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• Landsat-8 and Sentinel-2 DOC models
showed acceptable accuracy.

• Landsat-8 and Sentinel-2 DOC estimates
were consistent within 4.9%.

• Monthly spatiotemporal variations of
DOC in Lake Huron were observed.

• DOC concentrations were significantly
influenced by the riverine discharge.
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Dissolved organic carbon (DOC) in aquatic environments is an important cycled pool of organic matter on the
Earth. Satellite remote sensing provides a useful tool to determine spatiotemporal distribution of water quality
parameters. Previous DOC remote sensing studies in inland water suffered from either low spatial resolution
or low temporal frequency. In this study, we evaluated the potential of jointly using Landsat-8 and Sentinel-2
with high spatial resolution to estimate DOC concentrations in Saginaw River plume regions of Lake Huron.
Firstly, CDOM (colored dissolved organic matter) was estimated from images using the known models and
then DOC can be derived in terms of the good correlations between DOC and CDOM. The results show that
Landsat-8 and Sentinel-2 had acceptable accuracy and good consistency in DOC estimation so that jointly
using them can improve the observation frequency. In different seasons from 2013 to 2018, DOC was typically
higher in spring and autumn but lower in summer. Monthly spatiotemporal variations of DOC in 2018 were
also observed. The image-derived DOC spatiotemporal variations show that DOC was covaried with Saginaw
River discharge (r = 0.82) and also weakly and negatively correlated with water temperature (r = −0.6). This
study demonstrated that using Landsat-8 and Sentinel-2 together can offer the potential applications for moni-
toring DOC and water quality dynamic in complex inland water.
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1. Introduction
Dissolved organic carbon (DOC), a major fraction of dissolved or-
ganic matter (DOM) in aquatic environment, is an important cycled
pool of organic matter on the Earth, accounting for 20% of the global or-
ganic carbon (Siegenthaler and Sarmiento, 1993). DOC plays a signifi-
cant role in carbon cycling and climate change (Coble, 1996, 2007),
and can be applied to monitor the amount of carbon storage in aquatic
environments (Griffin et al., 2011; Griffin et al., 2018b). The DOC cycling
in inland water is characterized by multiple terrigenous sources and
mixing biological, physical, and photochemical processes (Miller and
Moran, 1997; Bauer et al., 2013). In general, dissolved organic compo-
nents in water are products of decomposition processes from the live
or dead planktons such asmacrophyte and algae (Coble, 2007). In addi-
tion, a large number of terrigenous DOC is also transported into water
through river and groundwater discharge (Butman et al., 2016), making
aquatic DOC concentrations even higher (Findley, 2003; Pacheco et al.,
2014). Precipitation and surface runoff also carry DOC from the water-
shed soil organic carbon pool to lakes, estuaries and coasts (Godin
et al., 2017). The increased DOC concentrations may have considerable
impacts on aquatic environment, for example, high DOC abundance
will affect the color of natural waters, and then adversely influence pri-
mary production by preventing the solar radiation from propagating to
the ecosystem in deeper water (Bricaud et al., 1981; Coble, 2007; Joshi
and D'Sa, 2015). Previous studies have demonstrated that most inland
waters contain supersaturated CO2 in their water-air interface
(Tranvik et al., 2009), meaning that abundant aquatic DOC is releasing
non-negligible CO2 into atmosphere (Coble, 2007). Thus, monitoring
DOC provides an effective approach to observe and understand aquatic
environment and climate change.

Inland waters including streams, lakes, and wetlands only account a
small proportion to the Earth's surface (Verpoorter et al., 2014), but
these aquatic ecosystems act as an important role in regional and global
carbon cycling (Tranvik et al., 2009). Terrestrial carbon received by in-
land waters was approximately 1.9 Pg every year, of which 41.11%
was released to the atmosphere, 10.53% was deposited in sediments,
and the remaining was transported to the ocean (Cole et al., 2007). In
recent decades, one has more interest in investigating spatiotemporal
distributions of DOC (Miller and Moran, 1997; Cole et al., 2007; Bauer
et al., 2013; Griffin et al., 2018b). However, the traditional field-based
measurement can only make a discrete observation based on limited
water samples rather than a large-scope observation on the whole
study area (Kutser, 2012; Joshi and D'Sa, 2015). Instead, satellite remote
sensingprovides a useful tool to determine spatiotemporal distributions
of DOC.

