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describes the evolution of crystal sizes and crystal size distributions (CSD) of
igneous phenocrysts in a sequence of dissolution and crystallization events. This model is based on
the assumption that crystal dissolution is rate-limited by diffusion in melt while crystal growth is controlled
by the slower kinetic of new nucleation and growth. As a result, the dissolution rate is inversely proportional
to crystal size coming into effect through the curvature of the crystal's surface, but the growth rate does not
depend on the crystal size. Closed-form analytical solution of equation for CSD is obtained. We apply results
of modeling to quartz and zircon, two prime minerals in silicic igneous systems that are widely used in
geochemical and isotopic investigations. The time-series of multiple solution–reprecipitation episodes
generate concave-downward CSDs and this result fits well with experimental and natural observations on
the abundant concave-down CSD in silicic igneous rocks. We suggest that maturation of crystal populations
with sizes above several micrometers can not be caused by a size effect on the solubility of the crystals
(Ostwald ripening), but is rather driven by thermal oscillations in experiments and in nature. The model
predicts that mean crystal size increases with time proportionally to ∼ t0.20, which is very close to
the published experimental results for quartz maturation with the exponent of 0.19–0.22. Our proposed
model gives an opportunity to use natural CSDs for interpretation of pre-eruptive magma history, when
solubilities and diffusion data are available for constituent elements of the dissolving mineral. In particular,
we present time estimates for maturing zircon populations in large volume ignimbrites and estimate that it
takes 100–1000 yrs to mature an initially exponential CSD to a lognormal CSD.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Magmatic crystals are extensively used for trace elemental and
isotopic studies in many applications of petrology and geochemistry.
With the advance, and with easy accessibility of in situ microbeam
techniques such as electron- and ion microprobes, and laser ablation
ICP-MS, the picture of chemical and isotope zoning and disequilibria
has arisen (e.g., Davidson et al., 2007; Putirka and Tepley, in press).
Cathodoluminescent imaging of quartz and zircon for example,
records single or multiple solution–reprecipitation episodes that
record temperature fluctuations as demonstrated recently using
utilized Ti concentrations in these two minerals (e.g., Anderson
et al., 2000; Hoskin and Schaltegger 2003;Watson and Harrison 2005;
Wark and Watson, 2006).

Surprisingly, textural characterizations of igneous rocks have not
kept pace with the geochemical advances (e.g. Jerram and Davidson,
2007). It seems obvious that we can not successfully interpret the
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wealth of isotopic and trace elemental information stored in crystals if
we ignore crystallization and recrystallization dynamics.

Crystal sizes and size distributions of magmatic minerals can
provide important insights into the conditions in magma chambers
during crystal growth and dissolution. It has been long known that
CSDs of crystals appearing on the liquidus in basic to intermediate
volcanic rocks either as a result of cooling in lava lakes and flows, or
degassing in conduits, often have exponential shapes with increasing
densities at smaller sizes (Cashman and Marsh 1988; Mock et al.,
2003) [ see Fig. 1a].

Contrary to the basic rocks, crystal size distributions in many silicic
rocks, especially from large magma bodies exhibit concave-down
distributions with a deficiency or lack of smaller crystals (see Fig. 1a).
Bindeman (2003) and Gualda et al. (2004), Gualda (2006) documen-
ted this for zircon and quartz phenocrysts in pumice, extracted and
imaged in three-dimensions by a variety of techniques. Zircon, an
important accessory mineral in the most silicic igneous rocks has long
been known to possess concave-down CSD in volcanic and plutonic
rocks (Poldervaart, 1956; Bindeman, 2003). If developed from
exponential CSD, these abundant concave-down CSD in silicic rocks
may point to the importance of dissolution–reprecipitation processes
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Fig. 1. Examples of the crystal size distributions in nature and experiments. a) Measured crystal size distributions of quartz in individual pumice clasts in silicic igneous rocks.
Products of major caldera-forming eruptions: BT — Bishop tuff, LBT — Lower Bandelier tuff, HRT — Huckleberry Ridge tuff, LCT — Lava Creek tuff, data are from Bindeman (2003).
Plutonic example is for shallow rhyolitic laccolith data is fromMock et al. (2003); crystals smaller than 1 mm size were not measured due to technique used. Quartz crystals from the
volcanic rocks have smaller sizes and volume abundance and are characterized by lognormal CSDs b) Distributions normalized to themaximum crystal size andmaximum abundance
calculated in accordance with Slyozov–Lifshits–Wagner theory of Ostwald ripening (from Ayers et al., 2003). Three ripening mechanisms are portrayed: continuous line: controlled
by interface kinetics, dotted line: by volume diffusion, dashed line: by grain boundary diffusion. Notice that Ostwald ripening processes are skewed to the right while natural CSD in
(a) are skewed to the left.
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or annealing. However no simple theory has explained the origin
of the lognormal-like CSD (see Eberl et al., 2002 and Higgins, 2006
for discussion).

Several processes are capable of producing concave-down (log-
normal) CSDs in magmatic systems, most common of which is
ripening following growth (Cashman and Ferry, 1988; Higgins, 1998,
2006). Size dependent growth with growth rate increasing with
crystal size has also been hypothesized to be applicable to magmatic
systems, and was demonstrated in experiments of calcite growth
according to the “law of proportionate effects” (Kile and Eberl, 2003).
Low-intensity crystal fragmentation and dissolution of smaller
fragments may lead to lognormal CSD (e.g., Kolmogorov, 1941;
Bindeman, 2005), and crystal fragmentation is an important compo-
nent of particle dynamics of many magmatic systems.

This paper provides description and solution of possibly the most
general and common of these processes — ripening of the crystal
population in the oscillating temperature regime that affects small and
large crystals differently, and, as we demonstrate below, is capable of
generating the concave-down CSDs. We concentrate below on quartz
and zircon, common major and accessory minerals in silicic igneous
rocks. We demonstrate that several cycles of solution–reprecipitation
in oscillating temperature (solubility) regime, that recycles 10–40% of
crystal mass is sufficient to explain natural data and processes in
magma bodies.

1.1. Theories of ripening processes

Ripening, or increase of the larger crystals at the expense of the
smallest ones, is based on the size effect on solubility as was first
demonstrated by Ostwald in 1896. This ripening process makes CSD
plot concave-downward with left side truncation (Fig. 1b), i.e. lack of
the smallest crystals. However, it has been demonstrated in experi-
ments with silicic melts that this effect is only applicable in the
smallest crystal size range of ripening of crystals ≤ 1–5μm in size



Fig. 2. Crystal size solubility effect in degree Celsius of a small crystal of spherical shape
as effective superheating relative to the equilibrium flat crystal face (see Eq. (2); energy
of the crystal-melt interface γ is measured in J/m2). a) for quartz b) for zircon.
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(Cabane et al., 2001, 2005). It would take 105–109 years (Nemchin et
al., 2001) to affect larger crystal sizes because the Ostwald ripening
process mostly affects crystals comparable in size to the critical
nucleus of a crystal in the melt.

The general and quantitative theory of Ostwald ripening was
developed by Lifshits–Slyozov–Wagner (LSW), (e.g., Lifshitz and
Slyozov, 1961). According to this theory, crystals larger than some
critical size grow while smaller crystals dissolve resulting in CSD
with asymptotic shape, skewed to the right (Fig. 1b). The LSW theory
is based on the following assumptions: 1) diffusion process of
nutrients through the melt is described as the steady-state approx-
imation for diluted suspension; 2) the surface concentration is
defined by crystal size, and 3) the distant content of the dissolving
component common for all particles is calculated in accordance with
global mass balance that accounts for sinks (growing crystals) and
sources (dissolving crystals). It follows from the LSW theory and is
observed in experiments with zircons (e.g., Ayers et al., 2003) that a
preexisting CSD will evolve into a different one due to the growth of
larger crystals at the expense of smaller ones, yielding concave-down
at small sizes CSD.

