Crustal segmentation, composite looping pressure-temperature paths, and magma-enhanced metamorphic field gradients: Upper Granite Gorge, Grand Canyon, USA

Gregory Dumond†
Kevin H. Mahan‡
Michael L. Williams

Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, USA

Karl E. Karlstrom
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA

ABSTRACT

The Paleoproterozoic orogen of the southwestern United States is characterized by a segmented, block-type architecture consisting of tens of kilometer-scale blocks of relatively homogeneous deformation and metamorphism bounded by subvertical high-strain zones. New field, microstructural, and petrologic observations combined with previous published structural and geochronological data are most consistent with a tectonometamorphic history characterized by a clockwise, looping pressure-temperature (P-T) path involving: (1) initial deposition of volcanogenic and turbiditic supracrustal rocks at ca. 1.75–1.74 Ga, (2) passage from <12 km (below pressures equivalent to the aluminosilicate triple point) to ~25 km depths (~0.7 GPa) by ca. 1.68 Ga, and (3) decompression back to ~12 km depths (~0.7 GPa) between ca. 1.70 and 1.69 Ga, (4) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga, and (5) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga, and (6) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga, and (7) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga, and (8) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga, and (9) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga, and (10) a protracted period of near-isobaric cooling (~0.3–0.4 GPa) by ca. 1.68 Ga.

The answers to these questions have important implications for our understanding of the evolving strength and behavior of continental crust.

For permission to copy, contact editing@geosociety.org © 2006 Geological Society of America
Metamorphism in middle continental crust, Upper Granite Gorge, Grand Canyon

during orogenesis and the subsequent stabilization and preservation of continental lithosphere.

Field transects of tilted crustal sections or large exposures of exhumed middle to lower continental crust represent important laboratories for understanding the character and evolution of deformation, magmatism, and metamorphism at different crustal levels (e.g., Proterozoic rocks of northern New Mexico: Gamblin, 1986; the Kapuskasing Uplift: Percival and West, 1994; the Fiordland-Westland orogen: Klepeis et al., 2003; the East Athabasca granulite terrane: Mahan and Williams, 2005; Flowers et al., 2006). Establishing comprehensive P-T-t-D (pressure-temperature-time-deformation) paths and quantifying metamorphic thermal and baric gradients are important prerequisites for exploiting these “field laboratories.” The Upper Granite Gorge of the Grand Canyon is a 100% exposed cross section of six crustal blocks along an ~70-km-long transect. The cross section is interpreted to represent the mid-level of 30- to 40-km-thick continental crust at the culmination of the ca. 1.72–1.68 Ga Yavapai orogeny (Ilg et al., 1996), interpreted as a consequence of accretionary tectonism involving juvenile, island-arc terrane assembly of thin (15- to 25-km-thick) crustal fragments (Bowring and Karlstrom, 1990).

This contribution explores the significance of the tectonic blocks, their P-T-t-D evolution, and their high-strain zone boundaries with an emphasis on understanding the character, rheology, and exhumation of orogenic middle continental crust (Figs. 2 and 3). Previous work established the general structural and geochronologic framework for the region (Ilg et al., 1996; Hawkins et al., 1996; Ilg and Karlstrom, 2000). This paper focuses on a suite of samples with semipelitic to pelitic bulk compositions and utilizes detailed microstructural observations, high-resolution electron microprobe X-ray mapping, published petrogenetic grids, and quantitative absolute and relative thermobarometry to construct detailed P-T-D histories for each tectonic block. Data from each of the blocks, along with published geochronological data, demonstrate that a single, composite looping P-T-t-D path can be constructed for the entire Upper Granite Gorge. The results represent a new synthesis of the metamorphic evolution of Precambrian basement in the Grand Canyon. New techniques for reducing uncertainty in thermobarometry are applied to evaluate P-T differences between blocks with maximum precision (i.e., Worley and Powell, 2000). The present-day exposure represents a near-isobaric ~0.7 GPa level (~25 km paleodepths) of continental crust, exhumed to 0.3–0.4 GPa levels as a single, relatively coherent tectonic block by ca. 1.68 Ga.

GEOLOGIC BACKGROUND

The Upper Granite Gorge of the Grand Canyon is divided into six lithotectonic blocks, separated by NE-striking, steeply dipping, high-strain zones (Figs. 2 and 3) (Ilg et al., 1996; Hawkins et al., 1996). From southeast to northwest, these blocks have been named: Mineral Canyon, Clear Creek, Trinity Creek, Topaz Canyon, Tuna Creek, and Walthenber Canyon (Figs. 2 and 3) (Hawkins, 1996). The tectonic features of the Upper Granite Gorge are attributed to an early event of thrusting (D1), isoclinal folding, and penetrative NW-striking fabric development (S1), followed by progressive subhorizontal contraction (D2) and production of a NE-striking, steeply dipping foliation (S2) associated with upright to overturned folds within blocks and subvertical high-strain zones between blocks (Ilg et al., 1996; Ilg and Karlstrom, 2000). Four granite pegmatite dike complexes occur within the six-block transect and locally intrude across some of the high-strain zone boundaries. From southeast to northwest, these are the Cottonwood, Cremation, Sapphire, and Garnet pegmatite complexes (Fig. 3) (Ilg et al., 1996). Locations in the Grand Canyon mentioned herein are designated by the number of river miles (RM) downstream of Lee’s Ferry, Arizona.
Figure 2. Simplified geologic map of Upper Granite Gorge with foliation trajectories (adapted from Ilg et al., 1996). Insets A through F illustrate key microstructural observations from field-oriented hand samples collected in each lithotectonic block discussed in the text. Inset A is a kinematic view of a thin section in plane-polarized light parallel to the mineral lineation and perpendicular to the foliation. Insets B and D–F are from map view thin sections in plane-polarized light oriented with respect to north on the map in the figure. Inset C is from a map view slab cut from a hand sample. Mineral abbreviations are after Kretz (1983).
Block-Bounding High-Strain Zones