Water quality remote sensing is based on the theory of radiative
transfer that AOPs (apparent optical properties) observed by satellite
sensors are determined by water's IOPs (inherent optical properties)
(Pan et al., 2014; Mouw et al., 2015; Palmer et al., 2015). The colored
dissolved organic matter (CDOM) is the optically-active fraction of
DOC. CDOM has strong absorptions at the UV and short wavelengths,
so that it has significant impact on underwater light field and then the
satellite-observed spectra (Kirk, 1994). Many remote sensing studies
of CDOM in various waters such as open seas, inland lakes, estuarine
and coastal regions have been reported (Cardille et al., 2013; Zhu
et al., 2013; Cao and Miller, 2015; Chen et al., 2017a; Cao et al., 2018;
Li et al., 2018; Xu et al., 2018). It is known that there are good correla-
tions between DOC and CDOM, so DOC can be remotely estimated
through two steps: at first, developing a model to accurately retrieve
CDOM, and then estimating DOC using the relationship between DOC
and CDOM. Some satellites such as MODIS (Moderate Resolution Imag-
ing Spectroradiometer) was used to estimate DOC in Great Lakes
(Shuchman et al., 2013) and Moreton Bay (Cherukuru et al., 2016),
and MEIRS (Medium Resolution Imaging Spectrometer) was used in
two lakes in Sweden (Kutser et al., 2015) and different coastal and estu-
arine regions in North America (Cao et al., 2018). Tehrani et al. (2013)
comprehensively evaluated the empirical algorithms for estimating
DOC in the northern Gulf of Mexico using SeaWiFS (Sea-viewing Wide
Field-of-view Sensor), MODIS, and MERIS and achieved satisfactory re-
sults. However, the spatial resolution of these satellites is not suitable
for small-size inlandwaters such as rivers and lakes.With higher spatial
resolution in 30 m, Landsat series satellites are also important tools for
earth observation. Griffin et al. (2011) used Landsat-5 and Landsat-7
to estimate DOC in Kolyma River and its major tributaries and found
the strong interannual variability of DOC, and they also used Landsat-5
and Landsat-7 to estimate DOC in some Arctic rivers (Griffin et al.,
2018a). Liu et al. (2019) used the historical Landsat-5 data to estimate
multi-decadal DOC spatiotemporal trends. However, Landsat-5 was of-
ficially decommissioned on June 5, 2013, and Landsat-7 was also with
the problem that its SLC (The Scan Line Corrector) has not worked
since May 31, 2003, making there are invalid gaps in Landsat-7 images.

In this study, we focused on two newly launched satellites Landsat-8
and Sentinel-2 which are with high spatial resolution 10–60m and im-
proved signal-to-noise ratio. Many studies have successfully used single
Landsat-8 or Sentinel-2 for retrieval of CDOM (Alcântara et al., 2016;
Olmanson et al., 2016; Slonecker et al., 2016; Toming et al., 2016;
Chen et al., 2017a; Chen et al., 2017; Xu et al., 2017; Li et al., 2018),
but there are few studies using the two popular satellites to estimate
DOC distributions in inland water. A potential shortcoming of Landsat-
8 is that it has a relatively long revisit time of 16 days, and once an
imagewas heavily covered by cloud or cirrus, the observation frequency
on a region of interest may be 32 days or even longer. Nevertheless,
many studies have used Landsat-8 for water quality observation and
driving factor analysis (Qiu et al., 2016; Zheng et al., 2016; Li et al.,
2017; Li et al., 2017b; Li et al., 2018; Ren et al., 2018; Luis et al., 2019),
and they also suggested that the observation and analysis might be im-
proved if more Landsat-8-like data can be used to enhance the temporal
frequency. Therefore, in this study we jointly used the Sentinel-2 satel-
litewith high revisit time (5 days). If combining Landsat-8 and Sentinel-
2, themedian revisit time ranges from 14min to 7 days and the average
time is 2.9 days (Li and Roy, 2017). Although DOC/CDOM concentration
is temporally more stable than the other water quality parameters such
as chlorophyll-a, suspended particulate matter, and Secchi depth, the
watershed precipitation and then the changes of discharge may also
dramatically affect DOC/CDOM concentrations within a short time
(Chen et al., 2018; Li et al., 2018; Zhao et al., 2018). Therefore, with
the temporal resolution being improved, the combination of Landsat-8
and Sentinel-2 still has great advantages formonitoringDOC spatiotem-
poral variations in complex inland water.

The objectives of this study are to: (1) evaluate the applicability of
Landsat-8 and Sentinel-2 for estimating DOC in inlandwater; (2) exam-
ine the consistency of the two satellites in retrieving DOC; (3) investi-
gate the seasonal patterns of DOC using the developed retrieval
models; and (4) map monthly DOC distributions and study its driving
forces by combining Landsat-8 and Sentinel-2 data.