In accordance with LSW theory, time evolution of CSD by Ostwald
ripening leads to the asymptotic distribution (e.g. curves in Fig. 1b)
and the number of crystals depends asymptotically on time as 1/t and
the average crystal size R ̄ as t0.5÷0.333. The asymptotic dependence,
among other things, means that CSD becomes this asymptotic
function F(ζ) of the similarity variable ζ = R/tn , with time; it just
shifts to the larger sizes keeping its skewed to the right shape, that is
quite different from natural CSDs skewed to the left.

Recently the LSW theory was developed further with inclusion of
the distribution of growing and dissolving crystals in space (Commu-
nicating Neighbors Theory — CN) and correspondent complex
diffusion field (Higgins, 1998). In all these ripening models, matura-
tion of the crystal population is considered in a static temperature
field and involving long geologic times. Furthermore, while these
ripening theories are applicable to mafic magmas with low viscosities
and higher diffusivities of nutrient elements, and higher growth rates
of crystals, it is doubtful that crystal ripening in the size range up to
100µm to several mm would happen in silicic magmas at realistic
geologic time (e.g. Cabane et al., 2001, 2005).

In this paper, we suggest that the dissolution–precipitation
processes of crystals in silicic or more basic systems are driven by
the external temperature oscillations that are inherently and inevi-
tably present in natural magma chambers. Any realistic magma
system is characterized by temperature oscillations with amplitude
larger than Ostwald's driving force — characteristic effective super-
heating for common crystal sizes. We consider examples of ripening
of quartz and zircon in large volume rhyolites and demonstrate
that rather large, tens of degrees temperature oscillations recycling
tens of percent of crystal mass is a preferred explanation for their
CSDs. We briefly discuss implications for the processes in several
large magma bodies parental to Yellowstone and Bishop tuff caldera-
forming eruptions.

1.2. Size effect of solubility on examples of quartz and zircon

Crystal sizes in any magmatic system vary from b 1μm to the
microscopic scale. The contribution of the interface energy to the bulk
thermodynamic properties is more important for the smaller crystals.
This crystal size effect gives rise to the notion of the critical size during
nucleation, which needs to be exceeded for thermodynamically stable
phase transition to occur. This critical size is equally applicable to the
nucleation of bubbles or crystals in the melt or for the formation of the
center of growth on the flat crystal face. When we consider a melt as a
solvent for the crystallizing phase, crystal solubility depends on the
crystal size. Crystal solubility (S) can be expressed through the surface
energy of the crystal/melt interface (e.g., Lasaga, 1998), the effective
radius R (in spherical approximation) and equilibriummacro-solubility
(So) of the sufficiently large crystals or formally at R = ∞:

ln S=Soð Þ ¼ 2γX
ℜTR

ð1Þ

where γ— surface energy (J/m2), T is absolute temperature, R is radius
of curvature (m), Ω is molar volume of dissolved phase (m3/mol),ℜ is
gas constant (J/mol/K). It can be demonstrated (see Cabane et al., 2005,
for details) that the size effect on solubility equals to the onset of the
effective superheating for the smaller crystals that has an order:

ΔTeff ¼
2γTm
RΔHmρ

ð2Þ

here ρ denotes the density of a crystal (kg/m3), ΔHm is melting
enthalpy (J/kg), Tm stands for the melting temperature, ΔTeff is in K.
Calculated effective superheating as a function of the crystal radius
and energy of the melt/solid interface for quartz and zircon is shown
in Fig. 2. Surface energy γ is the least constrained parameter in Eqs. (1)
and (2))). At the numerical modeling of the Ostwald ripening of zircon
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in migmatites Nemchin et al. (2001) used values of γ in the range of
0.1–0.3J/m2, while Cabane et al. (2005) used γ = 0.5J/m2 for their
estimates of Ostwald ripening parameters for quartz. However, one
could expect that energy of the crystal phase/granitic melt is lower
than the surface energy of the fluid bubbles/melt interface of 0.1J/m2

in hydrous rhyolitic melt (Mourtada-Bonnefoi and Laporte, 2004) due
to the lower density and structural contrast between a crystal and a
melt phases. Therefore, we vary γ in the range 0.02–0.1J/m2 as
estimated experimentally by Hammer, (2004) for solid phases
nucleated from the hydrous granite melt. As it follows from Eq. (1)
effective superheating is proportional to γ so that its estimate may
vary almost on the order of magnitude due to uncertainty in the value
of the surface energy. Other parameters in Eq. (2) are well known.
Zircon has high density of 4650kg/m3 and dissolution enthalpy ΔHm =
584.1kJ/kg (estimated based on the temperature dependence of
solubility from Watson and Harrison, 1983). Because parameters in
the denominator typically have the large values, Eq. (2) indicates a
rather small effective superheating, of no more than 0.1–0.3°C, for
crystals that are in the submicron size range. Quartz, on the other
hand, is less dense (ρ = 2500kg/m3) and has lower ΔHm = 63.6kJ/kg
(Jackson et al., 1967). As a result, driving force of Ostwald ripening
during effective superheating is larger, 1–3°C at submicron sizes.
Therefore we observe that the above mentioned physical properties
may lead to variable intensity of maturation of different minerals.

1.3. A “realistic” magma system

In the most magma bodies there are significant to moderate
variations in crystal super- and undersaturations caused by a
number of factors such as temperature fluctuations, volatile driven
undersaturations, and release of the latent heat of crystallization
(e.g., Hort, 1998; Blundy et al., 2006). These fluctuations will
variably affect different crystal sizes of different minerals. In this
paper we postulate that conditions for oscillating super and under
saturations are invariably present in any magmatic system. In our
treatment below we describe these conditions as being driven by
temperature fluctuations; this is done for simplicity and similar
results would follow if equivalent super and undersaturations were
caused by oscillating volatile regime, for example (e.g., Simakin and
Botcharnikov, 2001).

It seems obvious that there are oscillations of temperature due to
the thermal and compositional convection in magma chambers, even
if in thermally-insulated magma bodies (mushy or liquid), these
variations may be as little as several degrees (e.g., Marsh, 1989;
Brandeis and Marsh, 1989). Temperature variations could be much
larger for magmas upon ascent. Even larger amplitude temperature
fluctuations are expected due to heating by fresh hot magma influxes.
Such periodic temperature increases and decreases would affect
saturation conditions which, in turn, will influence the evolution of
the CSD of resident crystals suspended in a magma body.

Let's consider a process consisting of dissolution and precipitation
stages. Dissolution may be caused by the influx of the fresh hotter
magma of the same composition or by underplating of a magma
chamber with the denser and hotter fresh magma. Depending on a
particular temperature-composition diagram, a certain amount of
heat supplied, will result in different amount of the temperature
increase. For example, a near-eutectic silicic compositions will suffer
much smaller temperature increase, and near-isothermal melting can
take place. Nonetheless, major and accessory minerals, such as zircon,
would dissolve due to dilution by melted cotectic or eutectic minerals
assemblage in this case, followed by crystallization upon cooling /heat
removal. This sequence of the dissolution/precipitation events is often
reflected in CSD as suggested in Higgins and Roberge (2003), and is
reflected in the internal structure of magmaticminerals revealed by CL
or trace elemental imaging (e.g. Hoskin Schaltegger, 2003; Wark and
Watson 2006; Wark et al., 2007).
Cooling is expected to be more prolonged than episode of heating,
because dissipation of heat happens through the chamber walls.
We should note however that hydrothermal refrigeration is a major
component of many meteoric magma systems. If magma parcels that
underwent superheating get surrounded by circulating hydrothermal
fluids, then cooling may happen quite rapidly, sometimes leading to
hydrothermal quench. However hydrothermal quench happens on the
contact and quenched material will insulate main volume of magma.

We further suggest that temperature fluctuations may characterize
many “experimental”magma systems. Small temperature fluctuations
(and thus dissolution–reprecipitation) are unavoidable in experi-
ments of long durations. In experiments temperature is kept
approximately constant by regulators that cause oscillations around
the desired value by manipulation with heating elements. However, it
is known by many experimentalists that in the Internally Heated
Pressure Vessels amplitude of oscillations can be several degrees
depending on the design of apparatus (e.g., Eurotherm http://www.
eurotherm.com/products/controllers ).