Five high-strain zones characterized by intense subvertical, NE-striking, \(S_2\)-parallel foliation define boundaries between the six lithotectonic blocks. The Vishnu shear zone (RM 81; Fig. 3) marks the boundary between the Mineral Canyon and Clear Creek blocks. A penetrative NE-striking foliation in the host schist is defined by sigmoidal pods of sillimanite and muscovite after sillimanite. The muscovite is texturally late with respect to the peak assemblage but synkinematic with respect to deformation. New field work indicates sinistral sense of shear along a moderately SW-plunging lineation in these rocks adjacent to the eastern (up-river) margin of the tens-of-meters-thick Grapevine Camp pluton (1737 ± 1 Ma; Hawkins et al., 1996) (Fig. 2A). Sinistral, NW-side-down fabrics in the shear zone are cut by granitic dikes similar to ones dated by Hawkins et al. (1996) in the Mineral Canyon block at 1.685–1.68 Ga. The boundary between the Clear Creek and Trinity Creek blocks is defined by the Bright Angel shear zone (RM 88) (Figs. 2 and 3). The ~2-km-wide zone of penetrative migmatitic foliation experienced a component of dextral high-temperature movement inferred from microstructures and a macroscopic transposition of NW-striking \(S_1\) fabrics (Ilg et al., 1996). The ~500-m-wide 96-Mile shear zone separates the Trinity Creek block from the Topaz Canyon block. The locally ultramylonitic zone records greenschist-grade, dextral (Karlstrom et al., 2003), and west-side-down movement (Dumond et al., 2004) (Fig. 3). The Topaz Canyon block is juxtaposed adjacent to the Tuna Creek block across the ~2-km-wide Crystal shear zone (RM 98). Apparent dextral, west-side-up movement is inferred from asymmetric folds and a map-scale deflection of \(S_1\) foliation trajectories. Movement on the Crystal shear zone ceased by ca. 1.68 Ga based on the presence of crosscutting pegmatite dikes (Fig. 3) similar to those dated by Hawkins et al. (1996). Finally, the Bass shear zone (RM 108) separates the Tuna Creek block from the Walthenberg Canyon block. The ~0.5-km-wide shear zone records dextral, west-side-up motion in metasedimentary rocks adjacent to the northwestern margin of the ca. 1.717 Ga Ruby granodiorite pluton (Ilg et al., 1996; Hawkins et al., 1996).

Geochronologic Constraints on Timing of Magmatism, Deformation, and Metamorphism

Volcanogenic supracrustal rocks of the Upper Granite Gorge yield dates between 1750 ± 2 and 1741 ± 1 Ma (Hawkins et al., 1996). These rocks include the interlayered metavolcanic...
Rama and Brahma schists and the metasedimentary (turbiditic) Vishnu schist. The age of D_1 is constrained by foliated arc-related plutons and crosscutting dikes to between 1730 ± 3 and 1698 ± 1 Ma (Hawkins et al., 1996). D_2, and the peak of metamorphism are constrained by dates on foliated granite plutons and crosscutting pegmatite dikes to between 1713 ± 2 and 1685 ± 1 Ma (Hawkins et al., 1996). Isotope dilution–thermal ionization mass spectrometry (ID-TIMS) U-Pb monazite and xenotime dates from leucosomes in migmatites constrain the timing of lower granulite-grade metamorphism in the Mineral Canyon block to between ca. 1702 and 1690 Ma (Fig. 3) (Hawkins and Bowring, 1999). Electron microprobe monazite ages from leucosomes near the Elves Chasm orthogneiss in the Walthenberg Canyon block (Fig. 3) support the age of peak metamorphism between ca. 1700 and 1680 Ma (Williams and Jercinovic, 2002). Undefomed granitic dikes dated between 1685 ± 1 and 1680 ± 1 Ma crosscut leucosomes in migmatites that define S_1 in the Mineral Canyon block (Fig. 3) (Hawkins et al., 1996). All geochronologic data are consistent with burial and peak metamorphism of middle continental crust during a protracted 20–30 m.y. period (ca. 1.71–1.68 Ga) of subhorizontal shortening and granitic plutonism.

METAMORPHIC PETROLOGY AND MICROSTRUCTURE

Utilizing this tectonic and geochronologic framework, we present petrologic and microstructural data pertaining to the tectonometamorphic evolution of the Upper Granite Gorge and place each block in the context of a $P-T$-T-D path. Of the over 700 samples available, 24 oriented samples of pelitic to semipelitic bulk composition that span the length of the transect were chosen for detailed analysis (Figs. 3 and 4; Table DR1). High-resolution compositional X-ray maps of garnet and plagioclase were collected from all samples to assess major-element zoning and to locate the best regions from which to collect quantitative data (Fig. 4). Biotite compositions were collected both in the matrix and adjacent to garnet in order to evaluate the potential effects of retrograde net transfer reactions and to constrain the most appropriate choice for $P-T$ calculations (i.e., Kohn and Spear, 2000). Representative compositions used for thermobarometry and analytical conditions are presented in Table DR1 (see footnote 1).

All microprobe work was conducted using the Cameca SX-50 facility at the University of Massachusetts–Amherst. All pressures and temperatures (reported with 2σ uncertainties) were calculated using THERMACALC 3.21 (average $P-T$ approach of Powell and Holland, 1994; http://www.earthsci.unimelb.edu.au/tgp/thermacalc/) and the internally consistent thermodynamic data set of Holland and Powell (1998) with subsequent revisions. Activity-composition relationships were modeled at 0.6 GPa and 600 °C for all samples using the April 2000 version of AX (T. Holland, http://www.esc.cam.ac.uk/astaff/holland/ax.html). Possible thermal and baric gradients were evaluated using ΔPT “relative” thermobarometry software developed by Worley and Powell (2000). Mineral abbreviations are after Kretz (1983).

General Observations Regarding Medium- and High-Temperature Blocks

In general, field and petrographic observations, coupled with high-resolution X-ray observations, demonstrate that the blocks (or parts of blocks) can be divided into medium- and high-T variet- ies. All blocks display field and microstructural evidence for syn-D_2 growth of garnet in association with $\text{Bi} + \text{Pl} + \text{Qtz} \pm \text{Ms}$ (see also Ilg and Karlstrom, 2000). After summarizing general observations that pertain to medium- and high-T blocks along the transect, data unique to each tectonic block are presented in separate sections.

**Medium-T, i.e., upper greenschist to lower amphibolite grade, regions along the transect include the up-river portion of the Clear Creek block (RM 81–85), the Topaz Canyon block (RM 96–98), and up-river portions of the Tuna Creek (RM 98–100) and Walthenberg Canyon blocks (RM 108–110). Typical peak mineral assemblages include $\text{Grt} + \text{Bi} + \text{Ms} + \text{Pl} + \text{Qtz} \pm \text{Ms}$. Accessory phases include $\text{Mnz} + \text{Ap} \pm \text{Xt} \pm \text{Tur} \pm \text{Ilm} \pm \text{Zrn}$. Garnet porphyroblasts (up to 1 cm in diameter) occur throughout these sections of the Upper Granite Gorge and are commonly resorbed and inclusion-poor (Fig. 2A). Most crystals exhibit flat zoning profiles across garnet cores with abruptly decreasing Mg-ratio and increasing X_{Ca}. Garnet porphyroblasts near the rims, which are typical of retrograde zoning (e.g., Spear, 1993; Fig. 4). Anhedral plagioclase is reversely zoned in many samples (Fig. 4), and the penetrative foliation is commonly defined by biotite, laths of plagioclase, mats of fibrolite, prismatic sillimanite, and locally cordierite.