2. Data and methods

2.1. Study site

The Saginaw River and Kawkawlin River plume regions in Saginaw
Bay, Lake Huron, is the study site for field water and spectrum sam-
plings (Fig. 1). There are two rivers, Kawkawlin River and Saginaw
River, flow into the Saginaw Bay. The Kawkawlin River is relatively
small, with length 28.2 km andwatershed area 647 km2, while the Sag-
inaw River is longer (36 km) and with a much larger watershed area
22,260 km2. The land use and land cover of their watersheds are basi-
cally cropland for agriculture as well as some urban areas such as Bay
City, Saginaw, and Midland. The Saginaw River usually looks more
turbid than the Kawkawlin River, while because of the high-
concentration CDOM, the color of Kawkawlin'swater looksmuch darker
than the Saginaw. The Saginaw Bay and its rivers provide important
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water resources for drinking, irrigation, fishing, navigation, and etc. The
residents and regulators in Saginaw, Midland, and Bay City always have
great concerns on water quality of the bay and rivers, and hence we
were motivated to monitor CDOM and DOC in the study site.

2.2. Field sampling and laboratory measurements

Three field sampling cruises were conducted in the study site on
May 10 and October 18, 2012, and May 7, 2013, and 41 water samples
were collected by amber Nalgene bottles, see Fig. 1. In cruises, all sam-
ples were immediately stored in a cooler to reduce the decomposition
of organic matter, and then were sent to the laboratory for CDOM and
DOC measurement at the same day or next day.

The above-surface spectra (400–800 nm), including the
downwelling irradiance (Ed), water leaving radiance (Lt), and sky radi-
ance (Li), were measured using the HyperSAS (Hyperspectral Surface
Acquisition System, Satlantic Inc.) and HyperOCR (Hyperspectral
Ocean Color Radiometer). The viewing geometry of instruments was
followed HyperSAS manual and NASA's protocol. The Rrs, remote sens-
ing reflectance, was then calculated by

Rrs ¼ Lt−ρLi
Ed

ð1Þ

where ρ, the water surface reflectance factor accounting for the propor-
tion of surface-reflected sky radiance, was set to 0.028 according to in-
strument manual and Mobley (1999). All spectra were measured
between 10 A.M. and 2 P.M. with no cloud and wind speed 2–4 m/s.
Fig. 1. Study site and samplingmap: the portion of a Landsat-8 image (acquired onMay 1,
2013) covering the Kawkawlin River and Saginaw River plume regions of Lake Huron.
To minimize the measurement uncertainty, each spectrum (Ed, Lt, and
Li) were measured at least 20 times at each sampling location, and
then the median one was used to calculate the Rrs.

In laboratory, water samples were filtered by GF/F glass microfiber
membrane (0.70 μm) for CDOMmeasurements. The absorption coeffi-
cients of CDOM (aCDOM) between 200 and 800 nm were measured by
a Cray-60 spectroradiometerwithMilli-Qwater as a baseline correction,
following the below equation

aCDOM ¼ ln 10ð Þ � A λð Þ
L

ð2Þ

where A(λ) is the optical absorbance of CDOM measured by Cary-60,
and L is the cuvette path-length inmeters (0.01m in this study). The ab-
sorption coefficient at 440 nm, namely aCDOM(440), is usually used as
the proxy of CDOM concentration (Kirk, 1994; Kutser, 2012; Zhu et al.,
2013; Cao et al., 2018). DOC concentration was measured using a
Shimadzu TOC-V analyzer. When 50 μL injections of water samples
were combusted at 800 °C, the sample DOC concentration can be calcu-
lated from the resultant CO2 measured with a non-dispersive infrared
detector.

2.3. Image preprocessing of Landsat-8 and Sentinel-2

Atmospheric correction is a necessary image processing for remotely
estimatingDOC (Zheng et al., 2016; Li et al., 2018). NASA andUSGS have
made Landsat-8 surface reflectance (SR) Level-2 products publicly
available, which can be requested and downloaded from their official
websites. Recent studies have demonstrated that Landsat-8 SR products
are applicable for deriving water quality parameters in complex waters
(Griffin et al., 2018a; Echavarría-Caballero et al., 2019; Kuhn et al., 2019;
Gomes et al., 2020). Sentinel-2 Level-1 raw products can be
downloaded from ESA's website, and ESA has developed an atmo-
spheric correction algorithm Sen2Cor to derive Sentinel-2 SR data
from its Level-1 image. Some studies show that Sen2Cor is accurate to
estimate Sentinel-2 SR data for water quality remote sensing modeling
(Toming et al., 2016; Chen et al., 2017; Casal et al., 2019; Sòria-Perpinyà
et al., 2020). Then Rrs can be further computed from SR with the help of
the well-known water radiative transfer model, Hydrolight. The two
variables including sky radiance reflected upward by the water surface
at the viewing geometry and downwelling irradiance were estimated
by the Hydrolight. In order to compute the two variables, some param-
eters, including wind speed, cloud cover, solar zenith angle, and image
acquisition location and date, need to be input into Hydrolight. These
parameters can be obtained from either National Climatic Data Center
or imagemetadata. The rest input parameters, such aswater color com-
ponents or water depth, were set by their defaults because they are not
linked to water surface reflectance. More details can be seen in (Chen
et al., 2017a) and (Zhu and Yu, 2013).

