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• DOC concentrations in streamflow of
croplands are higher than forested lands.

• Accumulation of crop residues rapidly in-
creases DOC load in freshwater.

• Snowmelt caused alarmingly high riverine
DOC concentrations in springtime.

• Spatiotemporal baseflow DOC flux is pre-
dictable by using LULC data and SWAT
model.
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It remains a challenge to understand how dissolved organic carbon (DOC) is cycled from farmlands to rivers due to the
complex interaction between farming practices, the baseflow hydrology of predominantly flat lowlands, and seasonal
environmental influences such as snowpack. To address this, field DOC concentrations were measured monthly
throughout the year at sub-basin scales across the Chippewa River Watershed, which falls within the Corn Belt of
the Midwestern United States. These DOC dynamics in stream water from croplands were benchmarked against the
data sampled from hilly forested areas in the Connecticut River Watershed. The Soil Water Assessment Tool (SWAT)
simulation was applied to provide potential predictive variables associated with daily baseflow. Our study outlines a
framework using the combination of primary field data, hydrological modeling, and knowledge-based reclassification
of Land Use/Land Cover (LULC) data to analyze the viability of modeling the spatial and temporal variations of crop-
land streamDOC concentrations. Calibration of the SWATmodel resulted in the overall daily Nash–Sutcliffe model ef-
ficiency coefficient (NSE) of 0.67 and the corresponding R2 = 0.89. Our main results show: 1) baseflow DOC
concentrations from croplands were substantially higher throughout the year relative to other landcover areas, espe-
cially for spring runoff/snowmelt scenarios, 2) an empirical analysis explained~82% of the spatial gradient of annual
mean observed DOC concentrations, and 3) with the addition of hydrological simulated variables, a linear model ex-
plained ~81 % of monthly and 54 % of daily variations of observed DOC concentrations for cropland sub-basins. Our
study identified key factors regulating the spatiotemporal DOC concentrations in cropland streamflow; the contribu-
tion here promotes to strengthen future analytical models that link watershed characteristics to carbon cycling pro-
cesses in a large freshwater ecosystem.
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1. Introduction

Terrestrial organic carbon in the dissolved form (DOC) is easily
transported to inland or coastal waters via hydrological processes (Dusek
et al., 2017; Heppell et al., 2017). Excessive riverine carbon has a pro-
nounced impact on aquatic ecosystems via processes such as amplifyingmi-
crobial activity, diminishing the quantity and quality of light penetrating
the water column, and controlling toxic metal availability (Butman and
Raymond, 2011; Spencer et al., 2013; Stedmon et al., 2006). As a major
use of land (Ellis et al., 2010), an agricultural landscape is a significant
source of DOC into freshwater ecosystems (Bhattacharya and Osburn,
2020). Recent studies raised public health concern that rivers receiving run-
off from croplands contain elevated and harmful DOC concentrations at re-
gional and worldwide scales (D'Amario and Xenopoulos, 2015; Humbert
et al., 2020; Qiao et al., 2017). DOC levels originating from croplands are
often enriched in aromatic structures and exhibit high fractions of labile
dissolved organic matter, thereby significantly affecting freshwater nutri-
ent pathways (Bhattacharya and Osburn, 2020; Holgerson and Raymond,
2016; Kellerman et al., 2020). However, little is known about what factors
regulate carbon export in agriculturally influenced streams (Royer and
David, 2005).

In recent decades, there has been an increased interest in studying ter-
restrial carbon-source dynamics and their impact on freshwater interactive
processes (Heppell et al., 2017). As such, studies have made significant
progress towards gaining a better understanding of the impacts of climate
change and extreme storm events on variations of riverine DOC concentra-
tions originating from terrestrial environments (Kellerman et al., 2020).
These studies have mostly focused on sloped forested watersheds that gen-
erate DOC fluxes predominantly through surface runoff during storm
events (Lindström et al., 2010; Pers et al., 2016; Singh et al., 2015). For ex-
ample, the DOC contributions of event flowswere found as high as 86% for
forested catchments (Raymond and Saiers, 2010). A representative model,
the Integrated Catchments model for Carbon (INCA-C) was specifically de-
veloped for hilly forested regions (Futter et al., 2011). The INCA-C model
was indeed helpful in revealing that variations in DOC concentrations
were primarily driven by soil temperature and surface runoff for forested,
mountainous watersheds in Sweden (Clark et al., 2007; Fu et al., 2019;
Pers et al., 2016).

The DOC dynamics in streamflow generated from agricultural land-
scapes are significantly different from those reported for forested habitats.
Studies have demonstrated that stream water inputs from baseflow drive
the temporal dynamics of DOC concentrations in agricultural watersheds
(Bhattacharya and Osburn, 2020; Humbert et al., 2020). Although instanta-
neous baseflowDOC concentrations less than that in storm event flows, the
annual baseflowDOCflux ismuch higher than that of annual eventflows in
cropland watersheds (Qiao et al., 2017). Furthermore, an improved under-
standing of DOCdynamics in baseflow is essential to study both seasonal ef-
fects and influences of anthropogenic activities. Such an understanding
provides a quantifiable baseline for potentiallymodeling spatial and tempo-
ral DOC variations when adding additional information associated with
storm effects. This is especially important for the Corn Belt region of the
Midwestern USA, where flatland hydrology dictates temporal variations
in DOC concentrations via both baseflow (i.e., groundwater) and surface
runoff during storm events (Buffam et al., 2001; Qiao et al., 2017). In addi-
tion to having different hydrological processes, cropland soils typically con-
tain enriched organic carbon (Ågren et al., 2008; Olsson et al., 2009). Lack
of quantitative analyses remains a significant barrier when modeling the
variation of cropland DOC concentrations in streams (Qiao et al., 2017).