Except where noted, metamorphic conditions in high-T samples were calculated using core compositions for garnet and plagioclase with matrix biotite and/or muscovite for the following reasons: (1) Cores of garnet crystals are least affected by high-T diffusion of Fe and Mg or resorption of garnet during cooling and/or decompression (e.g., Kohn, 2003). These regions are typically the highest in Mg and lowest in Fe and Mn as observed in compositional X-ray maps. (2) Thermodynamic modeling in the system MnNCFeFMASH for the assemblage $\text{Grt} + \text{Bi} + \text{Ms} + \text{Chl} + \text{Pl} + \text{Qtz}$ demonstrates that in the absence of other Ca-bearing phases, growth of garnet necessarily leads to produc- tion of a more sodic plagioclase (Spear et al., 1991). The presence of distinct calcic rims on plagioclase, particularly near garnet, and the locally resorbed appearance of garnet in samples throughout the high-T blocks are consistent with breakdown of garnet and growth of anor- thite plagioclase during decompression (except where noted), and, hence, the sodic plagioclase
Metamorphism in middle continental crust, Upper Granite Gorge, Grand Canyon

Figure 4. Summary of garnet (Grt) and plagioclase (Pl) zoning profiles, average pressure-temperature (P-T) estimates calculated from THERMOCALC 3.21 (Powell and Holland, 1994) with 2σ uncertainties, and observed/inferred mineral paragenesis for each lithotectonic block in the Upper Granite Gorge. Mineral abbreviations are after Kretz (1983).
cores best approximate the compositions that may have been in equilibrium with garnet near the metamorphic peak.

Mineral Canyon Block (RM 77–81)

The typical mineral assemblage in pelitic rocks of the Mineral Canyon block is Grt + Bt + Sill + Kfs + Pl + Qtz ± Sp. This assemblage is characteristic of upper amphibolite–granulite-facies conditions. Migmatitic textures are common with centimeter- to decimeter-scale lenses of leucosome distributed in paleosomalous biotite- and sillimanite-rich schist (Ilg et al., 1996; Hawkins and Bowring, 1999).

Garnet porphyroblasts are commonly embayed and surrounded by plagioclase and/or K-feldspar, indicating significant retrograde garnet resorption (Figs. 5A and 5B; see Fig. DR1 for color version [see footnote 1]). Garnet compositional zoning varies depending on the size of the porphyroblasts. Although Mg-zoning is essentially flat for all garnet crystals, larger porphyroblasts (>5 mm) commonly preserve compositional discontinuity near the margins of garnet porphyroblasts. These rims are interpreted as a second generation of garnet (Grt 2 in Fig. 5A). They occur semicontinuously around embayed Grt 1 margins, including the margins of small isolated grains inferred to be relics of the original Grt 1 porphyroblasts (e.g., Fig. 5A, upper right). These observations suggest that growth of Grt 2 occurred after significant resorption of Grt 1 had already occurred. The most abundant matrix plagioclase, commonly localized around garnet (Fig. 4; Pl 1 in Fig. 5A), is of intermediate anorthite content, and early sodic cores are locally present. Texturally latest and most calcic plagioclase (Pl 2 in Fig. 5A) is entirely restricted to the garnet porphyroblasts, interpreted as postpeak and synclastic plagioclase. These plagioclase porphyroblasts are interpreted as postpeak and synclastic plagioclase (Pl 2 in Fig. 5A) is entirely restricted to the garnet porphyroblasts, interpreted as postpeak and synclastic plagioclase. These plagioclase porphyroblasts are interpreted as postpeak and synclastic plagioclase.
growth, resorption, and regrowth in association with staurolite is supported by observations of relatively high-Y annuli in garnet coincident with the edge of inclusion-rich garnet cores. Resorption of early garnet left a zone in the matrix enriched in Y that was subsequently incorporated into garnet rims during renewed growth (i.e., Pyle and Spear, 1999).

Biotite occurs as a matrix phase aligned in S2 and as millimeter-scale porphyroblasts that have curvilinear inclusion trail fabrics similar to garnet and staurolite. Muscovite and plagioclase are abundant matrix phases with compositions that do not vary significantly (Fig. 4).

Andalusite porphyroblasts up to 10 cm in diameter occur in outcrops in the vicinity of Clear Creek Canyon at RM 84. The porphyroblasts completely overgrow the dominant matrix S2 fabric, suggesting post-D2 growth (Fig. 2B). However, elongate andalusite porphyroblasts are locally boudinaged and pulled apart, with internal foliation that necks down into the matrix foliation, consistent with growth of some andalusite late during D2 (Fig. 6B).

The inclusion trail fabric is primarily defined by ilmenite with rare muscovite, biotite, and plagioclase. Garnet inclusions in the andalusite porphyroblasts contain inclusion-rich cores defining S1 and high-Ca inclusion-poor rims, similar to matrix garnet (Fig. 2B). Fine-grained mats of randomly oriented fibrolite locally occur along grain boundaries between the host andalusite and its inclusions, as well as within late shear bands. The presence and orientation of these mats suggest a second period of sillimanite growth after andalusite.

Phase Equilibria and P-T Path

Mineral assemblages indicate that the upriver portion of the Clear Creek block experienced lower peak temperatures than the Mineral Canyon block. However, we infer a similar clockwise P-T path (Fig. 6C). Based on the textural evidence, growth of garnet cores was followed by staurolite and porphyroblastic biotite growth. This likely occurred via a reaction such as (i.e., the NKFHAMASH system modeled by Spear et al., 1999):

\[\text{Grt} + \text{Chl} \pm \text{Ms} \rightarrow \text{St} + \text{Bt}. \] (3)

This reaction implies that garnet growth ceased and was possibly consumed with increasing temperature. A period of garnet resorption is indicated by the occurrence of high-Y annuli outside the inclusion-poor garnet cores. Staurolite porphyroblasts show textural evidence for extensive resorption, while inclusion-poor garnet overgrowths imply a renewed period of garnet growth. Renewed garnet growth and staurolite consumption may have occurred via the reaction:

\[\text{St} + \text{Bt} \rightarrow \text{Grt} + \text{Ms} + \text{H}_2\text{O}. \] (4)

The significantly higher Ca concentrations in the garnet overgrowths (Fig. 6A) are interpreted to represent increasing pressure during this part of the path, based on contours of grossular isopleths in the MnNCKFMASH system for similar bulk compositions (Spear et al., 1991).

Thermobarometric calculations are remarkably consistent among four samples studied...
The Trinity Creek block is characterized by upper amphibolite– to lower granulite–grade assemblages (Grt + Sil + Pl + Bt + Qtz ± Crd ± Kfs) with local presence of sillimanite pseudomorphs after early andalusite, in addition to texturally late muscovite and staurolite. The area contains abundant leucocratic quartz segregations, pegmatite pods, and granitic dikes. Millimeter- to centimeter-scale elongate lenses of leucosome define and are locally wrapped by the main S$_2$ matrix foliation in some portions of the block. The lenses consist of randomly oriented quartz, K-feldspar, plagioclase, and biotite. Late muscovite porphyroblasts are commonly localized along the margins of the lenses. Poikiloblastic K-feldspar occurs locally in the leucosome and as a matrix phase.