It can be suggested, therefore, that a magma chamber, natural or
experimental, is characterized by temperature fluctuations as a rule
and not as an exception and thus conditions of super and under
saturation, or the driving forces for recrystallization, are expected to
be larger than those caused by isothermal differences in surface
energy between crystal of different sizes, i.e. Ostwald ripening forces.

In the following discussion,we describe the evolution of crystal sizes
in the series of the dissolution and growth events.We demonstrate that
calculated dependence of the averaged CSD parameters (such as mean
crystal size, volume content of crystals) from time correlate well with
published experimental data.

2. Model

2.1. General formulation of the model

In general form, equation for CSD for the set of the growing and/or
dissolving crystals in the heterogeneous magma can be written as
(e.g., Marsh, 1998),

An t;Rð Þ
At

þ A nV ΔT;Rð Þð Þ
AR

¼ 0 ð3Þ

where n(R,t) is a population density of crystals per 1m3 of melt, V is a
growth rate in m/s, and R is a crystal radius. Crystals are assumed
spherical for simplicity. This equation neglects the sedimentation
process that would additionally affect particle dynamics of crystal-
lizing systems, because small crystals do not settle much in viscous
rhyolitic magmas given model timescales considered in this work.

Boundary condition describes formation of the newcrystalswith the
sizeR = 0 in themoment t. The crystal size density atR = 0 is a ratio of the
nucleation rate J(t) to the growth rate V(t), since the faster the growth
rate, the faster crystals gain larger size and leave the smallest bin class:

n R ¼ 0; tð Þ ¼ J tð Þ=V tð Þ ð4Þ

For a particular case when nucleation rate J(t) = 0, crystal density
function n(R = 0,t) = 0; The homogeneous nucleation rate J(t) strongly
depends on the driving force of crystallization as exp(− a/ΔT2) (Tammann,
1898), which could be expressed as undercooling, supersaturation, or
Gibbs potential difference (e.g., Hammer, 2004). Such strong dependence
on the degree of undercooling leads to a threshold undercooling of
minimum 25–50°C for silicic magmas (James, 1985; Hammer, 2004) for
homogeneous volumenucleation to start. Next, expansion of Eq. (3) yields
the following expressionwith rates of growth and dissolution V(R) being,
in a general case, a certain function of the crystal size:

An
At

þ V Rð Þ An
AR

þ n
AV Rð Þ
AR

¼ 0 ð5Þ
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Obviously, for the rate of growth that is independent of crystal size,
the last term is equals to 0, and the remaining equation is the
population balance equation as defined by Marsh (1988, 1998).

2.2. Method of solution

Eq. (5) is hyperbolic and can be solved on the characteristics in
closed-form. Method of characteristics consists in the reducing Partial
Differential Equations (PDE) to Ordinary Differential Equations (ODE)—
on some curves in the solution space. This method is widely used in the
solution of hyperbolic PDE of gasdynamics (Scott, 2003). Characteristics
of Eq. (5) are curves in (R,t) space defined by dR/dt = V(R) (see Fig. 3). The
V(R), velocity of crystal growth or dissolution, is a variable quantity that
depends on crystal size. In other words these are trajectories of the
crystals growing with rate V(R), on which PDE (5) is reduced to ODE
describing variation of the distribution density for crystals with initial
size R(0) = R0

dn
dt

þ n
dV R tð Þð Þ

dR
¼ 0; ð6Þ

where time derivate now is in Lagrangian coordinates (moving with
particle coordinate frame). It is obvious that when the growth rate
does not depend on the crystal size, trajectories of individual crystals
are parallel so that CSD function is translated from the smaller to the
larger sizes along trajectories. If trajectories diverge, the density
function drops and vice versa. In Fig. 3 crystals grow in time with
growth rate being a function of size reaching a maximum at some
crystal radius R = Rmax. Crystals with sizes less than Rmax start growing
with dV/dR N 0; their trajectories diverge in (R,t) space and distribution
density of their CSD drops in accordance with Eq. (6). After Rmax is
reached, the dependence of growth rate on size changes sign dV/dR b 0,
trajectories start converging, and a number of crystals n starts to rise.
Crystals with initial sizes above Rmax move by converging trajectories
from the initial moment. In our artificial example CSD with maximum
will form from the initially uniform distribution. We consider
implication of this below.

2.3. CSD solution for sequence of dissolution and growth events

Here, we describe CSD evolution for a preexisting crystal popula-
tionwith an initially exponential CSD (Fig.1b), similar to ones found in
many igneous systems (e.g. Cashman andMarsh,1988), when there are
small fluctuations of growth/dissolution driving force (e.g., tempera-
ture) around a relatively constant temperature. Given relatively large
undercooling required for new volume homogeneous nucleation to
Fig. 3. General view of growing crystal trajectories in (R,t) space plotted to illustrate how
method of characteristicsworks inCSD case. An abstract dependence of growth rate on the
crystal radiusV(R)withmaximumat someR=Rmax is taken. For reference it is plotted along
with R axis. Trajectories of the sample crystals in (R,t) space deviate at dV/dRN0 for RbRmax

providing decrease of the CSD population density function. In the region where dV/dRb0
trajectories of crystals are crowded providing growth of CSD density.
start in silicicmagmas (see above and James,1985; Hammer, 2004), we
assume that new homogenous nucleation does not happen at small
temperature fluctuations, but instead these systems are characterized
by heterogeneous nucleation, or growth of the existing and surviving
larger crystals. Let's consider dissolution and growth stages.

2.3.1. Dissolution stage
During the initial melt fraction or the temperature increase, the

dissolution rate of a particular crystal is taken to be inversely pro-
portional to its size. This happens due to dependence of the diffusion
flux from curvature of the dissolving crystal surface (see Appendix A for
details):

V ¼ −a tð Þ=R or dV=dR ¼ a tð Þ=R2 ð7Þ

a ¼ D Cb−C0ð Þρl= Cs−C0ð Þρs ð7aÞ

where V is the dissolution rate, D is the diffusion coefficient of the
slowest diffusing component that comprises dissolving solid in the
melt, and a is the constant proportional to the degree of undersat-
uration (Cb − Co), where Cb is solubility of the slowest diffusing
component in the melt or its concentration on the crystal boundary,
Co is content of this component in the melt away from the boundary,
Cs is component content in the solid. Diffusive crystal dissolution is
primarily rate-limited by the diffusion of the slowest component in
melt (Zhang et al., 1989). Hence, the radius of crystal is getting reduced
with time as a square root of time:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0−2∫a tð Þdt

q
ð8Þ

Generally, crystal size density n(R,t) depends both on the crystal
radius R and time t. On the characteristics, density n depends on time,
while the radius is also a known function of time (see Eq. (3)).
Substituting dependence R(t) on the characteristics Eq. (8) into (6)
using Eq. (7) yields the following solution:

n R; tð Þ ¼ no R0; t ¼ 0ð ÞR R0; tð Þ
R0 R; tð Þ ð9Þ

Here the radius R (in the moment of time t) corresponds to some
larger radius R0 in the initial moment of the dissolution event.

Alternatively we can express the initial size R0 corresponding to
the current R as function of time and insert into Eq. (9) to get

f1=2 ¼ n R; Tð Þ ¼ no

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ c

p� � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ c

p ; ð10Þ

where f1/2 designates the distribution corresponding to the first
stage of the dissolution-growth cycle and coefficient c = 2at = 2D(T)
(Cb − Co)ρlt / ρs(Cs − Co) at the approximately constant under-
saturation and diffusion coefficient. When some linear scale for
crystal size R0 is set, coefficient c gets non-dimensional form c = 2D(T)
(Cb − Co)ρlt / ρs(Cs − Co)R02.