The goal of this study is to explore the potential of quantifying temporal
(monthly or daily) and spatial variations of DOC concentrations originating
from crop-dominant lowlands. This study aims to identify a range of predic-
tive variables that are useful in modeling the spatial disparities and trends
of DOC variations instead of using soil C:N ratio as a surrogate
(Aitkenhead-Peterson et al., 2003). Our research niche includes the incor-
poration of primary field observations, hydrologic variables, and high
spatial-resolution land surface characteristics. This study focuses on
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identifying a workable spatiotemporal scale for both field observations
and quantitative analysis of DOC source dynamics, fate, and transport pro-
cesses. This research is both novel and urgent because DOC export from ag-
ricultural landscapes occurs largely at the expense of the water quality of
adjacent freshwater systems and, to a lesser extent, land sustainability. Det-
rimental cropland management policies and practices can inherently lead
to degradedwater quality through both physical and biochemical processes
(Jones et al., 2004; Jones and Knowlton, 2005; Monaghan et al., 2007;
Valentin et al., 2008). Clearly, DOC is part of a delicately balanced synergis-
tic system, and thus, the concentration of DOC in lakes and rivers can be a
useful indicator of land-water ecology (Gómez-Gener et al., 2021). The Soil
Water Assessment Tool (SWAT) has the advantage over other models in
that it incorporates of plant-based biological processes. Which is why it
was utilized to provide the required hydrological properties for each tribu-
tary area.

2. Materials and methods

2.1. Study basins

Two contrasting study basins were referenced in this investigation to
allow direct comparison of DOCdynamics over croplands versus sloped for-
estlands. The primary study basin consisted of the Chippewa River water-
shed that includes the Pine River as a major tributary (Fig. 1). The
Chippewa River is one of the three tributaries draining the western portion
of the larger Saginaw River watershed. The Saginaw River ultimately
empties into Saginaw Bay, Lake Huron, which is one of the most bio-
productive coastal regions in the entire Great Lakes Ecosystem (Millie
et al., 2006). The Chippewa watershed cuts across the Lower Peninsula of
Michigan and meanders nearly 147.7 km to Midland, Michigan, flowing
generally eastward and ultimately merging with the Tittabawassee River.
The croplands in the primary study basin were dominated by row crops
of corn, soy, wheat, and sugar beets, that were situated adjacent to mixed
woodlands and wetlands, with a small proportion of lands dedicated to
hay production and areas of development. The topography (mean slope
= 1.3°) in the primary study basin were typical of the flat lowlands of the
agricultural midwestern United States.

The secondary study basin included five forested sub-basins associated
with the Deerfield and Millers River, in Massachusetts. These two rivers
are tributaries to the greater Connecticut RiverWatershed, which is the lon-
gest river in the northeastern United States, draining approximately 28,490
km2. Two of the five sub-basins (~952 km2) located along the Deerfield
River were heavily forested, with approximately 86 % of their landmass
designated as forest. The remaining three sub-basins (~770 km2) located
along the Millers River were less forested, with approximately 71 % of
their landmass forested. The mean slope for the entire secondary study
basin was ~7.7°. Field observations collected across multiple seasons and
multiple years were paramount to better understand the significant DOC
contributions from croplands in comparison to forested hill lands.

2.2. Field sample protocols

In total, 278 water samples were collected from 26 sampling locations
via 43field visits spread between theMichigan andMassachusetts study ba-
sins, to measure baseflow DOC concentrations between rainfall events.
Sample collection between rainfall events was earmarked to reflect sea-
sonal variations and to reduce the influence of any single event. Within
the primary study basin (Chippewa River Watershed), 21 sampling loca-
tions were visited, with 11 targeting crop dominated sub-basins (orange
polygons) and 10 targeting mixed land cover (green polygons) as displayed
in Fig. 1. The sub-basins were defined as crop dominated if they had >50%
crop coverage or crop coverage exceeded double that of the second highest
land cover category. The percentage of each land cover type for each sub-
basin is shown in Table 1 (in Supplementary Materials). For example, the
sub-basin associated with sampling location 13 was crop dominated since
it had 46 % crop coverage, which was more than double that of wetland,



Fig. 1. The primary study site (Chippewa River and Pine River Watersheds) and associated sub-basins. Shown are 21 sampling locations; grey points are associated with 1st-
order extended streams, yellow points associated with high order streams.
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the 2nd highest land cover type. If a sub-basin was not categorized as crop
dominated, it was classified as mixed.

There were 153 water samples collected monthly at 21 outlets of select
sub-basins across the Chippewa River watershed for directly measuring
DOC concentrations in the laboratory. The sampling period spanned 14
months beginning in October 2012 and ending in January 2014. Field sam-
pling activities were primarily conducted during the spring and fall when
soil biochemical processes and nutrient fluxes are more prevalent (Sela
et al., 2019; Sharratt et al., 1998). A reduced number of field samples
were collected in both summer and winter months for the purpose of ana-
lyzing the seasonal transition of DOC concentrations.