Garnet porphyroblasts (<0.5 mm to 1.25 cm) are typically inclusion-free (Fig. 7A), but in some samples (e.g., sample B91–2), larger garnet porphyroblasts have texturally distinct cores that contain irregular inclusions of quartz. From sample to sample, garnet morphology ranges from deeply embayed to euhedral, demonstrating variable degrees of resorption. Mg-ratio is highest in the core and decreases dramatically at the margins. Mn zoning is generally flat for most garnet porphyroblasts, whereas some display a gradual decrease from core to rim. Grossular content is relatively low in the core and commonly increases toward the rim (Fig. 4).

In one cordierite-bearing sample (B91–2), garnet porphyroblasts contain prominent high-Ca annuli that occur just outside of inclusion-rich cores (Fig. 4). Cordierite occurs as porphyroblasts in textural equilibrium with garnet and matrix biotite (Fig. 7A). Muscovite is not present in this sample, in contrast to the more typical cordierite-absent samples throughout the block. Sillimanite occurs as inclusions in cordierite and as a fabric-defining matrix phase. Fine (<<300 μm) euhedral staurolite and biotite grains occur along the margins of some cordierite porphyroblasts, and they are interpreted as a postkinematic retrograde assemblage.

Sillimanite occurs as elongate prismatic laths defining the dominant S$_2$ foliation in association with biotite in most samples. Fibrolitic mats of sillimanite occur as pseudomorphs of early millimeter-scale andalusite porphyroblasts in some samples (Fig. 7B). Sillimanite also occupies strain shadows adjacent to garnet and rare early muscovite porphyroblasts. Field and petrographic observations are consistent with a single episode of early andalusite growth.
growth in the Trinity Creek block. Pseudomorphs of andalusite replaced by sillimanite occur in 94-Mile Canyon (Fig. 7B). Beards of sillimanite and interstitial quartz occur in strain shadows of the pseudomorphs. South of the river at RM 95.5 in Travertine Canyon (sample K03–95.5–3 in Fig. 3), large (~5 cm in diameter) poikiloblastic andalusite porphyroblasts overgrow a NW-striking, steeply dipping inclusion trail (S1). The internal fabric sweeps into the matrix foliation at the margins of the andalusite porphyroblasts, suggesting early synkinematic growth with respect to S2 (Fig. 2C).

Phase Equilibria and P-T Path

Textural evidence for early andalusite indicates an early history of relatively low-pressure–high-temperature metamorphism (Fig. 7B). However, the relatively high-grade peak assemblage and leucosome textures in rocks from Trinity Creek block suggest that conditions of anatexis were attained. The absence of muscovite and abundance of sillimanite in the peak assemblage supports the passage of reaction 1 (in the NKFMASh system modeled by Spear et al., 1999) (Fig. 7C). High-Ca annuli in some samples, such as B91–2, may be explained by renewed garnet growth after passage of reaction 1 in the divariant field between reactions 1 and:

\[\text{Bt + Sil + Qtz} \rightarrow \text{Grt + Crd \pm Kfs + L}. \]

Because albite is consumed in reaction 1, renewed garnet growth must occur with higher grossular content in order to maintain equilibrium with new higher-Ca plagioclase (Spear et al., 1999) (Fig. 4). The local occurrence of Grt + Crd replacing sillimanite indicates that reaction 5 was reached in rocks of appropriate bulk composition (Fig. 7C).

Peak conditions were estimated using Grt + Crd + Sil + Pl + Bt + Qtz and yield 722 ± 83 °C and 0.59 ± 0.08 GPa (sample B91–2: Fig. 4). Unlike rocks in the Mineral Canyon block, most rocks in the Trinity Creek block contain abundant texturally late muscovite. This implies either: (1) the rocks cooled above IP1, so that crystallization of the remaining melt across reaction 1 provided the necessary H2O for muscovite production (e.g., Spear et al., 1999), or (2) the system was not closed, and water was added at some later time. Textural evidence indicating syn- to late-D2 muscovite growth suggests that muscovite was reintroduced shortly after peak metamorphism; this is most consistent with cooling above IP1. However, the difference in pressure between the Mineral Canyon and Trinity Creek blocks at this stage in the cooling history need not have been large (see path in Fig. 7C).

Topaz Canyon Block (RM 96–98)

The Topaz Canyon block experienced upper greenschist–to lower amphibolite–grade peak metamorphic conditions. No pegmatite dikes are exposed in the block, but two weakly foliated pre-D2 granodiorite plutons are present: the 96-Mile pluton at RM 96.5 and the Crystal pluton at RM 97.5 (Hawkins, 1996). The predominant rock type is Grt + Bt + Ms + Pl + Qtz ± St ± Chl schist with a penetrative E- to NE-striking, steeply dipping foliation (S2). Locally, the schist is associated with psammitic layering and graded bedding (S3), which are interpreted as components of relict turbidite sequences (Ilg et al., 1996).

Figure 7. Summary of data and pressure-temperature (P-T) path for Trinity Creek block. (A–B) Plane-polarized light photomicrographs. Section in A is in plan view; section in B is oriented parallel to foliation and parallel to lineation. (C) Partial NKFMASh petrogenetic grid after Spear et al. (1999) with location of reactions 1, 2, and 5 discussed in text. Mineral abbreviations are after Kretz (1983).
Garnet porphyroblasts observed in oriented, map-view thin-sections contain uniformly NW-striking straight to sigmoidal inclusion trails that occur at a high-angle to the S2 matrix foliation (Fig. 2D; Ilg and Karlstrom, 2000). At garnet rims, the internal fabric sweeps abruptly into the matrix fabric, which is consistent with synkinematic growth of garnet during D2 (Fig. 2D). With few exceptions, most samples exhibit increasing Mg-ratio from core to rim, whereas XMn and XCa decrease from core to rim, typical of prograde zoning (Kohn, 2003; Figs. 4 and 8A–8C; see Fig. DR3 for color version [see footnote 1]).

Muscovite and biotite define a penetrative S2 foliation. Locally, poikiloblastic biotite defines the S1 cleavage and contains a subhorizontal inclusion trail, observed in fold-profile sections, which is inferred to represent the trace of S1 foliation (Fig. 8D).

Plagioclase in the matrix is normally zoned with lath-shaped calcic cores and sodic overgrowths (Fig. 4). In sections cut perpendicular to the hinges of tight ENE-trending and moderately W-plunging F2 folds, sodic rims characteristically occur as elongate overgrowths aligned with the S2 cleavage (Figs. 8E–8F). The alignment is interpreted to reflect syn-S2 growth of albitic plagioclase.