In this study we processed 38 Landsat-8 and 36 Sentinel-2 cloud-
free images fromApril 2013 toDecember 2018, inwhichmost of images
in winter (from Dec. to Feb.) are with poor quality since water was fro-
zen (Chen et al., 2018; Li et al., 2018). The Landsat-8 image on May 1,
2013 was used to evaluate DOC model's performance because this day
was close to the date of our field measurement on May 7, 2013. The
four Landsat-8 and Sentinel-2 images on April 23, 2016 and October
22, 2018 were used to evaluate the consistency of Landsat-8 and
Sentinel-2 for estimating DOC concentration.

2.4. Developing and evaluating DOC Landsat-8/Sentinel-2 models

Previous studies have developed accurate Landsat-8 and Sentinel-2
CDOM retrieval models in Saginaw Bay, Lake Huron (Chen et al.,
2017a; Chen et al., 2017). The Landsat-8 CDOM model is aCDOM
(440) = 40.75e−2.463x, x = Rrs(OLI3)/Rrs(OLI4), with accuracy R2 =
0.829 and RMSE = 0.863 m−1, and OLI3 and OLI4 are band 3 (green,



Fig. 2. Field measured above-surface spectra (Rrs).
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561 nm) and band 4 (red, 655 nm) of Landsat-8, respectively. The
Sentinel-2 CDOM model is aCDOM(440) = 28.966e−2.015x, x = Rrs
(MSI3)/Rrs(MSI4), with accuracy R2 = 0.832 and RMSE = 0.859 m−1,
and MSI3 and MSI4 are band 3 (green, 560 nm) and band 4 (red,
664 nm) of Sentinel-2, respectively. In this study, we do not develop
new CDOM retrieval models but used the above two models, and then
model the correlations between DOC and CDOM, aiming to estimate
DOC from the image-derived CDOM.

Fieldmeasured Rrswere used to simulate the bands of Landsat-8 and
Sentinel-2 according to their spectral response functions (SRF). The
SRFswere obtained from theofficialwebsites of NASA and ESA. The sim-
ulation was conducted by

Rb ið Þ ¼

Z
λmin

λmax

SRF λð ÞRrs λð Þdλ
Z
λmin

λmax

SRF λð Þdλ
ð3Þ

where Rb(i) is the Rrs for the i-th band of Landsat-8 or Sentinel-2, λmin
Fig. 3. The measured aCDOM(440) and DOC concentrations in three sampli
and λmax are the minimum and maximum wavelengths of the i-th
band, and SRF(λ) is the relative spectral response for the i-th band at
wavelength λ. In this study, the performances of Landsat-8 and
Sentinel-2 DOC retrievalmodelswere evaluated usingboth of simulated
spectra and real image. The model evaluation statistics include coeffi-
cient of determination (R2), root mean square error (RMSE), and rela-
tive root mean square error (RRMSE), and the Pearson correlation
analysis was used to determine the correlations between two variables
such as DOC and discharge. After the DOC Landsat-8/Sentinel-2 models
were carefully evaluated and consistency-checked, these models were
then applied to 74 Landsat-8 and Sentinel-2images acquired from
April 2013 to December 2018. Meanwhile, monthly spatiotemporal dis-
tributions of DOC in Saginaw River estuary in 2018 were also mapped
and analyzed.