The sampling locations were selected to examine what sub-basin scales
were appropriate for modeling DOC concentrations. Fourteen sampling lo-
cations were identified that met one of the following three criteria to be
considered a 1st-order extended sub-basin: 1) area was <26 km2, 2) the
streams feeding into a sampling site were a 1st, 2nd or 3rd order stream,
and 3) all their upper-tributary sub-basins had the same dominant land
uses. For example, there were 11 sub-basins drained via a 1st-order stream:
sampling sites 4, 6, 7, 9, 10, 11, 13, 16, 18, 19, and 20 (Fig. 1). Three sub-
basins were associatedwith 2nd and 3rd order streams: sampling sites 5, 15
and 17. However, the dominant land cover type within these three sub-
basins was the same as their upper tributary sub-basins. Therefore, these
three sub-basins were also designated as the 1st-order extended sub-
3

basins. Therefore, all 14 1st-order extended sub-basins in the primary
study basin were numbered 4, 5, 6, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19,
and 20 (grey sampling locations in Fig. 1). The remaining 7 yellow sample
locations (1, 2, 3, 8, 12, 14, and 21) in Fig. 1 are associated with non-
extended sub-basins. These non-extended sub-basins were used to bench-
mark DOC performance against that of 1st-order extended subbasins.

For the second study basin in Connecticut River, 125 water samples
were collected monthly from the five sub-basins from 2011 to 2016 (Li
et al., 2018). Deciduous and mixed forest were the dominant land covers
in the Deerfield River watershed. The dominant forest types across the re-
maining three sub-basins were evergreen and mixed.

2.3. Laboratory measurement of DOC concentration

Field samples were obtained from streamwater using clean 500 ml bot-
tles (acid washed). Bottles were fully immersed and tilted while capping to
ensure that no air remained. The samples were immediately stored on ice
until arrival and transported to the laboratory for immediate filtering.
Water samples were filtered through pre-combusted glass-fiber filters
(nominal 0.7 μm pore size) to remove any non-dissolved organic matter,
and the filtrate was then stored (i.e., acidified and refrigerated) until ana-
lyzed for DOC content. All laboratory processes were completed within
12 h of sample collection times. The DOC concentration of each water

Image of Fig. 1


Y.Q. Tian et al. Science of the Total Environment 861 (2023) 160744
sample was measured using a Shimadzu TOC-V analyzer with high temper-
ature combustion (Vlahos et al., 2002). For each, 50 μl injections of sample
water was combusted at 800 °C, from which the DOC concentration was
calculated from the resultant CO2 yield and measured with a non-
dispersive infrared detector.

2.4. Land cover composition

National Land Cover Data (NLCD) from 2011 were used because it was
chronologically closest to our sampling dates (2012–2014). The 2011 base-
line NLCD data referenced 13 land cover categories. These baseline land
cover data were reclassified into three more broadly defined classes. The
three landcover classes are Mixed (dominated by forest and wetland),
Crop (dominated by corn), and Other (Fig. 2). The reclassification was
based on both measured and derived DOC transformation rates of the
major land covers: forested (including shrubs) and crop land rates were
measured directly in our previous mesocosm experiments (Li et al.,
2018). The mixed land scenario rates were derived from clustering the re-
sults of a principal components analysis (PCA) of the trophic states in
streams for the Chippewa River Watershed (Carrick et al., 2022). The
percent-areal composition of these three aggregated classes extracted
from the NLCD data were calculated for each drainage sub-basins of Chip-
pewa River Watershed (i.e., Cells in Table 1). These data were used to ana-
lyze DOC dynamics at the sub-basin level. It is important to note that land
cover data was calculated for the entire area draining to an individual sam-
pling location and not just the sub-basin in which the sampling location re-
sided. For instance, sampling point 15 receives runoff not only from its
immediate sub-basin, but also from upstream sub-basins that contained
points 16, 17 and 18.

2.5. Hydrological modeling

The SWAT model was used to generate daily hydrologic properties for
all sub-basins of the primary study basin. The hydrological properties
were statistically analyzed to identify which variables, if any, were signifi-
cant estimators of seasonal variation in DOC concentrations from crop-
lands. The SWAT model is recognized worldwide as one of the most
effective tools for estimating hydrological processes from agricultural
lands (Arnold and Fohrer, 2005; Olaoye et al., 2021; Tian et al., 2012).
For this study, the SWAT was calibrated using 38 consecutive years of
daily hydrologic input data spanning from 1981 to 2018. In addition,
Fig. 2.Reclassification scheme of the original National Land Cover Data (NLCD) into thre
crop (dominated by corn), and other.
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spatially explicit, high resolution (4 km2 grid) daily weather forcing data
(precipitation, maximum temperature, and minimum temperature) were
downloaded from the PRISM website (https://prism.oregonstate.edu/
recent/) and were used as SWAT inputs. Daily discharge flow of the Chip-
pewa River was obtained from the USGS 04154000-gauge station and
used to calibrate the SWAT model. Three aggregate LULC types were ex-
tracted from NCLD 2011 as described above and used as model inputs.
Soil input parameters were extracted from SWAT's built-in STATSGO
data. Finally, elevation data were extracted from a 30 m Digital Eleva-
tion Model (DEM) of Isabella County, Michigan. Based on all these
input data, the SWAT model delineated our primary study basin into
126 sub-basins.