Phase Equilibria and P-T Path

Peak metamorphic conditions were calculated with the assemblage Grt + Bt + Ms + Pl + Qtz, utilizing garnet rims, matrix biotite and muscovite, and plagioclase rims (all inferred to represent syn-D2 conditions based on our microstructural observations, e.g., Figs. 8A–8D). Calculated temperatures and pressures from four samples in the block range from 533 to 552 ± 115 °C and 0.69–0.74 ± 0.16 GPa (Figs. 4 and 8G).

Some samples contain rare staurolite, implying that peak conditions locally approached ~550–600 °C (i.e., the staurolite-in isograd as defined by Spear and Cheney [1989] in the KFMAH system), within the uncertainty of calculated peak temperatures (Fig. 8g).

Samples from the Topaz Canyon block arguably contain the best-preserved examples of prograde syn-D2 garnet in the entire transect, and thus provide the best approximation for peak pressure. Peak temperatures (~550 °C) were not high enough to reset primary titanite dated at 1714 ± 1 Ma in the 96-Mile pluton (Hawkins, 1996), in contrast to ca. 1.68 Ga titanite in the high-T Mineral Canyon block (Hawkins and Bowring, 1999) (closure temperature of ~550–660 °C; Cherniak, 1993). Together with the apparent lack of significant retrograde re-equilibration, these observations suggest that rocks from the Topaz Canyon block cooled relatively quickly after attaining peak pressure (e.g., P-T path for sample W96–5 in Fig. 8G).

Tuna Creek Block (RM 98–108)

The majority of the upper amphibolite–grade Tuna Creek block consists of the Ruby granodiorite pluton (RM 102–107.5) (1716.6 ± 0.5 Ma) and the Sapphire pegmatite complex (RM 99–102) (Hawkins et al., 1996). Two distinct assemblages occur in pelitic to semipelitic schists between the Crystal shear zone at RM 98 and the southeastern margin of the pluton at mile 102. Nearest to the Crystal shear zone, rocks consist of Grt + St + Bt + Ms + Pl + Qtz schist. Pelitic schists that host the Sapphire pegmatite complex at RM 102 contain Grt + Sil + Crd + Bt + Pl + Qtz.
Garnet porphyroblast textures and zoning in two-mica schists near the Crystal shear zone are similar to those observed in Topaz Canyon (e.g., sample W7–98.3: Figs. 2E, 4, and 9A; see Fig. DR4 for color version [see footnote 1]). Locally, however, garnet rims show marked increase in X_{Mn} at the rim (50–100 µm wide) (Fig. 4), which is typical of resorbed garnet zoning in the high-T blocks.

Plagioclase exhibits pronounced reverse zoning with lath-shaped sodic cores and distinct rim overgrowths of more anorthitic plagioclase (Fig. 9B). The schists contain abundant staurolite (texturally after garnet) with straight inclusion trails of quartz and plagioclase aligned with S_2 (Figs. 2E and 9A). Staurolite locally exhibits embayed margins and no compositional zoning (Table DR1, see footnote 1).

Cordierite-biotite schists further down-river (RM 102) contain subhedral to anhedral garnet, up to 5 mm in diameter, with abundant inclusions of quartz, apatite, biotite, oxides, monazite, and abundant sigmoidal mats of fibrolite (Figs. 9C–9D). Garnet crystals appear to be heavily resorbed, as indicated by relatively wide and irregularly shaped high-X_{Mn} rims that mimic the geometry of low-X_{Mg} rims (Figs. 4 and 9C). Most garnet crystals are homogeneous with respect to grossular content except for thin (up to 100 µm), high-Ca rims (Fig. 9E). These rims spatially coincide with a pronounced increase in Y. The high-Ca rims occur around most grains, including grains that texturally appear to have been part of once-larger garnet porphyroblasts, suggesting that they represent a second generation of garnet growth after initial garnet breakdown and resorption. These textures and zoning patterns are similar to those observed in the second generation of garnet in migmatitic samples of the Mineral Canyon block (RM 79, Fig. 5).

Plagioclase is normally zoned and defines the foliation along with abundant elongate

Figure 9. Summary of data and pressure-temperature (P-T) path for Tuna Creek block. (A, D) Plane-polarized light photomicrographs of sections cut perpendicular to foliation and parallel to lineation. (B) X-ray map of Ca in matrix plagioclase around garnet outlined in A. (C) Mg X-ray map keyed to part D. (E) Ca X-ray map of Grt in D with sketch depicting a low-Grs Grt core and slightly higher-Grs Grt rim separated by a sharp boundary. (F) Partial NKFMASH petrogenetic grid after Spear et al. (1999) with location of reactions 1, 3, 5, and 6 discussed in text. See Figure DR4 for color version of figure (see text footnote 1). Mineral abbreviations are after Kretz (1983).
cordierite crystals in schists that host the Sapphirine pegmatite complex (Figs. 4 and 9C–9D; sample K4–102.0–1). Locally, cordierite makes up as much as 60% of the mode. The cores of many cordierite grains contain abundant inclusions of prismatic sillimanite and mats of fibrolite. Rims are typically altered to pinnite. Sillimanite also occurs in the matrix as prismatic laths and needles that define the foliation along with biotite. Samples near and within the pegmatite complex contain abundant leucosome (Grt + Pl + Qtz + Crd + Bt) textures mantled by Bt-rich selvages akin to paleosome, suggesting that some partial melting occurred. Garnet in leucosome is locally replaced by cordierite and biotite (Fig. 9C). K-feldspar and muscovite are absent from these samples.

Phase Equilibria and P-T Path

Samples W7–98.3 and K4–102.0–1 represent dissimilar bulk compositions, but are interpreted to preserve different parts of a similar P-T path for the Tuna Creek block as a whole (Fig. 9F). The presence of distinct calcic rims on plagioclase, particularly near garnet, and the locally resorbed appearance of garnet in W7–98.3 are consistent with breakdown of garnet and growth of anorthitic rims on plagioclase during decompression (Fig. 9A). Quantitative thermobarometry using Grt + Bt + Ms + Pl + Qtz equilibria and highest Mg-ratio rim compositions in garnet and core plagioclase compositions in sample W7–98.3 yield peak conditions of 624 ± 56 °C and 0.36 ± 0.08 GPa (Fig. 4).