3. Results and discussion

3.1. Field measured spectra, DOC and CDOM variations

The fieldmeasured Rrs are shown in Fig. 2, showing the typical spec-
tral signatures of complex inland freshwater (Toming et al., 2016; Zhang
et al., 2016; Xu et al., 2018). The reflectance peaks at about 570 nm
(Fig. 2) may be caused by the combinative effect of minimal absorption
of algal pigments and scattering of non-algal particles (Gurlin et al.,
2011). The reflectance troughs at approximately 670 nm (red band)
may be caused by the maximum absorption of chlorophyll-a. The local
reflectance peaks at about 700 nm were related to the minimum ab-
sorption of algal pigments and pure water. Most of samples were with
high Rrs N 0.01 sr−1, especially within wavelengths 500–700 nm
(green and red bands). These high-Rrs samples were from the lake
water in Saginaw River estuary and open Lake Huron areas, while a
few samples, e.g., No. 5 and No. 6 in Fig. 2, were with very low reflec-
tance. These low-Rrs samples were found in the small plume region of
the Kawkawlin River, where the CDOM concentrations are very high
(N 8 m−1), making the water looks very dark, and hence leading the
water-leaving radiance to be very low. Other spectral features con-
nected to DOC/CDOM variations can refer to our previous study (Zhu
et al., 2014).

The fieldmeasured DOC and aCDOM(440) onMay 10, 2012werewith
ranges of 5.42–17.86mg/L (mean 9.92mg/L) and 0.73–8.46m−1 (mean
3.39 m−1), on Oct 18, 2012, they were decreased to 3.29–5.96 mg/L
(mean 4.44 mg/L) and 0.11–2.06 m−1 (mean 0.75 m−1), and on May
ng cruises: (a) May 10, 2012, (b) Oct. 18, 2012, and (c) May 7, 2013.



Fig. 6. Comparison between field measured DOC and Landsat-8 estimated DOC.

Fig. 4. Relationship between the measured aCDOM(440) and DOC.

5J. Chen et al. / Science of the Total Environment 718 (2020) 137374
7, 2013, they turned to be 6.62–11.47 mg/L (mean 8.1 mg/L) and
3.52–7.43 m−1 (mean 4.59 m−1), respectively, see Fig. 3. Some studies
have reported that snow-melting processes can boost the releasing of
organic matter from soil to water, triggering the significant seasonal
DOC/CDOM variations between the early May and the middle of Octo-
ber (Huang and Chen, 2009). For all three cruises, the sampled DOC
ranged from 3.29 to 17.86 mg/L with the mean 6.94 mg/L and CV (the
coefficient of variation) 44.35%, demonstrating the large variations of
DOC in study area.

It is known that CDOM can be used as the indicator of DOC in many
inland waters (Griffin et al., 2011; Shuchman et al., 2013; Zhu et al.,
2014; Griffin et al., 2018a; Liu et al., 2019). In our study area, the results
(see Fig. 4) show that there were good correlations (R2= 0.76, n= 41)
between DOC and aCDOM(440), so themodel used to estimate DOC from
aCDOM(440) was then established by

DOC ¼ 1:268aCDOM 440ð Þ þ 3:623 ð4Þ

3.2. Model performance based on simulated bands of Landsat-8 and
Sentinel-2

Based on the known Landsat-8/Sentinel-2 CDOM models (see
Section 2.4) and Eq. (4), DOC can be then estimated from the simulated
Fig. 5. Field measured DOC versus estimated DOC based on CDOM-DOC relationship a
Landsat-8 and Sentinel-2 Bands. Fig. 5 shows the validation results of
DOC retrieving. For Landsat-8 model, DOC estimations were with good
accuracy R2 = 0.86, RMSE = 1.13, and RRMSE = 16.28% (Fig. 5(a)).
The Sentinel-2 DOC model shown the similar accuracy as the Landsat-
8 DOC model with R2 = 0.78, RMSE = 1.41 mg/L, and RRMSE =
20.32% (Fig. 5(b)). These validation results demonstrated that
Landsat-8 and Sentinel-2 spectra and the proposed models can be
used to estimate DOC concentration in the study site with acceptable
accuracy.
3.3. Model application in Landsat-8 and Sentinel-2 images

Beside the simulated spectra, we also used the image-obtained spec-
tra to test our models. The image spectra were obtained from the
Landsat-8 image acquired on May 1, 2013, and the image-derived
DOC were compared with the ground true DOC obtained on May 7,
2013. Although there was a 6-day gap between the field sampling and
satellite passing, according to many previous studies (Griffin et al.,
2011; Tebbs et al., 2013; Montanher et al., 2014; Sun et al., 2015; Lee
et al., 2016; Boucher et al., 2018), the gap is still allowed for remote
sensing validation, because, during the 6 days, (1) there were no dra-
matic weather changes such as rainfall, strong winds, and significant
temperature drops; and (2) there were also no human activities such
as river channel and lakeshore construction works. Moreover, recent
studies have demonstrated that Landsat-8 SR products are applicable
for deriving water quality parameters in complex waters (Griffin et al.,
nd satellite-estimated CDOM for (a) Landsat-8 model and (b) Sentinel-2 model.