Next, the observed hydrographs were partitioned into three compo-
nents by assuming a watershed's hydrologic behavior varied between rain-
fall events, transition period, and periods without rain, similar to previous
studies (Boyle et al., 2001; Confesor and Whittaker, 2007). Thus, the Chip-
pewa River daily flow data were categorized into high (rainfall driven, top
10 percentile), medium (transition flows, 10th–50th percentile), and low
(non-rainfall driven flows, lowest 50th–100th percentile) flows. The
SWAT model was then calibrated through a multi-objective and automatic
calibration for these three flow regimes to minimize the simulation error
and bias for the period from 2011 to 2018 using the method developed
by (Confesor and Whittaker, 2007). The overall daily Nash–Sutcliffe
model efficiency coefficient (NSE) was 0.67 and the corresponding R2

was 0.89 (Fig. 3). The SWATmodel captured the high soil water content as-
sociated with winter snowpack and subsequent spring melting. The dispar-
ity between simulated and gauged snow effects for February indicate that
the SWAT underestimated the stream flow from snowy seasons in February
for the Chippewa study basin. The SWAT's performancewas satisfactory for
March and beyond, which corresponded well with our sampling period.
The simulated hydrologic properties were used as independent variables
for quantitative analysis of daily DOC observations.

2.6. Exploratory statistical analysis

Multiple linear regression analyses were used to explore which indepen-
dent variablesweremost significant in explaining variation in DOC concen-
trations at various spatial and temporal scales. In essence, these linear
regressions aimed to fit observed/sampled DOC data to a linear equation
with m + n independent variables, where m is the number of spatial vari-
ables associated with the characteristics of each drainage sub-basin and n
e landcover classes suitable for modeling:mixed (dominated by forest andwetland),

https://prism.oregonstate.edu/recent/
https://prism.oregonstate.edu/recent/
Image of Fig. 2


Fig. 3. SWAT simulated flows versus observed daily flows (Nash Sutcliffe = 0.67 and R2 = 0.89). Top sensitive parameters calibrated are CN (+20%), Alpha_BF (0.9),
Sol_AWC (+10%), ESCO (0.2), SMFMN (1.8), and SMFMX (5.5).
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is the number of temporal/seasonal variables. The specification of the lin-
ear model was as follows:

y i; tð Þ ¼ cþ
Xm

j¼1

α jx j ið Þ þ
Xn

k¼1

βkSk i; tð Þ ð1Þ

Let X(i) = [x1(i) x2(i)…xm(i)] be the m exploratory spatial variables for
the sub-basin associated with sampling location i for i ∊[1,L]. L is the num-
ber of sampling locations. Similarly, let S(i, t) = [s1(i,t), s2(i,t),… sn(i,t)] be
the n exploratory seasonal (temporal) variables for the sub-basin i and Ju-
lian day t, for t ∊[1,Q]. Q is the last Julian day of field sampling visits.
Each variable set X(i) were in three categories: land cover (e.g., percent
cropped area, percent forested), soil properties (e.g., percent silt, percent
organic matter), and geomorphology (e.g., sub-basin area, average slope).
The spatial variables were derived from each drainage area. The seasonal
variables S(i, t) were used as input data in according to two categories: hy-
drologic characteristics (e.g., SW: soil water content, PET: potential evapo-
transpiration, GW: ground water volume) and weather inputs (e.g., point
specific precipitation and air temperatures). The observed DOC, y (i, t)
corresponded with all sampling locations i, and the Julian days t of field
visits. The observed values y (i, t) for all is and ts were fitted to Eq. (1) to es-
timate the coefficients c, a1, a2, …, am, b1, b2, …, bn.

Statistical metrics used to evaluate relative importance and/or inclusion
of variables into themodels were p-value, coefficient of determination (R2),
and F values reflecting the overall significance of each regressionmodel. An
alpha of 0.05was used as the threshold to determine if any one variablewas
statistically meaningful. The analysis included all exploratory variables (in
varying combinations) within each category (temporal, spatial, physical,
and biological). Our objective was to identify which variables were signifi-
cant at three temporal scales (i.e., daily, monthly, or annually). Accord-
ingly, all associated data had to be averaged when moving to a more
course temporal scale. For example, ~30 daily hydrologic variables were
averaged to yield a single monthly value. Similarly, ~365 daily hydrologic
variables were averaged to yield an annual average. Ultimately, a variety of
variables were fit to both raw and averaged (monthly and yearly) DOC ob-
servations to obtain the desired coefficients of themultiple variate linear re-
gression model.
5

One of our research objectives was to evaluate the appropriate spatial
scale (i.e., contributing hydrologic areal extent) for quantifying the inher-
ent relationship between a variety of independent variables and the varia-
tion of observed DOC concentrations from cropland areas. Here, stream
segment i and sub-basin iwere designated as the immediate stream segment
and sub-basin in which the sampling location i resides. With this designa-
tion, this study tested two spatial scale scenarios: 1st-order extended sub-
basins and non-extended drainage areas as defined in a previous section.

3. Results and discussion

Our overarching research objective was to establish a theoretical under-
standing of the relationship of the observed DOC concentrations to a variety
of independent and spatiotemporal variables in cropland areas. This study
presents pertinent results and related discussion within four distinct sections:
1) Spatial disparity of mean annual DOC concentrations; 2) Seasonal patterns
of the DOC observations; and 3) Variables useful to estimate spatial and tem-
poral distributions of daily DOC concentrations in streamflow throughout the
year. These estimated daily DOC concentrations were then aggregated to
evaluate thefinal section: 4) an analysis of the observedmonthly DOC trends.