2.3.2. Overgrowth stage
Generally at slow conductive cooling that is controlled by the heat

loss into country rocks, crystallization would proceed in the regime
controlled by the kinetics of slow crystal growth rather than be rate-
limited by diffusion through themelt (Lasaga,1998;Hort,1998). On the
contrary, upon fast cooling, crystal growth is controlled by diffusion
towards the growing crystal faces, edges, and vertices. Dendrites and
hopper morphology crystals are attributes of this diffusion control
(e.g., Donaldson, 1976 for olivine; Simakin and Chevychelov, 1995 for
feldspar), since elongated, and narrower crystals grow faster due to
enhanced diffusion transport at their tips (e.g., Lofgren, 1980). At the
interface-controlled growth, perfectly-faceted crystals develop and



Fig. 4. An example of the calculated CSDs after several dissolution/precipitation steps. a)
evolution of CSD in series of five steps, in each step 0.25 of the crystals volume is
dissolved and reprecipitated, while crystal mass is conserved: lowering of the
maximum value of the CSD is compensated by its overall shift to the larger mean
crystal size values. At each cycle of re-precipitation of 25% of crystal mass, parameter ck
gets different values. Notice that shapes of distributions are similar to natural ones
(Fig. 1a). b) series of CSDs with different initial exponential distributions n(R)=n0exp
(−γR). In all cases crystals comprise 0.3 of volume and matured in the course of three
cycles reprecipitating 0.3 of crystal mass.
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the larger crystals tend to grow faster. It can be caused by requirements
of the spiral growth mechanism that needs crystal faces that are
extended enough (e.g., Lasaga,1998). Spiral parameters depends on the
supersaturation, spirals at the growth of magmatic minerals some-
times have surprisingly high step height (much more than the several
atomic layer sizes) (Sunagawa, 1984). There are reasons why larger
crystals would grow faster in a kinetic regime (e.g., growth rate is
proportional to the number of the growth spirals on the flat face).
However, there are convincing examples of the growth rate being
independent on the crystal size, as is demonstrated by the slow
overgrowth of garnet in metamorphic conditions using 3D imaging
and analysis by Cheng et al. (2008). Here for simplicity in the solution
wewill use growth rate not dependent on the crystal size. Then, at the
growth stage, all crystals would gain increment in their size δR = ∫Vdt.
Density of crystal size distribution at such process is shifted to a larger
size without shape distortion so that its value corresponds to the
values at the end of dissolution stage n(R −δR). Combining growth and
dissolution stage (Eq. (10)) we get a recursive relation between CSD
after one dissolution-growth step:

nk ¼
nk−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R−δRkð Þ2þck

q� �
R−δRkð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R−δRkð Þ2þck
q ð11Þ

where parameter c is defined above (see Eq. (10)) relates to the
amount of dissolved material and does not depend on the crystal
radius.

At two dissolution/precipitation events the initially exponential
distribution noexp(− γR) becomes:

n2 ¼ n0

exp −γ
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Calculations at number of events k N 2 are tedious and were
performed with symbolic manipulator Maple (http://en.wikipedia.org/
wiki/Maple_computer_algebra_system ).

Two distinct regimes of recrystallization can be recognized. These
two cases represent two likely end-members during magma convec-
tion and temperature change.

1) Equilibrium. Total amount of the dissolved material dMdissolved, can
be set as some fraction of the initial mass of crystals before
dissolution, dMdissol/M0 = const At the end of dissolution stage, the
equilibrium saturation level is attained for the final temperature.
This case applies when duration of the heating event is larger than
time necessary to achieve equilibrium at dissolution. Equilibrium
dissolution time is approximately proportional to ck , the variable
that depends on the current CSD parameters.

2) Non-equilibrium. Amount of the dissolved material is proportional
to time during the dissolution stage or ck = const, and is only a
fraction of the equilibrium dMdissol. This case applieswhen the time
between temperature fluctuations is short, and slow kinetics
prevents the required equilibrium mass to be dissolved during
each dissolution episode to achieve saturation level, and then
dissolution is forced to stop (quenched) at the subsequent cooling
stage.

In these two cases, the small increment of crystal size change δR
during each step of precipitation (δRk) is calculated to keep crystals
mass balance constant and identical to the initial crystal mass as
defined by the initial CSD. In otherwords, themass of all crystals at the
end of each precipitation episode equals the initial mass Mo.
In order to calculate the parameter ck in k the equilibriumdissolution
step (Case 1), and the parameter δRk, we solve numerically equations
involving the mass of the crystals for a given size distribution

Mk ¼ ∫
Rmax

4=3πR3nkdR

Rmin

ð13Þ

The minimum crystal size for the initial exponential CSD is set to
zero. After the first growth step, the minimum size becomes δR1.
During the next steps Rmin and δRk are calculated in accordance
with the amount of the dissolved and reprecipitated material for
each initial CSD and crystal mass. An example of the evolution of a
sequence of the calculated CSDs is shown in Fig. 4a. It is evident that
maximumof the distribution is shifted to the larger sizes and becomes
wider with increasing number of the dissolution–precipitation cycles.
Initial steepness of the starting exponential CSD affects evolution of
the CSD shape. This effect is illustrated in Fig. 4b depicting evolution of
three initially different CSDs in which crystals volume content is 0.3;
these CSDs are subjected to the equal sequence of three dissolution–
precipitation events each recycling 30% of the crystal mass. It can be

http://en.wikipedia.org/wiki/Maple_computer_algebra_system
http://en.wikipedia.org/wiki/Maple_computer_algebra_system


Fig. 6.Dependence of themean crystal radius (a) and the volume number content (b) on
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seen that if the initial distribution has greater fraction of the smallest
crystals, the resultant CSD will have narrow maximum at the smallest
size on the CSD plots. The larger size shoulder of CSDs changes initial
slope only when maximum is sufficiently shifted and widen.

2.3.2.1. The potential role of size dependent growth caused by crystal
settling. If growth rate is proportional to the crystal size (e.g., Eberl
et al., 2002) then it may lead to somewhat faster growth of larger the
crystals while minimally affecting the smallest crystal sizes that are
undergoing dissolution. In natural systems, diffusive mass transport
can be accelerateddue to Stokes crystal settling. The larger crystals sink
faster andhavenarrower boundary layer that facilitates diffusion of the
dissolving components from their crystal surface. This effect can be
quantified with scaling relationships obtained experimentally and
theoretically decades ago (Bowman et al., 1961; Brauer and Schmidt-
Traub,1973). In Fig. 5 our estimates for quartz and zircon (seeAppendix
B for details) are displayed demonstrating that in the granite melt,
diffusive flux and dissolution rate are inversely proportional to the
crystal radius until some threshold value that primarily depends on the
density of settling crystals. For a crystal settling in the granite with
viscosity of 105Pa s, the effect of accelerated dissolution caused by
crystal settling starts playing a role for zircon crystals larger than 20μm
in radius, for the less dense quartz crystals this radius is about 0.5mm.
For crystals greater than the quoted sizes, effect of accelerating of the
relative flow due to increase of R merely compensates decrease in the
diffusive flow for increasing curvature so that dissolution rate becomes
almost constant. Therefore, we neglect the effect of flow in our model,
because most dissolution/reprecipitation ripening happen at sizes
smaller than the quoted sizes.