Fig. 7. Comparison between Landsat-8 and Sentinel-2 estimated DOC: (a) Landsat-8, April 23, 2016, (b) Sentinel-2, April 23, 2016, (c) Landsat-8, October 22, 2018, and (d) Sentinel-2,
October 22, 2018.
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Fig. 8. Validation of Sentinel-2 DOC model using the Landsat-8 DOC model for the satellite images acquired at the same day: (a) April 23, 2016, and (b) October 22, 2018. The color bar
indicates the density of the image-acquired samples.
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2018a; Chen et al., 2019; Echavarría-Caballero et al., 2019; Kuhn et al.,
2019; Gomes et al., 2020). Therefore, we believe that during the
6 days, the CDOM and DOC in the study site would not experience sig-
nificant change. The Landsat-8 image-derived DOC was validated by
the 13 samples measured on May 7, 2013, and the results (Fig. 6)
show that the model performed well with RSME = 1.52 mg/L and
RRMSE= 18.74%. Among the 13 samples, DOC in 11 samples was accu-
rately derived except in samples No.5 and No.6. The two samples were
located in Kawkawlin River's mouth where the discharge plume region
were small and might be significantly and frequently changed by the
currents in Lake Huron (Chen et al., 2017a). We found that except sam-
ple No.5 and No.6, the other samples were slightly overestimated by
11.69%. These overestimations may be caused by the gap (6 days) be-
tween the field measurement and image acquisition dates. We checked
the real discharge of SaginawRiver onMay1 andMay7, 2013 and found
that the discharge on May 1 was slightly larger than that on May 7. It is
known that there are positive correlations between river discharge and
DOC/CDOM concentrations (Griffin et al., 2011; Zhu et al., 2013; Griffin
et al., 2018a; Li et al., 2018; Liu et al., 2019). Therefore, although there
were overestimations of Landsat-8 onMay1 compared to thefieldmea-
sured values on May 7, they might be reduced if compared to the true
field values measured on May 1.

Because the dates of available Sentinel-2 images do not match or
close to any date of our field measurement, the performance of
Sentinel-2 DOC model cannot be directly examined, but it can be vali-
dated using the Landsat-8's derived results as the ground truth, just
like some previous studies have done (Wu et al., 2013). In this study,
there were twice that Landsat-8 and Sentinel-2 sensed the study area
on the same day, i.e., on April 23, 2016 and October 22, 2018, and
even at the same time (the time intervals were 15 min and 1 min, re-
spectively), so the acquired images were used for assessing the perfor-
mance of the Sentinel-2 DOC model as well as the consistency of the
Landsat-8 and Sentinel-2 DOC models.
Table 1
The number of high-quality available Landsat-8 and Sentinel-2 images from 2013 to 2018.

Year Landsat-8 Sentinel-2 Sum

2013 7 n/a 7
2014 3 n/a 3
2015 6 2 8
2016 9 5 14
2017 7 6 13
2018 6 23 29
The Fig. 7 shows the image-derivedDOC from the four Landsat-8 and
Sentinel-2 images acquired on April 23, 2016 and October 22, 2018. The
resultant DOC distributions indicate that Landsat-8 and Sentinel-2 DOC
models were with excellent consistent across the study site. DOC in the
two days was with ranges 4.63–9.85 mg/L and 3.75–8.55 mg/L, respec-
tively. To quantify the satellite consistency, the spatial resolution of
Sentinel-2 images was reduced to as the same as the 30 m of Landsat-
8, and then correlations between the results of the corresponding im-
ages can be computed. Results (Fig. 8) show that there was excellent
consistency between Landsat-8 and Sentinel-2 DOC models: they
were correlated with R2 = 0.97, RMSE = 0.29 mg/L, and RRMSE =
4.22% on April 23, 2016, and R2 = 0.97, RMSE = 0.22 mg/L, and
RRMSE = 4.9% on October 22, 2018. These results indicate that the
Sentinel-2 DOC model is accurate and Sentinel-2 and Landsat-8 have
good consistency for DOC estimation in complex freshwater.