3.1. Spatial disparity of mean annual DOC

The observed DOC concentrations were averaged to yield an annual
mean for each of the 14 sampling locations within the 1st-order extended
subbasins in the primary study area. Aggregated annual mean DOC values
ranged from 5.5 to 10.5 mg/L, which effectively eliminated temporal influ-
ences and focused on the influences of the spatial characteristics across all
the 1st-order extended sub-basins. Through statistical analysis, four signif-
icant variables were identified to the spatial variability of mean annual
DOC concentrations, y(i), observed in sampling site iwhich was associated
with each 1st-order extended sub-basins. The resultant linear regression
model is below (Eq. (2)).

f Xð Þ ¼ 0:52crpþ 1:19frt þ 0:52wetlþ 18:74dum−63:07 ð2Þ

where the first three variables (i.e., crp, frt, wetl) were percent of crops, for-
est, and wetland. The dum was the binary dummy variable useful for

Image of Fig. 3
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separating crops and mixed land covers (crop = 1, mixed = 0). All slopes
and y-intercept from the resulting models were significant with respect to
the observed mean annual DOC concentrations (0.0006 ≪ p-values ≪
0.0034). The overall model explained>82% (R2

adj= 0.74) of the variation
in the observations (F = 10.22, p-value = 0.0021) as displayed in Fig. 4a.
The dummy variable specified above in Eq. (2) played a role as a
constraining condition. The dummy variable expanded the capability of
the linear regression for more complex scenarios exhibiting highly hetero-
geneous land cover composition.

The linear regression in Eq. (2) resulted in positive coefficients for the
three vegetative cover related variables as well as the one dummy variable.
The positive coefficients indicate that higher plant density increases the
DOC concentrations as reported in previous studies (Schaefer et al., 2020;
Tian et al., 2013). A geomorphological variable, the natural log of the con-
tributing watershed area, ln(A) was eliminated from Eq. (2) because its p-
value was 0.06 (>0.05). Several studies reported that the increasing size
of sub-basin area degrades DOC concentrations before entering the stream
(Rana et al., 2008; Van de Griend et al., 2002). Consistently, our observed
mean annual DOC concentrations also exhibited an explicit inverse rela-
tionship to ln(A) for crop dominant sub-basins as displayed in Fig. 4b.
Ours together with early studies suggests that it is appropriate to include
Fig. 4. a) Linear regression of modelled DOC concentrations (mg/L) versus observed m
relationship of the natural log (Ln) of areas (cells) draining into the sampling locations
sub-basins.

6

the variable ln(A) in the regression model by lessening the significance
level from 0.05 to 0.10.

With a lessened significance level of 0.10, the variable, ln(A) became
statistically significant in the linear regression analysis (p-values≤ 0.1). In-
clusion of the variable ln(A) demonstrates the utility and viability of our
spatially explicit modeling approach in Eq. (3).

f Xð Þ ¼ 0:43crpþ 1:03frt þ 0:41wetlþ 16:01dum−0:45 ln Að Þ−46:09 ð3Þ

The addition of the spatial variable ln(A) improved the estimation of the
DOC observations (R2= 88%, R2

adj = 0.82, p=0.0010) compared to the
model that excluded this variable (Eq. (2)). The p-values for all variables
ranged from 0.0011 to 0.0630. The negative coefficient of Ln(A) reflects
the hydrologic processes occurring within the relatively larger and flatter
sub-basins, and the inherent DOC degradation. Given the same land cover
conditions, the hydrologic processes over a large land area result in the re-
duction of DOC concentrations because of both longer transport and resi-
dence times that allow for greater soil carbon adsorption, infiltration and
degradation (Chalise et al., 2019). Therefore, larger sub-basins act to inher-
ently dilute soil-profile DOC concentrations (Schilling et al., 2016).
ean annual DOC concentrations from 1st-order Extended sub-basins. and b) Inverse
, ln(A) versus observed mean annual DOC concentrations from cropland dominant

Image of Fig. 4
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The predictive power of our regression results (i.e., Eqs. (2) and (3))
highlight the viability of modeling the spatial variations of mean annual
DOC concentrations across a cropland dominated river basin. However,
predictive variables identified for croplands were very different com-
pared to previous studies on semi-natural habitats (Kaushal et al.,
2018; Monteith et al., 2015; Vidon et al., 2014). Many of these previous
research efforts were based on sloped hill land with very different hy-
drology regimes from that of flat croplands dominated by baseflow
(Jantze et al., 2015; Terajima and Moriizumi, 2013). Our large sample
size distributed across scales made it possible to identify those predic-
tive variables based on a reliable level of realism (Lambert et al.,
2015; Lapierre et al., 2015). Note that all the required variables in
Eqs. (2) and (3) are easily downloadable and derivable from the NLCD
database. Thus, our presented empirical analyses are potentially adapt-
able to study broad scenarios of DOC cycling processes of freshwater
habitats across the United States.
Fig. 5. a):Monthly observedmeanDOC concentrations (mg/L) for Crop andMixed landc
were interpolated by using the average value of adjacent months. Error bars are stand
observed across multiple years for each of the five sub-basins in the Connecticut River W
the adjacent months.

7

3.2. Observed seasonal (monthly) DOC trends from crop and forest lands

The DOC observations were aggregated monthly mean and then were
averaged for all sampling locations that were in the 1st-order extended
sub-basins over the primary study basin in Fig. 5a. The data aggregation
is to focus on seasonal variations. Strong seasonal patterns in DOC concen-
trations were very evident across our analyses. These fluctuations of DOC
concentrations were largely associated with baseflows because the sam-
pling days were purposefully selected between large storm runoff events.
Accordingly, the fluctuations were attributed to baseline seasonal phenom-
enon with little influence from any one single episodic precipitation event.