3. Applications of the model

3.1. Experimental coarsening

We start with consideration of experimental data on the coarsen-
ing of the fine crystals suspension in the melt by dissolution–
precipitation mechanism in order to see if these can be explained by
oscillating temperatures. Crashing of the mineral grains with mortar
Fig. 5. Dependence of the total mass flux (q) from the surface of the spheremoving with
constant velocity through the viscous liquid calculated in accordance with a model of
Brauer and Schmidt-Traub (1973). Constant concentration on the sphere surface Cb is
set, flux (in cm/s=cm3/cm2/s) is normalized on the ΔC=Cb−C∞. Stokes settling velocities
for quartz and zircon in the granitemelt with viscosity 105 poise are used, with densities
of quartz at 2650 kg/m3, and zircon at 4800 kg/m3. Notice that at given parameters for
zircon crystal sizes (2R)Nca 40–50 μm and quartz greater than about 0.4–0.5 mm
dissolution is independent on settling rate.

time in the series of five small amplitude dissolution–precipitation events. Time (t) is
set approximately proportional to the number of cycles (n) multiplied on the non-
dimensional rate parameter c in Eq. (10) (T=100cn). Parameter c is proportional to
dissolution time at constant superheating. Parameter c=0.1 on the plot corresponds to
the oscillations with the largest period. Notice that there is no difference in the end
result on weather the dissolutions were small in number but intense or if there were
large number of smaller-degree dissolutions.
and pestle prior to experiments may yield exponential CSD (Djamarani
and Clark, 1997), fractal or Weibull CSDs, with subtly concave-down
shape in semi-logarithmic coordinates (e.g. Bindeman, 2005), all having
plentiful small crystals.When for example anexponential CSD is allowed
to anneal in experiments involving a melt or fluid, it develops concave
up, lognormal CSDas is observed in experimentswith duration fromday
to weeks on fluid driven metamorphic zircon maturation affecting
zircon crystals in the size range 0.1 b R b 2μm (e.g. Ayers et al., 2003).We
suggest that the annealing and CSD transformation in experiments may
be better explained by temperature fluctuations rather than by Ostwald
ripening, because of the reasons outlined above and below.

The effect of the particle size on solubility (driving force
for Ostwald ripening) can be expressed in terms of effective super-
heating in degrees of Celsius relative to a flat crystal face of a given
mineral in equilibrium with melt (see Eqs. (1) and (2)). It can be
calculated to be about one degree for quartz and 0.1°C for zircon in
the granitic melt based on the Eq. (2) above. Therefore crystals with
radius of several microns and more will recrystallize faster at the
temperature oscillations with amplitude of several degrees in
experimental systems than at the classic isothermal Ostwald ripening.



Fig. 7. Time of the dissolution stage at superheating ΔT=2 °C and non-dimensional
parameter c=0.01 as a function of temperature and crystal size. Rhyolitic melt with
water content 4 wt.% and T=800 °C is considered and the temperature dependence of
the solubility of quartz in the system Qz–Ab taken from Johannes and Holtz (1996) as
representative for a rhyolitic magma. a) for quartz. Silica diffusion coefficient are in
accordance with (Acosta-Vigil et al., 2006 and Baker, 1991) for CH2O=4 wt.%.
Dissolution–precipitation process is rather effective at 1–10 μm size scale, fluctuations
of the 10 min or less scale with amplitude 2 °C will lead to the appreciable coarsening of
the quartz crystal population smaller than 1–2 μm. b) for zircon. Diffusion coefficient for
Zr for rhyolitic melt with water content 4 wt.% is used in calculations, which also
accounts for parametrized temperature dependence of the zircon solubility (Harrison
and Watson, 1983). Dissolution–precipitation process in a normal experimental time
scale of days is only possible for the smallest sizes and highest temperature. Due to the
slow zirconium diffusion, we can expect that long-duration experiments of several
months may display coarsening of crystals of submicron size.
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Temperature fluctuations on the order of 1–5°C are typical among
many temperature controllers for the furnaces such as Eurotherm and
others, and thus all nominally isothermal experiments are getting
affected.

We model the temperature fluctuation process by using small
values of parameter c (0.1–0.01) and applying up to 7 steps of
solution–reprecipitation to the initially exponential distribution.
Fig. 6a presents results of calculations of the evolution of the average
crystal radius (first moment of CSD function) for different values of c. It is
important to stress that, the average slope of the dependence in bi-
logarithmic coordinates in Fig. 6 is about 0.19. Due to the dissolution of
the small crystals total number of crystals in the unit volume N
continuously decreaseswith time. Correspondent slope of dependence
N versus time in bi-logarithmic coordinates is 0.56 (see Fig. 6b). On
the later stage relationship N ⁎ R3̄ = const following from the mass
balance, holds, where mean radius R ̄ = ∫0Rmax n(R) RdR/∫0Rmax n(R)dR and
N = ∫0Rmax n(R)dR. It can be shown that the relationship N ⁎ R̄3 = const
holds in series of nk(R) when they are similar in some sense (e.g., self-
similar). If formulas for nk(R) are not similar (one exponential, another
lognormal) N ⁎ R3mean can vary as we see in Fig. 6b.

It is important to estimate physical timescales associated with our
theoretical non-dimensional results presented above for experimental
coarsening. We calculate time scales that are appropriate for quartz and
zircon (see Fig. 7a and b). Time of the dissolution stage for quartz at
superheating ΔT = 2°C and non-dimensional parameter c = 0.01 was
calculated with diffusion coefficient DSiO2 for rhyolitic melt with water
content4wt.%varyingwith temperatureaccording toBaker (1991) (DSiO2 =
3.3 10− 10cm/s2 at T = 800°C). However, recent study by Acosta-Vigil et al.
(2006) demonstrates that SiO2 diffusion during experimental
quartz dissolution in rhyolitic melt is about one order of magnitude
slower (DSiO2 = 2.0–3.0 10− 11cm/s2 at T = 800°C and PH2O = 2kbar) than
diffusion of SiO2 during interdiffusion of the dacite–rhyolite melt couples
(Baker, 1991) or at the dissolution of alkali feldspars in the granite melt
(Acosta-Vigil et al., 2006). However, Acosta-Vigil et al. (2006) presents
diffusion data for a single temperature.We consider silica diffusion results
of Acosta-Vigil et al. (2006) more realistic for our study, and therefore we
use the DSiO2value quoted above but assumed that activation energy and
temperature dependence of Baker (1991). For the temperature depen-
denceof the solubility quartz liquidusparameters in the systemAb–Qzare
taken from Johannes and Holtz (1996) to transform ΔT into ΔC.
Dissolution–precipitation process is rather effective at several micron-
size scale, fluctuations of about 10min order of magnitude period with
amplitude 2°C will lead to the appreciable coarsening of the quartz
suspension (see Fig. 7a).

Zircon is more difficult to dissolve than quartz, because diffusion
coefficients through the melt are lower for zirconium and solubility
with associated concentration gradients are small (e.g. Watson and
Harrison 1983 vs Baker, 1991).

We calculate time scale corresponding to c = 0.01 and amplitude
ΔT = 2°C by using diffusion coefficient for Zr for rhyolitic melt
with water content 4wt.% and parametrized temperature dependence
of the zircon solubility from Harrison and Watson (1983). The
dissolution–precipitation process on a normal experimental time
scale of days is only possible for the smallest sizes, around 1μm, and
highest temperature (see Fig. 7b). We conclude that contribution
of the thermal oscillations may dominate in the producing experi-
mental lognormal CSD of quartz and zircon as compared to the
Ostwald ripening mechanism. However we are unaware of any
experiments that crystallize zircons from the melt and report their
CSD.

3.2. Approach to the interpretation of the natural CSDs

While in experiments we considered small temperature fluctua-
tions, natural examples provide the evidence of large solution–
reprecipitation episodes, recycling up to 50% of crystal mass (Wark et
al., 2007; Bindeman et al., 2008). There is the trade-off effect between
the fluctuation amplitude and the number of fluctuations to produce
the desired CSD as mentioned above. Therefore our reconstruction of
the number of the heating events causing crystal mass recycling and
their amplitudes based on the CSDs are taken as informed prejudices
(or educated guesses) on particular magma systems. An additional
information like the observation of internal crystal zoning indicative



Fig. 8. Crystal size distributions for zircon extracted from pumice in large volume
pyroclastic tuff deposits (data from Bindeman, 2003) normalized on the maximum
crystal size and maximum CSD value. For comparison experimental data on the zircon
CSD matured in the nominally isothermal hydrothermal ripening experiment within
quartzite are shown (data from Ayers et al., 2003). In experiments, zircon ripening
occurred presumably due to multiple, low amplitude temperature oscillations. Notice
that experimental and natural CSDs are comparable, but in experiments CSD has
flattened top with maximum shifted to the smaller size compared with natural
distributions, see text for discussion.