3.4. Image-observed seasonal variations of DOC and DOC-discharge
relationship

The amount of valid Landsat-8 and Sentinel-2 images is shown in
Table 1. Landsat-8 was launched on February 11, 2013 and the twin
Sentinel-2 satellites (Sentinel-2A and Sentinel-2B) were launched on
June 23, 2015 and March 7, 2017, and routinely obtained images with
a 5-day interval since 2018. In terms of interval times of Landsat-8
(16 days) and Sentinel-2 (5 days), the observation frequency of previ-
ous Landsat-8 CDOM or DOC models would be improved by approxi-
mately 75% if combining similar Sentinel-2 models, and if new
Sentinel-2 models can combine more Landsat-8 images, its observation
frequency would be improved by approximately 25%. Both of the two
combinations would be beneficial to our water quality monitoring.
Therefore, from Table 1 we can see that, after 2018, image amount of
jointly using Landsat-8 and Sentinel-2 is almost five times that of
using single Landsat-8, and hence providedmore frequent observations
on inland water quality (Li et al., 2015).

The Fig. 9 shows the relationships between the image-derived DOC
concentrations and the discharge of Saginaw River from 2013 to
2018. We can see that DOC covaried well with river discharges in
different seasons. Previous studies have found that DOC/CDOM and
chlorophyll-a are not covaried in the study site (Zhu et al., 2015), mean-
ing that DOC is mainly sourced from the allochthonous rather than au-
tochthonous matter. The land use and land cover of Saginaw River
watershed are mainly for agriculture, making the major content of soil
organicmatter comes from the biological decay of crop residues and de-
ciduous trees, and hence when the organics-rich soil particles were



Fig. 9. DOC concentrations estimated jointly from Landsat-8 and Sentinel-2 image and the discharge of Saginaw River from 2013 to 2018.
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moved into the lake by runoff and river discharge, the observed lake
DOC concentrations were correspondingly increased (Griffin et al.,
2011; Joshi and D'Sa, 2015; Chen et al., 2018; Li et al., 2018; Liu et al.,
Fig. 10. Spatial distributions of monthly mean DOC in Saginaw plume region
2019). Our results clearly show that the DOC-discharge coupling also
frequently occurred in Saginaw River plume regions of Lake Huron,
where DOC experiences periodically three seasonal patterns (Fig. 9):
s of Lake Huron in 2018 by combining Landsat-8 and Sentinel-2 images.



Fig. 12. Monthly mean DOC concentrations in 2018 along the Saginaw River estuary into
the inner Saginaw Bay.
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(1)DOC concentrationswere high fromApril toMay; (2) then it became
lower from June to August; and (3) comparedwith in summer, it turned
to be higher again from September to November. For example, accord-
ing to the image-derived results, DOC concentration was 7.6 mg/L on
April 16, 2016, and changed to 4.82 mg/L in July and 7.25 mg/L in
November of that year.

3.5. Monthly variations of DOC and its driving forces

We particularly mapped and analyzed the DOC variations in 2018,
because the monthly observation frequency in 2018, provided by
Landsat-8 and Sentinel-2 together, was the highest in the past five
years. The monthly DOC image-observed distributions in Saginaw
plume regions of Lake Huron, from March to October in 2018, are
shown in Fig. 10. The similar three seasonal patterns also happened
in 2018, see Fig. 10, in that year, the highest DOC concentration
(8.63 mg/L) was found in April, while the lowest 5.82 mg/L was found
in July (Fig. 11). In Saginaw Bay area, the above three seasonal patterns
correspond to its climate periodicity and phenological synchrony. In
spring (Apr.–May), the increased surface runoff due to snow-melting
and rainfall exports large amounts of organic matter from the land to
Saginaw Bay, liftingDOC concentrations in the lake. In contrast, DOC be-
comes lower in summer since microbial decomposition and photo-
bleaching are enhanced as temperature and solar radiation come to be
high, and in addition, the river discharge also becomes lower in summer
(Del Vecchio and Blough, 2004). During the autumn and after the har-
vest, the crop residues and shed leaves gradually decay and lead to rel-
atively high soil organic matter contents (Kalbitz and Kaiser, 2008).
Moreover, solar radiation andwater temperature drop down in autumn,
causing the sink of DOC being at a low rate (Hudson et al., 2003) so that
DOC concentrations become higher again.

Spatially, DOC concentrations were higher in estuarine and lake-
shore regions than in the open area of Saginaw Bay. The DOC-rich
water in these regions were caused by the discharge of Saginaw River
and Kawkawlin River, and we also found some small DOC sources in
lakeshore regions which were caused directly by human activities,
such as a small plume region at latitude 43.64° and longitude
−83.82°, where the DOC-rich water were made by the nearby coal-
fired power plant, the Consumers Energy–D.E. Karn/J.C. Weadock
Generating Complex. Along the Saginaw River to the inner bay, DOC
declined in all seasons (Fig. 12). The highest DOC concentration
difference between the estuary and inner Bay occurred in October
Fig. 11.MonthlymeanDOC concentrations of SaginawRiver in2018. Note that the boxplot
shows the minimal, median, mean (green diamond symbols), maximal, 25th and 75th
percentile of DOC concentration. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
(7.65 mg/L versus 3.78 mg/L), while the smallest was found in July
(5.33 mg/L versus 4.74 mg/L).