During the late winter season, snowpack often elevates soil water con-
tent. It has been reported that such high soil moisture content enhances cer-
tain saturation-dependent metabolic processes and biogeochemical
reactions (Leakey et al., 2006) as well as increased accumulation of DOC
in the topsoil (Ågren et al., 2010). In early spring (i.e., middle of March),
overs for each of the 1st-order extend sub-basins. Note: February DOC concentrations
ard deviations of the observations. b): Monthly mean DOC concentrations (mg/L)
atershed. Note: February and July data were interpolated by averaging data from

Image of Fig. 5
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rapidly increased baseflow transports soil DOC via groundwater baseflow
to streams. The peak of DOC concentrations observed in March from crop
dominant subbasins corresponds well with baseflow resulting from snow-
melt, which acts to flush DOC stored in the topsoil created by these
saturation-dependent metabolic processes and biogeochemical reactions
(Fig. 5a, orange curve). The phenomena suggests that the effect of meta-
bolic and biogeochemical reaction processes on corn residues is more sig-
nificant compared with the effect of dilution by way of spring snow melt.

The observed monthly mean DOC concentrations (i.e., March) from the
mixed drainage sub-basins (Fig. 5a, blue curve) had a slight spike in spring.
Generally, mixed sub-basins were dominated by forest interspersed with
wetlands and contained 30 %–45 % croplands. Inspection of Fig. 5a (blue
curve) does show a slight DOC spike associated with the infiltration of
snowmelt and elevated soil water content. For both cropland and mixed
drainage sub-basins, rich crop residue biomass is indeed the main anthro-
pogenic source of geochemically active and transformable DOC. Gaining
a better understanding of these spikes in DOC concentrations in the spring
is important, since spring is a critical time of the year with respect to ben-
thic and shallowwater habitats in relation to biological communities, aqua-
cultural production, and water quality to public health (Lehosmaa et al.,
2018; Puczko et al., 2018).

In contrast, an early spring DOC peak was not observed (Fig. 5b) from
the steeper forested watersheds of the second study basin despite similar
weather conditions. Traditionally, farming practices for both sweet corn
and dent corn leavemost plant residues in thefield, which greatly increases
soil organic matter (Guo et al., 2018; Motavalli et al., 1992; Oberle and
Keeney, 1990). These accumulated residues enrich soil organic biomass
more so than the leaf-liter from forest canopies in autumn (Du et al.,
2019). In addition, the increased slopes associated with these non-
cropped, forested hills encouraged direct surface runoff with limited
water infiltration through the soil profile. Less infiltration results in less
DOC transport which corresponds to the lack of a DOC peak in early spring
for these forested locations (Fig. 5b).

Other DOCpeaks fromMay to Decembermatchedwell between the two
study basins: crop versus forest (correlation > 0.65). The good match of the
Fig. 6. SWAT modelled daily PET, GW, SM and SW of sub-basin 49 for year 2013. Sub-b
indicate the sampling date. PET: Potential Evapo-Transpiration, GW: Ground Water, Sn
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peaks across this period at both study basins highlights that these DOC con-
centration curves are reflecting broad seasonal effects rather than the influ-
ence of any one individual stormevent since the curveswere derived from a
large set of multi-year, independent field measurements (i.e., ~50 field
visits). High precipitation and high ground water levels were exhibited
from late April to early May as simulated via SWAT (i.e., black curve in
Fig. 6). DOC concentrations were raised in this period for all scenarios:
cropland, mixed land use sub-basins, and forested hill lands, suggesting
that high precipitation is the key driving factor for these seasonal DOC
spikes.

The magnitudes of DOC spikes from croplands in May were more than
double those of the forested hill lands. The high DOC concentrations from
croplands were likely triggered by many factors, such as elevated ground
water volumes, manure/nutrient application, tillage for seeding, and in-
creased soil temperatures (Fig. 5a). All these factors together help explain
the trend of DOC concentrations observed between rainfall events in the
late spring season. The case is different for surface runoff during storms
when themanure/nutrient management strongly impact DOC observations
(Singh et al., 2014; Vidon et al., 2008). The higher DOC levels for croplands
compared to forested hill lands was partially due to other crop farming
practices, such as tillage in preparation for spring seeding. The optimum
corn planting period for much of Michigan is from the beginning to middle
of May, and the amount of soil manipulation would inherently rise as fields
are prepped for planting.

The highest peak of DOC concentrations was observed in the late sum-
mer (August) for both croplands and forested hill lands (Fig. 5a & b).
High soil temperatures drove the increased DOC concentrations in August
for both primary and secondary study basins due to the higher rates of mi-
crobial activities and faster turnover of DOC in organic soils (Bowering
et al., 2020; Haaland and Mulder, 2010). Furthermore, elevated crop root
mass in summer and autumnmonths expedite soil-based DOC productivity.
These two peaks in August and October corresponded well to the supple-
mental irrigation in June and July supporting corn plant size increases
(Apland et al., 1980) and to the end season irrigation in early September de-
pending on weather conditions (Ward, 2022). All these factors are reasons
asin 49 is where the USGS gage station resides. The dashed light blue vertical lines
owmelt: Snow Liquid Equivalent, and SW: Soil Water content.

Image of Fig. 6
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for the higher magnitudes of DOC concentrations from the primary versus
the secondary site (forested hill lands) for August and October peaks
(Kelly et al., 2015; Vetsch and Randall, 2002).