Reaction textures in sample K4–102.0–1 can be interpreted using the same grid for anatetic pelites utilized for the Mineral Canyon and Trinity Creek blocks (i.e., Spear et al., 1999; Fig. 9F). The presence of abundant inclusions of biotite and mats of sillimanite in garnet hosted by matrix cordierite support the passage of reaction 5. In the presence of a partial melt, the following reaction may account for the observation of garnet replaced by cordierite and biotite in the leucosomes:

\[\text{Grt} + \text{Kfs} + \text{L} \rightarrow \text{Crd} + \text{Bt}. \]

(6)

The lack of matrix K-feldspar implies that these rocks were heated at pressures below IP1, whereas the absence of retrograde muscovite implies the rocks cooled below IP1 (P < 0.38 GPa; Fig. 9F) (Spear et al., 1999). Alternatively, removal of melt results in a K-poor bulk composition; this explanation accounts for the K-feldspar-absent, restitic bulk composition of K4–102.0–1 (e.g., see also path 4 of Spear et al., 1999). P-T conditions calculated utilizing Grt + Sil + Crd + Bt + Pl + Qtz equilibria with garnet core, plagioclase rim, and matrix biotite compositions yield peak conditions of 0.53 ± 0.2 GPa and 769 ± 188 °C. As described earlier, garnet in K4–102.0–1 exhibits distinct high-Ca, high-Y rims attributed to a second phase of garnet growth (Fig. 9E). Pairing garnet and plagioclase rim compositions yields 590 ± 73 °C and 0.36 ± 0.08 GPa (Fig. 4).

Taken together, the two-mica schists and Crd + Bt schists provide evidence for a clockwise P-T path to ~0.7 GPa followed by decompression to ~0.3–0.4 GPa (Fig. 9F). Replacement of sillimanite and garnet by cordierite and the passage of reactions 5 and 6 imply decompression (i.e., Hollister, 1982; Spear et al., 1999). The second phase of garnet growth followed by resorption observed in K4–102.0–1 is attributed to reheating below IP1 (Figs. 9E and 9F).

Walthenberg Canyon Block (RM 108–119)

The Walthenberg Canyon block hosts the Elves Chasm orthogneiss (1840 ± 1 Ma) and the Garnet pegmatite complex (1697 ± 1 Ma) (Hawkins et al., 1996). An apparent metamorphic field gradient exists near the contact with the orthogneiss where Grt + Bt + Ms schists (e.g., sample W108–1, Fig. 2F, and sample G03–108–1, Fig. 4) grade into coarse migmaitic (RM 115) with centimeter-scale garnet porphyroblasts mantled by tails of leucosome that contain K-feldspar, plagioclase, quartz, and biotite (sample P115–2 in Fig. 3; Williams and Jercinovic, 2002). Kyanite replaced by sillimanite occurs in an orthoamphibole-rich layer at RM 112 (Fig. 10A; see Fig. DR5 for color version [see footnote 1]), and is interpreted as an Al-rich weathering horizon (with ca. 1.75 Ga detrital zircon) that developed on Elves Chasm basement (Karlstrom et al., 2003). Metarhyolite layers east of and above the contact with Elves Chasm gneiss also contain kyanite replaced by sillimanite. Monazite dates from leucosomes at RM 115 range from ca. 1.7 to 1.68 Ga, suggesting that the field gradient is only “apparent” and reflects Yavapai-age peak metamorphism, rather than a contact aureole near the older Elves Chasm pluton (Williams and Jercinovic, 2002).

Garnet in Bt + Ms schists near the Bass shear zone (RM 108) and Bt + Ms + Ky/Sil schists (RM 112) that host the pegmatite complex contain inclusion trail relationships similar to those observed in the Topaz Canyon and Clear Creek blocks and are interpreted to reflect syn-S2 growth of garnet (Figs. 2F and 10B). Cores of garnet locally display oscillatory zoning in grossular content with distinct high-Ca rims (G03–108–1, Fig. 4).

Plagioclase is zoned in all samples, with lath-shaped albite cores that are aligned with S2 and discontinuous anorhetic rims. X-ray maps of plagioclase demonstrate that the Ca-rich rims have sharp boundaries with the albite cores (Fig. 10B).

Kyanite is observed as poikiloblastic, resorbed, and elongate blades in samples at mile 112 (Fig. 10A). Kyanite is locally mantled and replaced by muscovite, and elsewhere sillimanite occurs as pseudomorphs after kyanite (Fig. 10A). Throughout the Walthenberg Canyon block, in the vicinity of the Garnet pegmatite complex, sillimanite occurs as a foliation-defining matrix phase.

Phase Equilibria and P-T Path

The presence of early kyanite implies loading followed by breakdown to sillimanite (via muscovite). Textures and assemblages at RM 112 and RM 119 suggest that temperatures did not exceed those required for muscovite dehydration melting. In those areas, the common peak assemblage of Grt + Sil + Bt + Ms + Qtz is diariant in the NKFMA grid of Spear et al. (1999). Thermobarometric estimates obtained from garnet and plagioclase core compositions in addition to matrix biotite yield conditions of 648 ± 123 °C and 0.69 ± 0.15 GPa (Figs. 4 and 10C). However, abundant leucosomes in Ms-absent samples at RM 115 demonstrate that partial-melting conditions were reached locally, pointing to the local passage of reaction 1 (e.g., sample P115–2, Fig. 3; Williams and Jercinovic, 2002). Figure 10C illustrates the preferred path for these rocks. The abundance of sharp, discontinuous anorhetic rims on plagioclase and texturally resorbed garnet in leucosome-absent samples (e.g., W6–112.2–1, Fig. 10B) are interpreted as consequences of decompression soon after peak conditions were reached (Fig. 10C).

DISCUSSION

Peak metamorphic conditions are commonly used to assess the magnitude of displacement across major structures as a step toward evaluating the tectonic significance of metamorphic field gradients (e.g., Todd and Engi, 1997; Frasier et al., 2000; Daniel et al., 2003; Tenczer and Stüwe, 2003). Next, we present a detailed comparison of thermobarometric results for the entire transect. We then describe how the P-T histories that we developed for each of the tectonic blocks (Figs. 5–10) can be used to constrain a composite looping P-T-t-D path for the entire Upper Granite Gorge. The results provide important constraints for: (1) the block-type architecture of continental crust in the
Paleoproterozoic, (2) the rheology of middle continental crust during orogenesis, and (3) the denudation of orogens and preservation of isobaric levels of continental crust.

Comparison and Evaluation of Thermobarometric Data

Field and petrographic observations suggest that peak temperatures varied significantly along the transect and that thermal transitions coincided, in some cases, with block boundaries. Elsewhere, the transitions more closely coincided with dense pegmatite dike complexes (see also Ilg et al., 1996). However, traditional estimates of peak conditions and uncertainties do not have sufficient resolution for evaluating the tectonic significance of block boundaries in the Upper Granite Gorge. With few exceptions, differences in absolute temperature and pressure are indistinguishable at the 2σ level of uncertainty (Figs. 11A and 11C). A technique for comparing calculated P-T conditions from samples with the same mineral assemblage or subassemblage has been developed recently (the ΔPT approach: Worley and Powell, 2000). Utilizing the same mineral assemblage, activity-composition models, and internally consistent thermodynamic data set, much of the systematic error in thermobarometry can be eliminated. One sample is chosen as a “baseline sample” against which all other samples are compared. The approach yields more precise estimates of differences in pressure and temperature, providing a means to quantitatively evaluate thermal and baric gradients inferred from mineral assemblages and absolute thermobarometry (Hodges and McKenna, 1987).