The Pearson correlation analysis betweenmonthlymean DOC con-
centrations in Saginaw River plume regions and monthly mean dis-
charge of Saginaw River were performed, see results in Fig. 13. They
were positively correlated with r = 0.82 (Fig. 13(a)). The remote
sensing observed DOC-discharge relationship is consistent with the
long-term field observed cases in North America and Landsat-5/7 ob-
servations in high-latitude and Arctic regions (Correll et al., 2001;
Griffin et al., 2011; Griffin et al., 2018a). Correll et al. (2001) sampled
field organic matter in eight small watersheds on the Atlantic Coastal
Plain and analyzed the effects of water discharge and land use on or-
ganic carbon, and they found that DOC was positively related with
the instantaneous water discharge, but their observed correlation
(r = 0.58, N = 219, p b 0.00001) is weaker than the remote sensing
observation in our study site (r = 0.82). The stronger DOC-
discharge relationships in Saginaw River watershed is reasonable be-
cause they found that TOC (total organic carbon) fluxes were more
variable with precipitation in first order watershed (Correll et al.,
2001), while in our study, DOC-discharge relationship could be a
good proxy of TOC-precipitation relationship, and Saginaw River wa-
tershed is also a type of first order watershed dominated by the crop-
land. We also analyzed the relationship between DOC concentration
and water temperature (WT), because microbial decomposition pro-
cess of organic matter is influenced by environmental temperature,
and typically, the increased temperature would lead to a decreased
trend of DOC concentration (Hudson et al., 2003). Our results show
there were negative correlations between WT and DOC (r = −0.6)
but Correll et al. (2001) found that there were no significant regres-
sions for air temperature (AT) versus TOC concentrations for spring,
fall, and annual periods, but for summer and winter, the AT-TOC
showed significant positive correlations (r = 0.44–0.65). Compared
to air temperature, water temperature is more tightly and directly
connected to the dissolved organic matter. Therefore, possibly our re-
sults are more accurate than the Correll's, that is, temperature, either
WT or AT, is negatively rather than positively correlated to DOC con-
centrations. Other studies also found that AT-DOCwas negatively cor-
related (Liu et al., 2019). However, because warmer temperatures



Fig. 13. Relationships between monthly mean DOC and (a) monthly mean river discharge, and (b) monthly mean water temperature.
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may be stimulating DOC production and/or consumption rates by
influencing microbial activity, the temperature-DOC correlations in
different watersheds may hence varied and the real correlations
might be too complex to be simply expressed in linear regressions.

4. Conclusion

In this study, Landsat-8 and Sentinel-2 satellites were jointly used to
estimate DOC spatiotemporal variation in Saginaw Bay of Lake Huron.
The field measured DOC and CDOM in the study area were with good
correlation. Based on this DOC-CDOMcorrelation, DOC can be estimated
using the known CDOM remote sensing models in study site. The DOC
Landsat-8 model performed well with accuracy R2 = 0.86, RMSE =
1.13 mg/L, and RRMSE = 16.28%, and DOC Sentinel-2 model were
with accuracy R2 = 0.78, RMSE = 1.41 mg/L, and RRMSE = 20.32%.
There was high consistency between Landsat-8 and Sentinel-2 DOC
models when they were applied in images acquired at the same day,
the resultant R2=0.97 and RMSE=0.22mg/L. TheDOC concentrations
jointly derived from 5-year (2013–2018) time-series Landsat-8 and
Sentinel-2 images shows highly temporal variations. Satellite observa-
tion frequency in 2018 is highest across the 5-year. Furthermore,
monthlymeanDOC concentrations in 2018weremapped and analyzed.
Especially DOC had a significant seasonal covariationwith the discharge
(r = 0.82). DOC concentrations were relatively higher in spring, lower
in summer, and higher again in autumn. These seasonal DOC changes
are associated with the snow-melting, rainfall, crop harvest, defoliation,
and other terrestrial and hydrological events. Besides, DOC concentra-
tions in Saginaw Bay highly influenced by surrounding terrestrial
showed significant spatial heterogeneity. We also found that DOC and
water temperature had a weak negative correlation (r = −0.6). This
study demonstrated that combining Landsat-8 and Sentinel-2 can pro-
vide accurate and frequent observations for DOC dynamics in complex
inland water.
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