Fig. 9. Interpretation of CSDs for quartz and zircon from the Huckleberry Ridge tuff
eruption of Yellowstone, Members A (a) and C (b). Model curves were fit to best describe
measured values and present proportion of crystal mass recycled in each of the
dissolution/precipitation cycles, while keeping the overall crystal mass the same. Notice
that zircon in Member A has exponential distribution in the contrast to quartz in the
same sample and requires no annealing. Quartz and zircon of the Member C can be
explained by two dissolution/precipitation episodes of approximately the same
magnitude. See text for discussion.
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of dissolution–precipitation events in individual crystals can be used
to constrain the number of cycles. If independent data is available
about the timing between different cycles, then a total time for crystal
maturation can be estimated from a CSD.

In our applications to the natural CSD, we consider CSD of quartz
and zircons in individual pumice clasts from large volume caldera-
forming eruptions that were reported in Bindeman (2003). While
zircon exhibits no evidence for postcrystallizational breakage,
melt inclusion decrepitation is the leading cause of quartz breakage
generating fractal or lognormal fragment size distributions (Binde-
man, 2005). However the present work only discusses CSDs of
unbroken crystal populations (Bindeman, 2003). The list of units
discussed here include: Huckleberry Ridge tuff (HRT, Members A and
C), Mesa Falls tuff (MFT), Lava Creek tuff (LCT, Member A and B), and
Bishop tuff (BT, Early and Late). The first three tuff units were erupted
in the course of 2.04, 1.3, and 0.64Ma caldera-forming eruptions of
Yellowstone, while BT was a product of 0.75Ma eruption of Long
Valley Caldera, California. Since zircon and quartz were rapidly
quenched by eruption, the extracted populations of whole crystals
and their CSD reflect quenched, pre-eruptive conditions of crystal
growth and dissolution and thus may provide useful information
about initiation of their respective caldera-forming eruptions. It is
particularly noteworthy that CSD of quartz and zircon are lognormal in
all cases, and we suggest that this is a result of the annealing of an
initially exponential CSD in the course of preeruptive temperature
spike in each pre-climactic magma chamber.

In order to compare shapes of crystal size distributions of quartz
and zircon for samples of different crystal content andmedian size, we
normalized these two parameters to the maximum density value and
maximum crystal size in each sample (see set of the distributions for
zircon in Fig. 8). Such procedure does not change the shape of the CSD
and allows us to discuss annealing progress recorded in shape as a
function of the number of solution–reprecipitation steps, n. Shapes of
the CSDs differ by the width of the D/Dm size spectrum (flatness),
position of the maximum (shifted to smaller or larger relative sizes),
and steepness of the small size shoulder. For example, the CSD of MFT
zircons have most flattened shape, while CSD for BT-Early have the
steepest.
We explore what number of the relatively large amplitude
temperature oscillations and correspondent dissolution–precipitation
events will result in the CSD of a given shape. Exponential distribution
demonstrated by zircons fromHRT-A tuff is typical for as-grown crystals
not subjected to recrystallization. It is reported for the magma bodies
with simple thermal history such as solidified lava lakes (Cashman and
Marsh, 1988), rhyolitic laccoliths (Mock et al., 2003), some intrusions
(Higgins,1998), and selected silicic eruptive products (Bindeman, 2003;
Higgins and Roberge, 2003). However for the majority of other tuffs a
number of episodes of temperature oscillations, and dissolution of
smaller crystals is required (Figs. 8 and 9). In order to fit the natural data
for each eruption, we started with the initially exponential distribution
as defined by the slope of the right-hand side shoulder of the natural
distribution and undertook a modeling by trial and error to obtain a
best-fit solution for details of the concave-down, lognormal shape of
crystals in each eruption.

We notice that only one to three episodes are sufficient to
reproduce the lognormal shape, and fine-tuning of this model usually
requires 1–2 additional smaller steps of dissolution rather than a



Fig. 10. Interpretation of CSDs for quartz and zircon from the Bishop tuff pumice clasts
a) from early BT; b) from late BT. BT-late quartz is pronouncedly more matured than BT-
early quartz in agreement with observations of the quartz cathodoluminecence and Ti
concentration zonality from BT (Peppard et al., 2001; Wark et al., 2007). Zircon CSDs in
early and late BTare quite similar by their normalized shape and require two episodes of
dissolution/reprecipitation to match measured CSD shapes. In the Late BT, two
comparable episodes of the total mass of zircon crystals per cm3 of magma is larger. It
means that less intensivemelting involving quartz dissolutionwill act strongly on zircon
CSD in BT-early as more intensive melting at higher mass of zircon crystals in BT-late).
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single episode that recycles a significant portion of the original crystal
mass. Overall, a moderate (i.e. 10% total mass) to significant (e.g. 60% )
of total crystal mass is required to be dissolved and then reprecipitated
in order to explain the observed concave-down CSD shape and its
details as is observed on Figs. 8 and 9. As a rule of the thumb, a single
reheating–recycling episode leads to very steep truncation of the left
hand CSD shoulder, than a series of smaller dissolution–reprecipita-
tion episodes, because in the latter case there is a greater chance for
smaller crystals to survive dissolution regrow between reheating
episodes and thus the CSD is able to recover toward a smoother shape.

We attributed small temperature oscillations to details of magma
convection in subliquidus magma bodies (e.g. Marsh, 1989), or spiked
episode of latent heat released/hydrothermal refrigeration by mushy-
state, near solidus magma bodies but the proportions of crystal mass
recycling required to explain our natural data are more in line
with rather large reheating episodes. It is known that in subvolcanic
magma chambers resident silicic magma can be subjected to several
reheating events by an intruding basaltic magma; such events are
recorded in the mineral zoning and clearly exemplified by magma
mixing textures. Therefore we consider such reheating episodes to be
the main driving force of recrystallization and transformation of the
initially exponential CSD into lognormal one in several dissolution–
precipitation cycles.

However, another variation of the theme that are likely to be
characteristic of natural system: is when—the temperature increases
are too rapid for dissolving crystals to achieve the equilibrium
dissolution fraction, before the next episode of temperature decrease
causes crystal overgrowth. This corresponds to the case 2 above and
may characterize recrystallization of zircon in nature. Due to the
relatively faster diffusion of silica vs. zirconia in melts (Baker, 1991
and Watson and Harrison, 1983), quartz dissolution may follow the
equilibrium model (i.e. case 1 above); zircon dissolution may still be
incomplete when the temperature drops, and thus its dissolution
may be ceased before the next episode of overgrowth. However,
equilibrium or not, the final CSD will look similarly lognormal and
below we present case studies from the natural examples of the same
large silica rhyolites. We demonstrate that only a few, one to three,
episodes are required to explain the observed natural CSD for quartz
and zircon.

3.3. Quartz and zircon examples from Huckleberry Ridge tuff, Bishop tuff,
and Mesa Falls tuff

We consider CSDs for both quartz and zircon in these three large
volume tuffs. Products of the early stage of eruption that produced the
Huckleberry Ridge tuff —Member A (Fig. 9a) are characterized by
moderately matured quartz CSD with maximum at D/Dm ≈ 0.33 that
are best obtained in only two cycles of dissolution–precipitation
episodes each recycling 0.50 and 0.20 fraction of quartz crystals by
mass. However, zircon crystals in this sample demonstrates almost
exponential distribution and requires little annealing: maximum is
defined only by one left point on the CSD plot and distribution can be
treated as practically exponential or as a result of pure grown upon
cooling or degassing. Zirconium concentration is the lowest in the
HRT-A compare to the other units, while this is the most silica rich
sample of HRT (e.g. Bindeman et al., 2008). Therefore quartz is likely to
appear before zircon and have suffered episodes of solution and
reprecipitation. Zircon may suffer even larger dissolution at the strong
heating preceding HRT supereruption so that there were too few
survived crystals and new ones nucleate and grow just before or in the
final eruption stage to yield exponential CSD.

