt/(melt + rock)
Batch Melting

A plot of C_L/C_O vs. F for various values of D_i

- $D_i = 1.0$

Figure 9-2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9-5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

$D_i \gg 1.0$ (compatible element)

- Very low concentration in melt
- Especially for low % melting (low F)

Figure 9-2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9-5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
Highly incompatible elements ($D_i << 1$)

- Greatly concentrated in the initial small fraction of melt produced by partial melting

- Subsequently diluted as F increases

Figure 9-2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9-5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

As $F \rightarrow 1$ the concentration of every trace element in the liquid = the source rock ($C_L/C_O \rightarrow 1$)

$$\frac{C_L}{C_O} = \frac{1}{D_i(1 - F) + F} \quad \text{As } F \rightarrow 1$$

C_L/C_O \rightarrow 1

Figure 9-2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9-5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
As \(F \to 0 \), \(\frac{C_L}{C_O} \to \frac{1}{D_i} \)

If we know \(C_L \) of a magma derived by a small degree of batch melting, and we know \(D_i \), we can estimate the concentration of that element in the source region (\(C_O \)).

\[
\frac{C_L}{C_O} = \frac{1}{D_i(1 - F) + F}
\]

For a basalt (~1% melt) with Ba = 700 ppm, \(D_{Ba} \approx 0.01 \) for mantle, then:

\[
C_O = C_L / (1/0.01) = 700 / 100 = 7
\]

Therefore mantle source contains about 7 ppm Ba.

- For very incompatible elements as \(D_i \to 0 \),

\[
\frac{C_L}{C_O} = \frac{1}{D_i(1 - F) + F}
\]

simplifies to

\[
\frac{C_L}{C_O} = \frac{1}{F}
\]

If we know the concentration of a very incompatible element in both a magma and the source rock, we can determine the fraction of partial melt produced.

If a tholeiitic basalt with ~90 ppm Ba is produced by melting of mantle with 7 ppm Ba, then:

\[
F = \frac{C_O}{C_L} = \frac{7}{90} = 0.078
\]

Therefore the tholeiite was produced by about 8% melting.
Worked Example of Batch Melting: Rb and Sr
Basalt with the mode:

Table 9-2 Conversion from mode to weight percent

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Mode</th>
<th>Density</th>
<th>Wt prop</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ol</td>
<td>15</td>
<td>3.6</td>
<td>54</td>
<td>0.18</td>
</tr>
<tr>
<td>cpx</td>
<td>33</td>
<td>3.4</td>
<td>112.2</td>
<td>0.37</td>
</tr>
<tr>
<td>plag</td>
<td>51</td>
<td>2.7</td>
<td>137.7</td>
<td>0.45</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>303.9</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

1. Convert to weight % minerals (\(W_{\text{ol}}\) \(W_{\text{cpx}}\) etc.)

2. Use equation \(D_i = \sum W_i \overline{D}_i\)

and the table of \(D\) values for Rb and Sr in each mineral to calculate the bulk distribution coefficients:
Compatibility depends on minerals and melts involved.

Which are incompatible? Why?

Table 9-1. Partition Coefficients (C_i/C_L) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks

<table>
<thead>
<tr>
<th></th>
<th>Olivine</th>
<th>Opx</th>
<th>Cpx</th>
<th>Garnet</th>
<th>Plag</th>
<th>Amph</th>
<th>Magnetite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>0.010</td>
<td>0.022</td>
<td>0.031</td>
<td>0.042</td>
<td>0.071</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.014</td>
<td>0.040</td>
<td>0.060</td>
<td>0.012</td>
<td>1.830</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.010</td>
<td>0.013</td>
<td>0.026</td>
<td>0.023</td>
<td>0.23</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>14</td>
<td>5</td>
<td>7</td>
<td>0.955</td>
<td>0.01</td>
<td>6.8</td>
<td>29</td>
</tr>
<tr>
<td>Cr</td>
<td>0.70</td>
<td>10</td>
<td>34</td>
<td>1.345</td>
<td>0.01</td>
<td>2.00</td>
<td>7.4</td>
</tr>
<tr>
<td>La</td>
<td>0.007</td>
<td>0.03</td>
<td>0.056</td>
<td>0.001</td>
<td>0.148</td>
<td>0.544</td>
<td>2</td>
</tr>
<tr>
<td>Ce</td>
<td>0.006</td>
<td>0.02</td>
<td>0.092</td>
<td>0.007</td>
<td>0.082</td>
<td>0.843</td>
<td>2</td>
</tr>
<tr>
<td>Nd</td>
<td>0.006</td>
<td>0.03</td>
<td>0.230</td>
<td>0.026</td>
<td>0.055</td>
<td>1.340</td>
<td>2</td>
</tr>
<tr>
<td>Sm</td>
<td>0.007</td>
<td>0.05</td>
<td>0.445</td>
<td>0.102</td>
<td>0.039</td>
<td>1.804</td>
<td>1</td>
</tr>
<tr>
<td>Eu</td>
<td>0.007</td>
<td>0.05</td>
<td>0.474</td>
<td>0.243</td>
<td>0.1/1.5*</td>
<td>1.557</td>
<td>1</td>
</tr>
<tr>
<td>Dy</td>
<td>0.013</td>
<td>0.15</td>
<td>0.582</td>
<td>1.940</td>
<td>0.023</td>
<td>2.024</td>
<td>1</td>
</tr>
<tr>
<td>Er</td>
<td>0.026</td>
<td>0.23</td>
<td>0.583</td>
<td>4.700</td>
<td>0.020</td>
<td>1.740</td>
<td>1.5</td>
</tr>
<tr>
<td>Yb</td>
<td>0.049</td>
<td>0.34</td>
<td>0.542</td>
<td>6.167</td>
<td>0.023</td>
<td>1.642</td>
<td>1.4</td>
</tr>
<tr>
<td>Lu</td>
<td>0.045</td>
<td>0.42</td>
<td>0.506</td>
<td>6.950</td>
<td>0.019</td>
<td>1.563</td>
<td></td>
</tr>
</tbody>
</table>

