“Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites

Bernardo Cesare1, Silvio Ferrero1, Emma Salvioli-Mariani2, Danilo Pedron3, Andrea Cavallo4

1Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, 35137 Padua, Italy
2Dipartimento di Scienze della Terra, Università di Parma, Viale Usperti 157A, 43100 Parma, Italy
3Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padua, Italy
4Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy

ABSTRACT

Using as a case study a granulate from the Kerala Khondalite Belt, India, we show that a former anatectic melt can be preserved as tiny (<25 μm) droplets within refractory minerals, in this case garnet. The melt is either fully crystallized as a Qtz-Ab-Kfs-Bt cryptocrystalline aggregate (“nanogranite”), or completely glassy in inclusions <15 μm. Both nanogranite and glassy inclusions have a peraluminous, ultrapotassic granitic composition that, in this case, does not correspond to a “minimum melt” and points to high melting temperatures, in agreement with the ultrahigh-temperature origin of the rock. This discovery indicates that peritectic minerals, growing during incongruent melting reactions, act as hosts for inclusions of anatectic melt, and that in the general case of slow cooling of the crust these inclusions will occur as nanogranite. Exceptionally, in the smallest inclusions, glass may be present due to inhibition of crystallization. Our results extend the frontiers of petrological and geochemical research in crustal melting, as the composition of natural anatectic melts can be directly analyzed rather than assumed.

INTRODUCTION AND SAMPLE DESCRIPTION

Partial melting (anatexis) is the main agent of geochemical differentiation in Earth’s crust (Brown and Rushmer, 2006) and deeply affects lithospheric rheology and geodynamics (e.g., Vanderhaeghe, 2001). Crustal anatexis produces granitic melts (Clemens, 2006; Vielzeuf et al., 1990), whose segregation (Sawyer, 1996; Petford et al., 2000; Brown, 2007) results in the formation of granulites as the residua of the melting process (Vielzeuf et al., 1990; Sawyer, 2008), and granitic leucosomes (Clemens, 1990; Sawyer and Brown, 2008) as relicts of incomplete melt extraction. An obstacle to the quantitative study of natural melting is that the composition of the melt is often unconstrained, because leucosome chemistry is generally affected by cumulus phenomena, fractional crystallization, or presence of xenocrysts (Sawyer, 1996, 2008; Marchildon and Brown, 2001). Therefore, melt composition is generally assumed from experimental studies (Sawyer, 2008). We tried to overcome such weakness with a novel small-scale approach to the geochemical characterization of anatectic melts, building on our recent research on glass inclusions in granulitic xenoliths from dacites in SE Spain (Acosta-Vigil et al., 2007, and references therein). There, we recognized that glass inclusions of leucogranitic composition were preserved by rapid cooling in several host minerals, in particular garnet, which had formed at T > 800 °C in the presence of melt. We interpreted these findings as results of incongruent reactions producing an anatectic melt that was trapped by the growing peritectic minerals (Cesare et al., 2009), and predicted that inclusions of anatectic melt should be present also in granulites and migmatites (Cesare, 2008). For the present study we selected samples from the world-famous granulites from the Proterozoic Kerala Khondalite Belt, India, as representatives of a regional anatectic crustal terrain (see the GSA Data Repository1 [and Fig. DR1 within the Repository] for further geological and petrological information). These rocks underwent ultrahigh-temperature metamorphism and partial melting during the Pan-African orogeny, with the development of migmatites characterized by Qtz-feldspar leucosomes and Grt-Crd-Sil-Bt-bearing melanosomes (khondalites; Fig. DR2). Garnet mostly occurs in the latter, as centimeter-sized anhedral porphyroblasts, mantled by cor- dierite and wrapped by a foliation outlined by sillimanite and graphite (Fig. 1A). Garnet, which often includes crystals of biotite and sillimanite, in places contains also clusters of tiny (2–25 μm across) inclusions (Figs. 1B, 2, and DR3A). Clusters are <2 mm across, contain hundreds of inclusions, do not have a preferred microstructural location in the garnet host, but never touch garnet boundaries. These microstructural features indicate that inclusions are primary, i.e., trapped by garnet during its growth (Roedder, 1984). Inclusions are generally made of a polycrystalline aggregate of birefringent crystals (Figs. 1C and 1D), but in places they are monophase (Figs. 2C and DR3A) and optically isotropic (hereafter referred to as “glassy”). Polycrystalline inclusions are slightly larger (5–25 μm; Fig. 3A) than the glassy ones (2.5–17.5 μm; Fig. 3B); in both cases they are subspherical, commonly faceted