The mean monthly DOC concentrations for croplands were >2-fold
greater (Fig. 5a) compared with those for forested hill lands (Fig. 5b)
throughout the year. However, our mesocosm experiments revealed that
DOC transformation (i.e., foliar to dissolved) rates were often 2.5 times
faster for forest foliage compared with sweet corn foliage (Li et al., 2018).
Given the same biomass, corn plant foliage generates a lower DOC concen-
tration compared with forest leaf-liter (per unit mass). This suggests that
the higher DOC concentrations from croplands were likely regulated by
cropland management practices that physically breakdown corn plants,
where they are allowed to further degrade in the field after harvesting.
The high DOC concentrations from croplands are the effects of crop residue
accumulation across multiple years and related break-down as well as ma-
nure application (Du et al., 2019). Intuitively, the amount of organic bio-
mass of croplands must therefore be 5–6 times higher than that of
forested lands to result in the 2-fold greater DOC concentrations. Further-
more, the monthly precipitation and temperature patterns between the
two study basins were very comparable. Clearly it is the farming practices
in the Corn Belt as opposed to climate or temperature variations driving
DOC dynamics.With the same hydrological processes, the enriched organic
biomass in soils generated higher DOC concentrations in stream flow.

3.3. Variables attributable to spatial variation of daily DOC concentrations

Seven variables were tested and proved to be statistically significant as
strong predictors of the spatial variations of daily DOC concentrations
(Eq. (4)). Three out of these seven variables vary with time (daily) and
are inherently related to potential baseflow: soil water content (sw in
mm), ground water volumes (gw in mm), and potential evapotranspiration
(pet in mm). The remaining four variables (i.e., crp, frt, wetl and dum) repre-
sent the landcover characteristics of any given sub-basin. Note that these
spatial variables are the same as those utilized (Eqs. (2) and (3)) in analyz-
ing mean annual DOC variations across the Chippewa River watershed. If
Fig. 7.Modelled (Y axis) versus observed (X axis) DOC concentrations (mg/L) of 1st-ord
mixed landcover sub-basins. Yellow triangles (N = 63) represent crop dominant sub-ba
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let S represent those three variables that represent temporal characteristics
and let X represent the 4 variables that account for spatial characteristics,
then S and X for a specific sub-basin draining to a sampling location i,
and at a particular Julian day, t, are:

X ið Þ ¼ crp ið Þ, frt ið Þ,wetl ið Þand dum ið Þ½ �,
for every i ϵ sampled 1st � order extended sub � basins½ �

S i, tð Þ ¼ sw i, tð Þ, gw i, tð Þpet i, tð Þ½ �,
for all t : the Julian day when field samples were taken

The three temporal variables for S(j, t), where j is for gauge station (sub-
basin #49) and all t. The modelled daily variation of S(j, t) throughout year
from the SWAT simulation are displayed in Fig. 6. Sub-basin j contained the
USGS gauge station. S(j, t) was different from S(i, t) for all i in magnitude
depending on the size of the sub-basins, but they were highly correlated
(Correlations ≥ 0.8). For the purpose of exploring predictive variables ef-
fective in estimating DOC concentrations (not DOC flux), only S(j, t) was
used as the temporal data for this preliminary analysis. Linear regression
statistics were applied to daily S(j, t) for all t and X(i) for all i. The resulting
linear regression analysis equation (Eq. (4)) explained approximately 54 %
of y(i, t), daily DOC concentrations for all samples from 1st-order extended
sub-basins (crop and non-crop, R2

adj = 0.503, N = 100) as displayed in
Fig. 7 (hollow points). In the cases of analyzing only crop dominant sub-
basins, the model explained approximately 50.44 % (R2

adj = 0.46, N =
63, yellow triangle points).

f X, Sð Þ ¼ 0:46crpþ 0:95frt þ 0:51wetlþ 15:1dumþ 1:25pet
þ 0:046sw � 1:68gw � 59:96 (4)

The variables used predict daily DOC concentrations (in Eq. (4)) all ex-
plained statistically significant portions of variation in the dataset (0.000
≪ p-value ≪ 0.005). The associated coefficients likely indicate several
natural responsive processes. The coefficients of the four spatial variables
(crp, frt, and wet and dum) in Eq. (4) had similar value ranges to those
er extended sub-basins. Hollow points (N= 100) represent both crop dominant and
sins.

Image of Fig. 7
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found in Eqs. (2) and (3), albeit with the exclusion of the ln(A) variable. The
ln(A) variable of Eq. (3) was functionally replaced by the ground water var-
iable (gw) in this finer spaciotemporal-scale statistical analysis (Eq. (4)).
The negative coefficient of gw indicates an inverse relationship to daily
DOC concentrations. Logically, groundwater yield is in part positively cor-
related to the size of the sub-basin area (Rana et al., 2008). The high soil-
water content (i.e., soil moisture) for the primary study basin in late winter
and early spring were predicted quite well with the SWAT hydrologic
model (Fig. 6). These four spatial variables help to inform what, where,
and how land surface characteristics impact the variation of riverine DOC
concentrations. The resultant coefficients and listed significant variables
seem to reflect underlying hydrologic scientific rationales rather than
pure empirical analyses.