Data from Rollinson (1993). * Eu^3+/Eu^2+ italics are estimated

Worked example

\[
D_{Rb} = (Wt_{Oli} \times D_{Rb}) + (Wt_{Cpx} \times D_{Rb}) + (Wt_{Plag} \times D_{Rb})
\]

\[
D_{Rb} = (0.18 \times 0.010) + (0.37 \times 0.031) + (0.45 \times 0.071)
\]

\[
D_{Rb} = 0.045
\]

\[
D_{Sr} = (Wt_{Oli} \times D_{Sr}) + (Wt_{Cpx} \times D_{Sr}) + (Wt_{Plag} \times D_{Sr})
\]

\[
D_{Sr} = (0.18 \times 0.014) + (0.37 \times 0.060) + (0.45 \times 1.830)
\]

\[
D_{Sr} = 0.848
\]
3. Use the batch melting equation

\[\frac{C_L}{C_O} = \frac{1}{D_L(1-F) + F} \]

to calculate \(\frac{C_L}{C_O} \) for various values of \(F \)

<table>
<thead>
<tr>
<th>(F)</th>
<th>(D_{Rb})</th>
<th>(D_{Sr})</th>
<th>(Rb/Sr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>9.35</td>
<td>1.14</td>
<td>8.19</td>
</tr>
<tr>
<td>0.1</td>
<td>6.49</td>
<td>1.13</td>
<td>5.73</td>
</tr>
<tr>
<td>0.15</td>
<td>4.98</td>
<td>1.12</td>
<td>4.43</td>
</tr>
<tr>
<td>0.2</td>
<td>4.03</td>
<td>1.12</td>
<td>3.61</td>
</tr>
<tr>
<td>0.3</td>
<td>2.92</td>
<td>1.10</td>
<td>2.66</td>
</tr>
<tr>
<td>0.4</td>
<td>2.29</td>
<td>1.08</td>
<td>2.11</td>
</tr>
<tr>
<td>0.5</td>
<td>1.89</td>
<td>1.07</td>
<td>1.76</td>
</tr>
<tr>
<td>0.6</td>
<td>1.60</td>
<td>1.05</td>
<td>1.52</td>
</tr>
<tr>
<td>0.7</td>
<td>1.39</td>
<td>1.04</td>
<td>1.34</td>
</tr>
<tr>
<td>0.8</td>
<td>1.23</td>
<td>1.03</td>
<td>1.20</td>
</tr>
<tr>
<td>0.9</td>
<td>1.10</td>
<td>1.01</td>
<td>1.09</td>
</tr>
</tbody>
</table>

4. Plot \(\frac{C_L}{C_O} \) vs. \(F \) for each element

Figure 9-3. Change in the concentration of Rb and Sr in the melt derived by progressive batch melting of a basaltic rock consisting of plagioclase, augite, and olivine. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
Incremental Batch Melting

- Calculate batch melting for successive batches (same equation)
- Must recalculate D_i as solids change as minerals are selectively melted (computer)

Fractional Crystallization

1. Crystals remain in equilibrium with each melt increment.
2. The equation is exactly the same as for batch melting.

$$\frac{C_L}{C_o} = \frac{1}{D_i(1 - F) + F}$$
Rayleigh fractionation
The other extreme: separation of each crystal as it formed = perfectly continuous fractional crystallization in a magma chamber

Concentration of some element in the residual liquid, C_L, is modeled by the Rayleigh equation:

$$\frac{C_L}{C_O} = F^{(D^{-1})}$$

Rayleigh Fractionation

C_O is the initial concentration in the parental melt
F is the fraction of melt remaining
Crystal Fractionation

Note how compatible elements ($D > 1$) are rapidly depleted in the melt with crystallization. On the other hand incompatible ($D < 1$) elements increase gradually initially but much more rapidly as the melt is exhausted.

$C_L/C_O = F^{(D - 1)}$

For highly incompatible element ($D \sim 0.01$) the equation approximates to:-

$C_L/C_O = 1/F$ or $F = C_O/C_L$

This is a very handy tool! We can quickly estimate the extent of crystallization between two related magmas.

If the parental magma contains 0.4% K_2O and the evolved magma contains 0.6% K_2O, then:-

$F = 0.4/0.6 = 0.67$

The extent of crystallization will be $(1 - F) = (1 - 0.67) = 0.33$
Other models are used to analyze
- Mixing of magmas
- Wall-rock assimilation
- Zone refining
- Combinations of processes