Figure 1. A: Melanosome of a khondalite, containing garnet (Grt), partly replaced by cordierite (Crd), in a foliated matrix with sillimanite (Sil) and quartz (Qtz). K-feldspar (Kfs), rare biotite (Bt), and spinel (Spl) also occur. Red arrow points to a cluster of melt inclusions. B: Cluster containing both nanogranite and glassy inclusions in garnet from A. C: Close-up of a nanogranite inclusion with negative crystal shape. D: Cross-polarized image of C, showing that inclusion consists of a birefringent polycrystalline aggregate.

© 2009 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology, July 2009; v. 37; no. 7; p. 627–630; doi: 10.1130/G25759A.1; 6 figures; Data Repository item 2009146.
as negative crystals (Figs. 1C, 1D, 2A, and 2C). In places, inclusions may contain crystals, often zircon, apatite, or rutile (Figs. DR3B and DR3C), that were clearly already present at the time of entrapment (Fig. 2C), and probably favored the formation of the inclusion (see Roedder, 1984). The two typologies of inclusions are randomly distributed within clusters (Fig. DR3A), where glassy ones represent ~15% of the total. Given the extremely fine grain size of phases, at the limits of analytical resolution, inclusions have been characterized by a combination of electron microprobe (EMP), field emission scanning electron microscope (FESEM, in EDS, BSE, and X-ray mapping modes), and micro-Raman techniques; in addition, polycrystalline inclusions were remelted in a high-T heating stage (for details on methods, see the GSA Data Repository).

"NANOGRANITE" INCLUSIONS

Polycrystalline inclusions consist of a multiphase aggregate with equigranular, hypidiomorphic to allotriomorphic texture, characterized by subhedral biotite and K-feldspar and anhedral quartz and plagioclase (Figs. 2A, 2D, and DR3C). Accessory minerals include apatite, rutile, titanite, zircon, and iron oxides. In places the texture tends to be inequigranular, or to contain granophytic to micrographic intergrowths of quartz and feldspars (Figs. 2D and DR3C). Owing to these features typical of intrusive magmatic rocks, and given the grain size of crystals in the range 10^{-2}–10^{-1} μm, we have named these inclusions nanogranite. Nanogranite inclusions generally display a diffuse porosity with size of cavities down to a few tens of nanometers (Figs. 2A and DR3C), which formed due to the density increase, at constant cavity volume, of crystallizing melt. The 10–100-nm-thick films of unknown nature (quartz or glass) coating cuspatelobate phase boundaries (Fig. 2B) recall the pseudomorphing of melt-filled pores often seen at greater length scale in migmatites and granulites (Holness and Sawyer, 2008).

BSE imaging combined with X-ray mapping allows identification of the main phases and of the main textures in nanogranite inclusions. In the example of Figure 4 (see also Fig. DR4), one part of the inclusion has a coarse (>1 μm) grain size, whereas the other is much more fine-grained. From a chemical point of view, K seems to dominate over Na, and biotite appears to be richer in Mg than Fe, as confirmed by the EMP analyses that provide $X_{Fe} = 0.19$–0.25 (Table DR1).

The experimental remelting of the nanogranite inclusions brought about their homogenization but produced some interaction with the garnet host, with formation of peritectic phases and melt contamination by Fe and Mg. Despite such effect, and the unavoidable loss of sodium during EMP analysis with a focused beam, the...
composition of the remelted nanogranite is granitic and potassic, in agreement with the phase abundances observed with X-ray FESEM mapping. However, because of their contaminated composition, these analyses are not considered in the discussion and plots below.