The three temporal variables (pet, sw, gw) were strong predictors of the
daily variation of DOC concentrations in stream baseflow across time. This
predictive power verifies that DOC concentrations in streams between
storm events are indeed inherently related to the groundwater properties
of said stream and its drainage area. The coefficients associated with
these three variables are very similar, indicating that each variable is of
nearly equal importance in this model. The results of this regression-
based analysis demonstrated that SWAT simulated hydrological properties
are indeed appropriate temporal variables for estimating DOC concentra-
tions daily or monthly across both study areas. The light blue vertical
lines in Fig. 6 mark the SWAT simulated hydrological properties corre-
sponding to the Julian days when the DOC samples were collected. The
SWATmodel performed well in characterizing the lag of groundwater run-
off in response to snowmelt in the early months of the year. In contrast, in-
creased soil water content (sw) did not display such a lag and was found to
be concurrent to snowmelt processes. The elevated snowmelt and associ-
ated lagged groundwater runoff peaks effectively explained the high DOC
concentrations sampled throughout the spring months of the year (Fig. 5a).

The results highlighted in Fig. 7 provide persuasive evidence that the
identified variables are indeed promising predictors to the spatial and tempo-
ral variations of DOC concentrations in baseflow.Most importantly, the study
isolated the key factors that seem to control the seasonal trends of carbon cy-
cling processes over midwestern croplands. If comparing these promising re-
sults to similar studies that inherently focused on DOC variations in storm
event surface runoff, our results appear more suitable for analyzing long-
term anthropogenic and climatic effects on freshwater ecosystems (Qiao
et al., 2017; Wallin et al., 2015). Our analysis of DOC concentrations in
streamflow between rainfall events is complementary to previous efforts an-
alyzing surface runoff during storm events (Terajima and Moriizumi, 2013).
Fig. 8. Modeled (red curve) versus observed (bars) monthly mean DOC concentration
(Observed 1) represents Jan, Mar, Apr, May, Oct, Nov, and Dec; R2 = 0.81. Observatio
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Herein, our research offers insights into the mechanisms that regulate
the dynamics of daily DOC concentration as they vary from land to river,
as mediated by land use (i.e., croplands). For example, the observed the
minimum andmaximum baseflowDOC concentrations at the gauge station
of the Chippewa River were 5.12 and 10.35 (mg/L) respectively. The low-
est and highest mean daily flow rates recorded for the years from 2011 to
2015 at the location were ~3.17 and ~82.4 cubic meters per second,
which corresponds to 273,888 and 7,119,360 m3 per day. Therefore, the
daily DOC fluxes linked to baseflow at the location of the gauge station
ranged from ~1403 to ~73,685 kgC·day−1. The daily DOC fluxes attrib-
uted to episodic event flows are only ~1/3 of those attributed to baseflow
(Qiao et al., 2017).

3.4. A quantitative analysis of mean monthly DOC concentrations

Fig. 8 shows how well the estimated monthly mean DOC concentration
(red line) matched to that observed (bars). The estimated monthly mean
DOC concentrations were aggregated from the daily linear model outputs
(Eq. (4)). The observed DOC concentrations were averaged for each
month from the 11 sampling locations designated as crop dominated 1st-
order extended sub-basins. The estimated DOC concentrations explained
~81 % (R2 = 0.81) of the observation data set 1 (Ob1 in Fig. 8) for six
months (i.e., Jan., Mar., Apr., May, Nov., and Dec.). These six months
corresponded to thosemonths conductedmore frequent field visits. The ob-
servation data set 2 (Ob2) was collected during summer months (i.e. Jun,
Jul., Aug., and Sep.), for which conducted less frequent sampling field visits.
As might be expected, the reduced field samples related to the Ob2 data re-
sulted in the regression model (Eq. (4)) having less predictive power,
explaining ~49 % (R2 = 0.49) of the observed DOC. In combination (Ob1
and Ob2), the estimation accuracy of the modelled values to the observed
monthly mean DOC concentrations was approximately 56 % (R2 = 0.56).

Estimations of DOC status in streamflow at monthly intervals are ideal
to both hindcast or forecast long-term impacts of climate change and
human activity on carbon-cycling processes and freshwater ecosystem func-
tions. Our analysis suggests that monthly mean DOC concentrations are in-
deed quantifiable and can provide a useful baseline for developing next-
generation analytical models of DOC concentrations in stream baseflow.
The baseline model can provide an ideal platform for including event-
based DOC fluctuations (Qiao et al., 2017). Such next-generation models
can then be expanded to incorporate both the spatial and temporal vari-
ables influencing DOC dynamics at sub-basin scales. Ultimately, such
models can integrate both biological and physical processes to help identify
s (mg/L) for crop dominant, 1st-order extended sub-basins. Observation data set 1
n data set 2 (Observed 2) represents Jun, Jul, Aug, and Sep; R2 = 0.49.

Image of Fig. 8
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where, when, and how DOC source and transport mechanisms respond to
climatic and anthropogenic processes.

4. Conclusions

The spatiotemporal distributions of DOC concentrations in streamflow
were observed from a cropland representative of the Midwestern United
States. Themain contributions of our research efforts are summarized below.

• The elevated DOC concentrations in early spring were in response to
snowpack and snowmelt processes over croplands with plant residue ac-
cumulation.

• Baseflow plays an important role in driving seasonal changes of DOC con-
centrations across spatial scales.

• The 1st-order extended drainage sub-basins are indeed an appropriate
spatial scale for quantifying the inherent relationship between a variety
of independent variables and DOC concentrations in cropland areas.

• Integrating an appropriate LULC reclassification, hydrological processes,
and systematic analysis of geospatial and temporal features is indeed a vi-
able approach for understanding DOC dynamics of agricultural land-
scapes with lowland hydrology.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.160744.
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