The bulk of the samples studied from the Upper Granite Gorge contains one of the following peak mineral assemblages or subassemblages: Grt + Sil + Bt + Pl + Qtz or Grt + Bt + Ms + Pl + Qtz. Sample W6–112.2–1 was chosen as the baseline sample because all phases in both assemblages are inferred to have been in equilibrium at the peak of metamorphism; both subassemblages also yield nearly the same calculated P-T conditions. Water is excluded, and only fluid-conserved equilibria are used for these calculations, which involve the following mineral end members as specified in THERMOCALC: Ms, Cel, Phl, Ann, East, Py, Alm, Gr, An, Sil, and Q (see also Worley and Powell, 2000). Results are illustrated at the 2σ level of uncertainty (Figs. 11B and 11D).

Relative Thermometry (ΔT)

The ΔT results show a significant improvement in the resolution of temperature differences from block to block (Fig. 11B). Peak temperatures of high-grade samples from the Mineral Canyon, Trinity Creek, and Tuna Creek blocks all statistically exceed the baseline sample (W6–112.2–1 = 639 °C) at the 95% confidence level. Most of the remaining samples are significantly below the baseline. Many of the high-T samples are spatially coincident with the Cottonwood (RM 79–81), Cremation (RM 86–90), and Sapphire pegmatite complexes (RM 98–102). Samples at RM 90–91 in the Trinity Creek block are also spatially associated with centimeter-scale leucosomes, granitic veins, and pegmatite pods that are near the down-river extent of the Cremation pegmatite complex. Thus, the results support field observations that entire high-T blocks and portions of other blocks correspond to regions with a higher density of granitic pegmatite pods and dike complexes, as suggested by Ilg et al. (1996), e.g., the high-T Trinity Creek
block versus the medium-\(T \) Topaz Canyon block (compare Fig. 11B with Fig. 3).

Relative Barometry (\(\Delta P \))

Relative pressures for the Upper Granite Gorge are illustrated in Figure 11D. Even with the increase in precision, the pressures are essentially indistinguishable at the 2\(\sigma \) level throughout the entire transect. Most samples plot on or within \(-0.05-0.1\) GPa of the baseline sample (W6–112.2–1 = 0.71 GPa). Slightly lower pressures are recorded in the highest temperature samples. This is interpreted to be a consequence of either or both of the following: (1) re-equilibration and/or growth of new garnet at postpeak conditions, as documented in samples near RM 77–80, 90–95.6, 102, and 108; and/or (2) the clockwise \(P-T \) path, whereby the equilibrium pressure recorded at maximum temperature in a sample is commonly lower than the maximum pressure achieved (Spear et al., 1984). Based on these results, we infer that samples from the high-\(T \) blocks experienced similar pressures as samples in the medium-\(T \) blocks, which implies that the entire Upper Granite Gorge transect represents a near-isobaric, i.e., subhorizontal (0.7–0.65 GPa).
Metamorphism in middle continental crust, Upper Granite Gorge, Grand Canyon

As mentioned already, the causes of metamorphism include the intrusion of 1.698–1.680 Ga granite, which caused intrusions of 1.700–1.680 Ga granite to locally elevated thermal regimes in hotter tectonic blocks adjacent to sample sites in hotter tectonic blocks. The absence of significant differences in pressure coupled with large differences in temperature along the Upper Granite Gorge transect result in a stark contrast to other orogens that are characterized by a relatively large variation in pressure and little variation in peak temperature, such as the High Himalayan metamorphic sequence (Fraser et al., 2000; the Lepontine–central Alps, Todd et al., 2003). Pressures during the prograde part of the path was different for various parts of the transect. For example, early kyanite was replaced by sillimanite in the Wathenben Canyon block (Fig. 10A), but sillimanite replaced andalusite in the Trinity Creek block (Fig. 7B). The approach to peak conditions was controlled by both the degree of heating and the rate of loading along the prograde part of the path (e.g., the two example dashed paths at the origin of the P-T-t-D diagram in Fig. 12B). Differences between initial P-T path trajectories from block to block can also be attributed to the degree and style of thrust-imbrication during D2, as described by Ilg et al. (1996) and Duebendorfer et al. (2001). The upper pressure limit on the prograde portion of the clockwise P-T-t-D path is best constrained by near-peak pressure estimates of ~0.7 GPa from prograde syn-D2 garnet in the Clear Creek and Topaz Canyon blocks (Figs. 6 and 8). The timing of peak metamorphic conditions is best constrained from leucosomes dated in migmatic rocks from opposite ends of the transect: 1702–1690 Ma based on isotope dilution–thermal ionization mass spectrometry (ID-TIMS) analysis of monazite and xenotime in the Mineral Canyon block (Hawkins and Bowring, 1999) and ca. 1700–1680 Ma from electron microprobe dating of monazite in the Wathenben Canyon block (Williams and Jercinovic, 2002) (#4 in Fig. 12B). These conditions were followed by a period of decompression as inferred by garnet + sillimanite breakdown to cordierite in the Tuna Creek block and evidence throughout the Upper Granite Gorge for breakdown of garnet to plagioclase. Decompression to andalusite stability is best constrained in the Clear Creek block, where late syn-D3 to post-D3 andalusite occurs (Figs. 2B and 6B). Combined with the presence of early-D3 andalusite in the Trinity Creek block, the observations imply that relatively rapid burial from andalusite stability to peak pressure and decompression to andalusite stability occurred entirely during D2. The

Implications of ΔPT Results

Apparent gradients and discontinuities revealed by the ΔT results can most likely be attributed to one or both of two possibilities: (1) postpeak strike-slip displacement along block-bounding shear zones juxtaposing samples in hotter tectonic blocks adjacent to samples in colder tectonic blocks, or (2) proximity of a sample to locally elevated thermal regimes caused by intrusion of 1.698–1.680 Ga granite dike complexes. As mentioned already, the ΔPT results preclude significant dip-slip movement (>3–4 km) on the block-bounding shear zones. Abrupt thermal discontinuities exist across the Vishnu shear zone (as noted by Ilg et al., 1996), which suggest a relatively significant amount of postpeak displacement. The shear zone coincides with an abrupt decrease in peak temperature in the Topaz Canyon block, the observations imply that relatively rapid burial from andalusite stability to peak pressure and decompression to andalusite stability occurred entirely during D2. The
timing of decompression is best constrained by ca. 1.685–1.68 Ga undeformed dikes that cut D₂ fabrics in the Mineral Canyon block.