GLASSY INCLUSIONS

Glassy inclusions contain an amorphous phase, as indicated by the micro-Raman spectrum (Fig. 5) that displays a prominent broad band centered at ~450 cm$^{-1}$, and less pronounced bands at ~590, 790, and 1140 cm$^{-1}$. These bands are characteristic of rhyolitic glasses, as shown by the spectrum of an anhydrous haplogranitic glass synthesized by Morgan and London (2005).

The noncrystalline nature of these inclusions is indirectly attested also by their composition, incompatible with any rock-forming silicate. EMP analyses of the glass (Table DR2) again indicate a perisilicic composition, very high in K$_2$O (>7 wt%) and low in Na$_2$O (<1 wt% even after correction for Na loss; see the GSA Data Repository) and CaO, with 1–2 wt% FeO. Glasses have an ASI (aluminum saturation index) in the range 1.2–1.4, typical of granitic melts in equilibrium with peraluminous minerals (Acosta-Vigil et al., 2003), and 2–4 wt% normative corundum. On a normative Q-Ab-Or diagram (Fig. 6), glassy inclusions plot close to the Q-Or side, at Q/(Q + Or) in the range diagram (Fig. 6), glassy inclusions plot close to

The occurrence of glassy inclusions is another striking aspect of our research, because melt is normally expected to crystallize completely in regional, slowly cooled migmatitic terrains. Since geochemical data indicate that, after anatexis, the rocks of the Kerala Khondalite Belt took at least 60 Ma to cool from 850 °C to ~350 °C (Cenki et al., 2004), the delay in nucleation by supercooling of melt inclusions (Donaldson, 1979) should be minimal and negligible for the present discussion, and we can rule out very rapid cooling as the possible cause of glass preservation. Another cause could be the chemical composition of glass, for example a high viscosity or low volatile content slowing down diffusion of elements toward growing nuclei. As noted above, however, glassy inclusions coexist with totally crystallized ones in the same clusters (see Fig. DR3A), and it is unlikely that chemical inhomogeneities in granite melts can occur at length scales <100 μm. One measurable parameter differing among glassy and nanogranite inclusions is size: The histograms of the diameter of inclusions reported in Figure 3 clearly show that glassy and nanogranite inclusions have different size distributions, with mean values at 8.2 and 12.9 μm, respectively. Although there is a significant overlap, the two populations are statistically different, and we propose that this difference in size was influential in the crystallization of melt droplets, so that (most of) the smaller inclusions remained amorphous (glassy) because of inhibited nucleation. The control of pore size on nucleation is a well-known phenomenon in aqueous solutions (Putnis et al., 1995), where the finer pores maintain a higher threshold supersaturation. However, the critical physicochemical parameters of this process are still obscure, especially in silicate melts from which it is also reported (Holness and Sawyer, 2008); aspects such as diffusion gradients in the confined fluid and/or the critical dimension of crystal nuclei are qualitatively important (Putnis et al., 1995; Muncill and Lasaga, 1988). In this respect, it is interesting to note that (1) reported critical nucleus dimensions are 100–500 nm for olivine, and (2) plagioclase has much slower nucleation kinetics possibly due to a considerably larger critical nucleus size (Donaldson, 1979; Muncill and Lasaga, 1988). Therefore, crystallization was probably inhibited because the small inclusion volume did not allow the establishment of concentration gradients high enough to form the “large” critical nuclei of feldspar.