Products of the late stage of the eruption corresponding to
Huckleberry Ridge tuff — Member C (see Fig. 9b) are characterized by
similarly lognormal CSDs for quartz and zircon. Their shapes can be
respectively interpreted as result of the re-precipitation of the 0.36 × 2 for
quartz crystals volume, and 0.40 and 0.55 dissolution–reprecipitation
episodes for zircon. Practically concordant behavior of quartz and zircon
in HRT-C rhyolites may be interpreted that quartz and zircons shared
common history in the HRT-C magma body, and be caused by two
episodes of rhyoliticmagma heating by basicmagmas. It should be noted
that in HRT-A and especially HRT-C zircons many zircon cores survived
remelting and recycling and reflect ages and oxygen isotopic values of
that of precursor rocks (e.g. Bindeman et al., 2008).

In contrast to HRT-A, zircon CSD in the products of the early Bishop
tuff eruption looks more matured than quartz CSD from the same
sample (see Fig. 10a). Modeling demonstrates that CSD of quartz
would be consistent with two weak episodes of dissolution–
reprecipitation recycling 0.25 and 0.12 of quartz mass to match CSD
with observed parameters. However, two episodes that recycle 0.45
and 0.47 of zircon mass is required to explain zircon CSD in early BT.

At the same time, quartz and zircon in the products of the late Bishop
tuff eruption have quite similar normalized CSDs (see Fig. 10b). We can
matchbothCSDswith only two cycles of dissolution/precipitation 0.42 +
0.32 for quartz and 0.55 + 0.55 for zircon. Apparently the fact that zircon
is more matured than quartz in the early BT can be linked to small
content of zircon crystals (only 28 crystals per 1cm3 in Early BT vs. 37–98



Fig.11. Interpretation of CSDs for quartz and zircon from theMesa Falls Tuff. Both phases
demonstrate rather concordant distributions that are best interpreted as result of the
three intensive solution/reprecipitation episodes.
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crystals in late BT, Bindeman, 2003, Appendix); as a result that melting
of the even small fraction of quartz would cause more substantial
dissolution of zircon. Late erupted BT tuff probably represents bottom
layer of magma, thermally activated due to thermal interaction with
underplating basalts (e.g. Wark et al., 2007). Thermal reactivation of the
deep layers in large silicic magma bodies by an underplating basic
magma seems to be essential feature of voluminous rhyolitic eruptions
as suggested in many studies (e.g. Annen and Sparks, 2002).

The CSDs for quartz and zircon in the Mesa Falls Tuff are most
mature and demonstrate the largest crystal sizes and crystal mean
sizes. They demonstrate concordant behavior of quartz and zircon in a
magma stored before eruption and subjected to at least three
intensive episodes of solution–reprecipitation, recycling 0.4 + 0.5 +
0.5 mass fraction (see Fig. 11). It appears that both quartz and zircons
share the same dissolution–reprecipitation history in the MFT.

Examples above presented contrasting cases that may characterize
recycling of two mineral phases one major and one accessory in the
same rock that shows their discordant and concordant behavior.
Mineral growth rates and diffusion rates of their constituent elements
differ by several times and discordant behavior is expected for a non-
equilibrium dissolution (case 2 above). Nonetheless, it appears that a
few large scale recycling episodes are sufficient to explain our data.

3.4. Can a mature lognormal CSD tell time?

In the above calculations we controlled the number of cycles n to
generate a particular CSD and made no inference on the time it takes
to achieve the final (observed) CSD. Any time estimate based on the
lognormal CSD will only represent a minimum residence time since a
given populationmay reside in a largemagma chamber for a long time
at constant temperature or if there are only small temperature
oscillations, affecting the smallest crystals. We demonstrated above
that small temperature oscillations of 1–2° can explain experimental
coarsening of micron-size crystals of zircon, tens to hundreds of
micron crystals of zircons require much more significant oscillations
of several tens of degrees C.

However if there is no idle time in each magma chamber history,
and temperature oscillations come one after another, then physical
time can be set proportional to product n and parameter c in Eq. (11)
above since c = 2DZr(T)(Cb − Co)ρltsct / ρs(Cs − C0)R02 is proportional to
the time scale of dissolution stage. We plot in Fig. 6 calculated
mean crystal radius as a function of T = n × c for different values of c
(due to for example different period of temperature oscillations tscl at
constant supersaturation Cb − Co).
We can estimate order of magnitude of the characteristic time of the
dissolution stage based on the CSD analysis. Parameter c = 2DZr or SiO2

(T)ΔCρltscl / ρs(Cs − C0)R02 controls dissolution process. For quartz
parameter ΔC(ΔT) = Cb(To + ΔT) − Co is defined via inverse liquidus
slope (∂C / ∂T) of quartz for particular system. Rhyolitic magma can be
approximated by ∂Cqz / ∂T ÷ 0.001wt. fract. K− 1(defined using data from
Johannes and Holtz, 1996) or ΔC ≈ ΔT ∂Cqz / ∂T ≈ 0.1 at ΔT = 100°C. The
concentration parameter for zircon dissolution is defined not only by
increasing temperature of the melt but also by dilution by rock-forming
zirconium-free minerals through mass balance equation:

ΔC ¼ C To þ ΔTð Þɛ1−C Toð Þɛo
ɛ1

; ð14Þ

where C(T) is solubility of ZrSiO4 at the temperature T, ε— is a fraction
of the melt in the magma. Solubility of zircon in the granite melt is
well-constrained experimentally (Watson and Harrison,1983). Typical
value ofΔC associatedwith increasing of themelt fraction from ε = 0.35
to ε = 0.75 at heating from 750°C to 850°C is 2.510− 4. The characteristic
radius R0 links non-dimensional calculated distribution with a given
natural CSD, it was set to 500μm for quartz and 50μm for zircon.

When we use diffusion coefficients of 3.9 ⁎ 10−15m2/s for 850°C
and 4wt.% water, (recalculated from Acosta-Vigil et al., 2006 as
described above) we obtain time necessary for dissolution of half of
quartz crystals of 2 to 3.5yrs. Assuming similar water contents and
temperatures, and taking diffusion and solubility model of zircon
from Watson and Harrison, (1983) we obtain the corresponding
dissolution–reprecipitation time to generate zircon's CSD of 26yrs. In
this calculation the melt fraction increases from 0.35 to 0.75 upon
heating from 800 to 860°C. If we set heating from 760 to 800°C with
the same increase of the melt content time scales increases to
178years, because of the slower zirconium diffusion at lower
temperatures.

4. Discussion

It is possible to check consistency of our interpretation of
lognormal quartz CSDs measured in Bishop tuff (Bindeman, 2003;
Gualda and Rivers, 2006) andmodeled in this study with independent
estimates of proportions of magmatic recycling derived from zoning of
quartz crystals. Wark et al. (2007) measured cathodoluminesence (CL)
intensity and TiO2 concentrations in quartz phenocrysts and esti-
mated temperature of their crystallization. They found that in the late
sequence of Bishop quartz has high temperature overgrowth (T = 800–
820°C) over rounded dissolved cores (T = 700–720°C). While heating
and dissolution are explained by a basaltic intrusion, overgrowth
at high temperature is explained by T–X–XH2O–CO2 compositional
relations specific to Bishop tuff. If their interpretation is correct, then
this provides another degree of freedom in our model since the
amount of the precipitated material is not directly defined by the
amount of the dissolved at heating material but melting relations in
the melt with variable water content. On published CL images of
quartz crystals from the Late Bishop tuff (Peppard et al., 2001; Wark
et al., 2007), only a few typically two to three dissolution surfaces can
be seen. It is only evident that Late BT quartz underwent more severe
dissolution and was precipitated due to water extraction into CO2

bubbles and was not due to cooling. Residence time of the hot magma
in the lower layer was estimated by Wark et al. (2007) through the
shape of TiO2 distribution on the boundary between core and
overgrowth to be several hundreds years. It is semi-quantitatively
consistent with our estimates based on the CSD analysis of the late BT
CSD.