The stark differences in metamorphic grade correspond spatially with proximity to dense pegmatite dike swarms and/or boudinaged granitic pods (Fig. 11B; Ilg et al., 1996); this observation suggests that preserved thermal variations along the transect are due, in part, to variable degrees of advective heating. Thermal “spikes” along the retrograde path are interpreted to be the cause of the second generation of garnet documented in the Mineral Canyon and Tuna Creek blocks (#5 in Fig. 12B), i.e., flux of magma during dike emplacement provided the heat necessary to drive garnet-producing divariant reactions during decompression to 0.3–0.4 GPa (see paths in Figs. 5C and 9F). Late fibrolite and prismatic sillimanite in the Tuna Creek block plus sillimanite after post-D₂ andalusite in the Clear Creek block are consistent with this interpretation. The thermal spikes were most likely transient and varied both spatially and temporally with the distribution and

Figure 12. (A) Summary of path geometries interpreted for each lithotectonic block. (B) Composite P-T-t-D (pressure-temperature-time-deformation) path for entire Upper Granite Gorge, Grand Canyon, Arizona, USA. See text for discussion.
timing of pegmatite dike intrusions. We suggest that these “spikes” along the P-T-t-D path may be a common phenomenon in orogenic belts with abundant syn- to postmetamorphic intrusive rocks (e.g., Williams and Karlstrom, 1996; Whitney and Dilek, 1998).

CONCLUSIONS

Several important insights emerge from the data. (1) The entire Upper Granite Gorge transect followed a looping P-T-t-D path in which all blocks reached a pressure of ~0.7 GPa by 1.70–1.69 Ga. All six tectonic blocks form a single, relatively coherent terrane of ~25-km-deep Paleoproterozoic middle continental crust. (2) Peak temperatures record lateral variations in temperature of greater than 250 °C (~520–770 °C) and were influenced by local advection of heat through pegmatite dike complexes along with local transient movement on block-bounding shear zones. (3) The entire subhorizontal section of continental crust was decompressed to ~0.3–0.4 GPa (exhumed to ~12 km depths) between ca. 1.7 and 1.68 Ga. (4) Microstructural data indicate that D2 shortening took place throughout the entire ~15–20 m.y. interval of peak metamorphism and subsequent decompression. These conclusions have important implications for our understanding of the behavior of middle continental crust during orogenesis.

Block-Type Architecture of Lowermost Middle Continental Crust

The Upper Granite Gorge preserves some of the highest-pressure Paleoproterozoic rocks, and, thus, represents one of the deepest exposures of continental crust in the southwestern United States. This area experienced minimal reheating (~350–500 °C) during ca. 1.5–1.38 Ga tekontometamorphic events (Karlstrom et al., 1997). Consequently, the transect provides a rare window into ca. 1.7 Ga lowermost middle continental crust. The exposure records critical information about the character of the crustal column beneath the shallower levels that are now exposed throughout the rest of the Arizona transition zone (Karlstrom and Bowring, 1988; Williams, 1991). The distinctive overprinting of shallow S1 by steep S2 domains may be a common style of middle and lower crustal fabric. It imparts a partitioned character to the crust with segmentation at all scales, from a single microcrystallin (Fig. 8E) to the observed ten-kilometer-scale block-type architecture (Fig. 3). Similar fabric overprinting and the resulting partitioned geometry are also seen in the lower crust of NW Canada (e.g., Mahan and Williams, 2005) and in a variety of crustal levels preserved in Fiordland, New Zealand (e.g., Klepeis et al., 2004).

Rheology of Middle Continental Crust during Orogenesis

Recent contributions have emphasized the potential importance of subhorizontal channel flow in the middle crust during deformation in large, thermally weakened orogens (e.g., Beaumont et al., 2004). Such flow is thought to result from development of an orogenic plateau with steep, marginal topographic gradients (e.g., the Himalayas; Clark and Royden, 2000) and subhorizontal fabric development at depth (e.g., Royden, 1996). In contrast, the view from the middle crust exposed in the Upper Granite Gorge is one characterized by subvertical fabric development during the thermal peak, e.g., the Mineral Canyon block. Although hot blocks in the Upper Granite Gorge were at temperatures on the order of 750 °C where partial melting made the crust weak enough to flow (according to thermal-mechanical numerical models; Beaumont et al., 2004), large-scale horizontal channel flow was apparently inhibited by colder, stronger blocks (e.g., the Topaz Canyon and Clear Creek blocks) that reinforced the block-type architecture. Protracted development of subvertical fabric throughout burial and exhumation of the Upper Granite Gorge may be a record of strain-hardening in a heterogeneous medium undergoing temporally and spatially varying degrees of thermal weakening (see also Karlstrom and Williams, 1998, 2006). Thus, the scale and style of heterogeneity of middle continental crust have a profound impact on the resulting rheological behavior and susceptibility to flow that needs to be considered in future channel flow models.

Exhumation of Orogens, Strain-Hardening, and Preservation of Isobaric Levels of Continental Crust

The P-T-t-D path that the middle crust follows during orogenesis is directly related to surface erosion (e.g., Jamieson et al., 2004). This has important implications for exhumation of the Upper Granite Gorge, where such a large transect (>70 km long measured perpendicular to S3) records the same path. Exhumation took place synchronously with development and intensification of subvertical foliation and without evidence for differential uplift or tilting. Decompression of the Upper Granite Gorge transect from ~0.7 to ~0.3–0.4 GPa (~11–14 km) between ca. 1.7 and 1.68 Ga indicates a time-averaged exhumation rate of ~0.55–0.70 mm/yr. These rates are small relative to Phanerozoic orogenic belts like the Coast Mountains of British Columbia (>2.0 mm/yr; Hollister, 1982) and the ultrahigh-pressure Dora Maira Unit of the Western Alps (16–34 mm/yr; Rubatto and Hermann, 2001). We suggest that exhumation was driven by erosion during crustal shortening (e.g., Hollister, 1979), coupled with isostatic adjustments at the scale of the entire transect. Vertical fabric intensification may reflect strain hardening and strengthening of the middle continental crust, a process that would enhance the preservation of near-isobaric sections of continental crust during exhumation.

ACKNOWLEDGMENTS

This study is an outgrowth of over a decade of collaborative, multidisciplinary work on basement rocks in the Grand Canyon. We appreciate the many individuals who have accompanied University of New Mexico research trips and have provided field observations, mapping, and discussions. We acknowledge support from National Science Foundation (NSF) grants EAR-9508096, EAR-9902555, and EAR-0003477, in addition to support and research permits received from Grand Canyon National Park. We are especially indebted to Sam Bowring, Becky Flowers, Philippe Goncalves, Matt Heizler, and Mike Timmons for numerous discussions regarding the Proterozoic geology of the Southwest. Roger Powell is gratefully acknowledged for his advice regarding the application of the ∆PT technique. Our efforts would not have been possible without the outstanding microprobe analytical support of Mike Jercinovic at University of Massachusetts–Amherst. We appreciate the constructive reviews by John Fletcher, Kurt Stüwe, and Associate Editor Ben van der Pluijm.

REFERENCES CITED

Dumond et al.