CAUSES OF GLASS PRESERVATION

The occurrence of glassy inclusions is another striking aspect of our research, because melt is normally expected to crystallize completely in regional, slowly cooled migmatitic terrains. Since geochemical data indicate that, after anatexis, the rocks of the Kerala Khondalite Belt took at least 60 Ma to cool from 850 °C to ~350 °C (Cenki et al., 2004), the delay in nucleation by supercooling of melt inclusions (Donaldson, 1979) should be minimal and negligible for the present discussion, and we can rule out very rapid cooling as the possible cause of glass preservation. Another cause could be the chemical composition of glass, for example a high viscosity or low volatile content slowing down diffusion of elements toward growing nuclei. As noted above, however, glassy inclusions coexist with totally crystallized ones in the same clusters (see Fig. DR3A), and it is unlikely that chemical inhomogeneities in granite melts can occur at length scales <100 μm. One measurable parameter differing among glassy and nanogranite inclusions is size: The histograms of the diameter of inclusions reported in Figure 3 clearly show that glassy and nanogranite inclusions have different size distributions, with mean values at 8.2 and 12.9 μm, respectively. Although there is a significant overlap, the two populations are statistically different, and we propose that this difference in size was influential in the crystallization of melt droplets, so that (most of) the smaller inclusions remained amorphous (glassy) because of inhibited nucleation. The control of pore size on nucleation is a well-known phenomenon in aqueous solutions (Putnis et al., 1995), where the finer pores maintain a higher threshold supersaturation. However, the critical physicochemical parameters of this process are still obscure, especially in silicate melts from which it is also reported (Holness and Sawyer, 2008); aspects such as diffusion gradients in the confined fluid and/or the critical dimension of crystal nuclei are qualitatively important (Putnis et al., 1995; Muncill and Lasaga, 1988). In this respect, it is interesting to note that (1) reported critical nucleus dimensions are 100–500 nm for olivine, and (2) plagioclase has much slower nucleation kinetics possibly due to a considerably larger critical nucleus size (Donaldson, 1979; Muncill and Lasaga, 1988). Therefore, crystallization was probably inhibited because the small inclusion volume did not allow the establishment of concentration gradients high enough to form the “large” critical nuclei of feldspar.

CONCLUSIONS

Our results support the view that the studied inclusions are indeed witness to the melt that was trapped by peritectic garnet growing during the dehydration melting of biotite. Being trapped during a prograde event of magma formation, these granitic inclusions differ from
other occurrences such as those found in zircon from granitoid rocks (e.g., Thomas et al., 2002; Hopkins et al., 2008) that formed during magma crystallization upon cooling. Based on this perspective, and depending on P-T-X conditions, other peritectic phases such as orthopyroxene, spinel, cordierite, and ilmenite may be potential hosts to melt inclusions and should be carefully (re)investigated. Melt inclusions, so far studied in volcanic and shallow plutonic rocks (Sawyer, 2008) but found here for the first time in garnet from migmatites and granulites, widen the horizons in crustal petrology because, as we have shown, reliable petrological and geochemical information on anatexis can be gained from nanometer- to micrometer-scale objects. As an example, along with demonstrating that garnet growth was supersedulous, our results highlight the potential pitfalls of assuming anatectic melt as having a minimum melt composition, or of considering almost binary normative Q-Or compositions as “fractionated” (see for example Sawyer, 2008).

The possibility of entrapment of melt inclusions during anatexis depends on several parameters such as the amount of melt in the rock, the stress field acting on it, the growth rate of peritectic minerals, and the presence of impurities. The preservation of inclusions will essentially depend on the extent of chemical interaction with the host mineral, and on the mechanical behavior of the host during the subsequent history, as microfracturing would allow access of fluids and alteration of the primary melt composition or nanogranite assemblage. Therefore, melt inclusions should be targeted in strong fluid and alteration of the primary melt com-

position or nanogranite assemblage. Therefore, melt inclusions should be targeted in strong fluids and alteration of the primary melt composition or nanogranite assemblage. Therefore, melt inclusions should be targeted in strong fluids and alteration of the primary melt composition or nanogranite assemblage. Therefore, melt inclusions should be targeted in strong fluids and alteration of the primary melt composition or nanogranite assemblage. Therefore, melt inclusions should be targeted in strong fluids and alteration of the primary melt composition or nanogranite assemblage. Therefore, melt inclusions should be targeted in strong...