CL imagingof zircons in Yellowstone tuffs and lavas that collectively
define lognormal CSD patterns also demonstrates rather simple zoning
pattern (Bindemanet al., 2008). Isotopically diverse coreswith variably
dark CL and with diverse oxygen isotope values are surrounded by
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light-CL, eruption-age rim, and investigation of zircon zoning patterns
reveals that nomore than two episodes of solution–reprecipitation has
taken place. The remelting episodes are interpreted to represent
blending different magma batches together followed by the preer-
uptive overgrowth by a single equilibrium rim. The amount of re-
melting based on CL imaging and also on oxygen isotope balance
between cores and rims of bulk zircons is estimated to be in the 10–60%
range. Based on oxygen isotope zoning, the time required to recycle
zircons was estimated to be between ~ 103 and 104years. It is possible
that multiple solution–reprecipitation episodes recycled the outer-
most few percent of zircons but the last major episode of solution–
reprecipitation erased the prior recycling memory, and truncated left
side of the CSD to proportions required by the present model.

Let's consider experimental data on quartz and zircon with our
theoretical estimates of the time evolution of CSDs. In experiments of
Ayers et al. (2003) on zircon coarsening in water bearing quartzite,
temperature was held constant at 1000°C. Initially crushed zircon
crystal population annealed in “metamorphic conditions” via diffu-
sion through the fluid phase distributed in the quartzite porous space.
However, such annealing process is similar to the magmatic annealing
because both are controlled by diffusion of nutrients through the
melt/fluid and no gravity settling occurs. Experimental annealing of
zircon by Ayers et al. (2003) yielded CSD shape that is close to log-
normal distribution, similar to what is observed in most natural
examples (e.g. Bindeman, 2003). The lognormal shape with deficiency
of the smallest crystals obtained in the CSD of zircon in annealing
experiments differs significantly from the shape predicted by the LSW
model showing small crystal size tail (see Fig. 1b).

For quartz, there are experimental data on quartz coarsening in
granite melt that can be taken from a recent work by Cabane et al.
(2001). These authors find that the mean radius of quartz crystals
at recrystallization can be approximated as a power of time R ∝ tk

with k ≈ 0.2. Again, our model of temperature fluctuations compares
nicely with these experimental results: our estimate of k is 0.19 (see
Fig. 6a). Moreover, mean volumetric content of crystals Nv varies with
time exponent − k = 0.41–0.51, in good agreement with our estimate
0.56 (see Fig. 6b). At the same time LSWmodel predicts k = 0.5–0.33 in
the crystal size dependence that is substantially larger than observed
experimental values. Obviously our model provides better fit to the
observations than the ripening theory based on the LSW approach.
Furthermore, the results and predictions of the present model provide
background for experimental testing in order to verify that the
presented solution with at all its assumptions and simplifications
catches the essence of natural processes and provides time exponents
of CSD evolution correctly in a wide parameters range.

5. Conclusions

1) The simplified model based on the size dependent dissolution rate
for crystals in the melt and constant slow overgrowth rate is
proposed here to describe evolution of the CSD in the series of the
dissolution–precipitation events.

2) The model can explain abundant lognormal CSD of quartz and
zircon in natural systems by solution–reprecipitation after only a
few cycles of melting-crystallization.

3) Quartz and zircon CSD in the same sample may experience different
proportions of the dissolution dependingonparticular composition–
melting relations for each mineral and zirconium concentration
affecting solubilities.

4) Predicted by the model duration of the dissolution stage of about
100years for zircon based on the measured CSD for upper Bishop
tuff unit is comparable with one extracted from the quartz zonality
(Wark et al., 2007).

5) Power exponent of the mean radius growth with time obtained in
experiments on the quartz maturation is close to the obtained in our
model for series of the low-intensity dissolution–precipitation events.
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Appendix A. Dissolution rate at diffusion control

It is well known that at the control of dissolution by diffusion
dissolution rate is inversely proportional to the particle size (radius
in spherical approximation). This is valid for various geometries, for
illustration we consider solution for the steady-state diffusion for
sphere. Assume that small spherical source is placed inside spherical
shell and constant concentration is set on the surface of the internal
sphere. Diffusion equation at steady-state is reduced to the Laplacian
of concentration or in spherically symmetrical case:

d
dR

dC
dR

R2
� �

=R2 ¼ 0 ðA1Þ

Solution for the shell boundary conditions C(R0) = Co, C(R1) = C1
(R1 N R0) is

C Rð Þ ¼ C1R1−C0R0

R1−R0
−

C1−C0ð ÞR0R1

R1−R0ð ÞR ðA2Þ

In the case of infinite space (R1 = ∞) C(R) = C1 + R0(C0 − C1) / R.
Strictly saying moving boundary of the dissolving core substantially
complicates solution of the diffusion problem. Here for brevity wewill
neglect effect of the moving boundary that is physically reasonable for
slow dissolution processes considered. Diffusion flux from the surface
of particle is fed by the dissolution so that

D
dC
dR

¼ udis
ρs

ρl
Cs−C0ð Þ; udis ¼ D

C1−C0

R0 Cs−C0ð Þ
ρl

ρs
ðA3Þ

where ρs and ρl are densities of the solid and melt respectively, D is
diffusion coefficient, Co− is content of dissolved component at
infinity, Co is solubility and Cs is slow-diffusing component content.
Dependence of radius of dissolving particle from time can be found
by integration of Eq. (A3) by taking udis = dR0 / dt. It is easy to show
that

R0 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 0ð Þ2−2D C0−C1ð Þρl

Cs−C0ð Þρs
t

s
ðA4Þ

Forfinite distance between crystalsfiniteR1 should be kept, resulting
in the model similar to the communicating neighbors. Diffusive flux
from the dissolved particles immersed in the finite shell of the melt
approximately (R0 is indeed lessen) equals

q ¼ exp −
6DR0t

R0 þ 2R1ð Þ R1−R0ð Þ2
 !

C1−C0ð ÞR1

R1−R0ð ÞR0
ðA5Þ

It is obvious that at t = 0 and R1 = ∞ formula (A5) transforms into
Eq. (A3).

Appendix B. Influence of the settling flow on the dissolution rate

At diffusion control the maximum dissolution rate is associated
with large curvature (small particles or sharp edges of large ones). If
melt has low enough viscosity crystals settle with appreciable velocity,
diffusion mass-transfer is accelerated for the larger sinking particles.
Diffusion field around sinking particle is affected by the Stokes liquid
flow resulting in the increasing of the concentration gradients at
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the particle surface and enhancing of the dissolution rate. The total
diffusive flux from the settling particle scaled on the half of the steady
diffusive flux from fixed sphere of the same diameter is called
Sherwood number (She). The total flux (J) is integral of the local flux
(q) over the particle surface:

q ¼ −D
AC
Ar

� �
; J ¼ ∫∫

S
qds ðB1Þ

Reference diffusive flux is defined as

Jo ¼ D Cg−Co
� �

S
2R

; ðB2Þ

where S is surface of the particle, Cg is dissolving component
concentration on the surface, C0 is content in the infinity, then non-
dimensional Sherwood number is:

She ¼ J=SΔC
D=2R

ðB3Þ

At the negligible flow Sherwood number becomes She = 2.
Influence of flow can be estimated via parametric dependence of She
fromPeclet number equals settling rate scaled on the diffusion velocity
scale:

Pe ¼ RVsed=D

For lowReynolds numbers (low velocity of flowallows to neglect with
inertia effects in the liquid flow) and low Peclet numbers (0 b Pe b 1000)
Brauer and Schmidt-Traub (1973) theoretically found relationship:

She ¼ 2þ 0:333Pe0:840

1þ 0:331Pe0:507
; ðA2Þ

where Stokes sedimentation velocity Vsed = 2R2Δρsl / 9η can be used.
This relationship is in agree with low Pe limit: She = 2 + aPe and high
Pe limit She = aPe1/3 derived in Bowman et al. (1961) and Friedlander
(1957).

To estimate influence of the settling effect on the dissolution rate in
the silicic melt we set viscosity η = .105 poise and calculate Sherwood
number for zircon and quartz crystals with variable size (see Fig. 5). In
the size range of interest effect of the flow is weak enough to neglect
with it as the first approximation.
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