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A New Index for Remote Sensing of Soil Organic 
Carbon Based Solely on Visible Wavelengths

Soil & Water Management & Conservation

Remote sensing is a powerful method for mapping soil properties, such as soil 
organic carbon (SOC), a key property of soil quality. Spectral remote sens-
ing indices that rely on shortwave-infrared (SWIR) or near-infrared (NIR) 
wavelengths have been developed to quantify spatial patterns in SOC. However, 
the application of SWIR- and NIR-based indices for quantifying fine-scale pat-
terns of SOC is limited due to the requirement of high-resolution multispectral 
or hyperspectral imagery. Visible wavelengths are measured by virtually all sen-
sors, often at high resolution; hence, development of a visible wavelength–based 
index can greatly increase the ability to remotely estimate SOC. Here we develop 
such an index by assessing the relationship between laboratory-measured SOC 
and spectral reflectance using 7916 SOC and hyperspectral measurements from 
the nationwide USDA Rapid Carbon Assessment. Our new SOC index (SOCI) 
predicts SOC concentrations for the 7916 samples with a RMSE of 1.5%, which 
is comparable to predictions from the SWIR/NIR ratio (RMSE = 1.3%) and out-
performs the predictions of an index based on NIR and red wavelengths (RMSE 
= 2.8%). We applied the index to a high-resolution satellite image and tested the 
ability of the image-based SOCI to predict measured SOC concentrations for a 
plowed field in Iowa. Regression models with and without local calibration data 
accurately predict measured SOC, with RMSE values of ~0.5%. Given the wide-
spread availability of imagery with spectral data in the visible wavelengths, there 
is potential to use the SOCI to address a range of soil-agronomic problems.

Abbreviations: DN, digital number; NIR, near-infrared; RaCA, USDA Rapid Carbon 
Assessment; SI, spectral index; SOC, soil organic carbon; SOCI, soil organic carbon index; 
SWIR, shortwave-infrared; VIS, visible; r, spectral reflectance.

Soil organic carbon (SOC) is vital for soil fertility and agricultural productivity 
(Lal, 2006; Reeves, 1997). Soil erosion causes declines in SOC, which result in 
economic losses due to decreased crop productivity (Lal, 2004; West and Post, 

2002) and the need to supplement degraded soils with chemical fertilizers (Pimentel 
et al., 1995). The influence of SOC on agricultural productivity has, in part, driven 
interest in the development of digital soil mapping techniques (Bachofer et al., 2015; 
Chen et al., 2000; Dogan and Kılıç, 2013; Frazier and Cheng, 1989; Mishra et al., 
2009; Mulder et al., 2011). Digital soil mapping techniques use diffuse reflectance 
spectroscopy, which has been demonstrated to accurately and nondestructively re-
late spectral reflectance to soil properties (Bachofer et al., 2015; Ben-Dor and Banin, 
1995; Gomez et al., 2008; Peón et al., 2017). Digital soil mapping has been used to 
qualitatively assess the degree of soil degradation in agricultural landscapes by cat-
egorizing the degradation into severity classes (Chikhaoui et al., 2005) and to quan-
titatively predict SOC concentrations (Chen et al., 2000; Gomez et al., 2008; Frazier 
and Cheng, 1989; Rossel et al., 2006). The use of spectrographic analysis to digitally 
map soil characteristics has been used in precision agriculture because rapid, field-
scale assessments of soil properties allow farmers to efficiently identify and treat soils 
in which nutrients are limited (Mulla, 2013).
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Linear regression models developed from laboratory hyper-
spectral reflectance and chemical measurements of soil samples 
have often been used to calibrate spectral indices for predicting 
soil properties based on soil color (Bachofer et al., 2015; Ben-Dor 
and Banin, 1995; Frazier and Cheng, 1989; Gomez et al., 2008; 
Mulder et al., 2011; Nanni and Demattê, 2006). Soil color often 
varies due to changes in SOC and soil moisture (Escadafal, 1993; 
Schulze et al., 1993). Soils with higher SOC concentrations are 
typically darker colored and therefore have lower spectral reflec-
tance than soils with lower SOC content (Rossel et al., 2006). 
Similarly, increasing soil moisture causes soils to appear darker be-
cause the reflectance of incident radiation in the visible spectrum 
uniformly decreases with increasing moisture (Nocita et al., 2013; 
Weidong et al., 2002). However, unlike reflectance changes due to 
SOC content, the uniform decrease in reflectance across the vis-
ible wavelengths with increasing soil moisture indicates that use 
of band ratios can remove the impact of soil moisture on spectral 
reflectance (Nocita et al., 2013; Stoner and Baumgardner, 1981).

Wavelengths in the short-wave infrared (SWIR, 1300–2500 
nm) and near-infrared (NIR, 700–1300 nm) regions have been 
shown to be sensitive to SOC, with the reflectance in both re-
gions decreasing with increasing SOC (Bartholomeus et al., 2008). 
Several spectral indices that are sensitive to changes in SOC have 
been derived using laboratory and field measurements of SWIR and 
NIR reflectance, r (Peón et al., 2017; Rossel et al., 2006). For ex-
ample, the band ratio SWIR/NIR (r1608/r833 nm) was correlated 
with SOC (R2 = 0.98) for 32 soil samples and used to examine the 
extent of SOC-rich topsoil erosion in the Palouse region of eastern 
Washington (Frazier and Cheng, 1989). For most satellite sensors, 
measurements of wavelengths in the SWIR region are limited in pix-
el resolution or, where SWIR is measured at high pixel resolution, in 
the coverage and availability of images. Hence, there are limitations 
to implementing SWIR-based indices at fine-spatial scales. Because 
visible wavelengths are measured by most sensors and can rapidly be 
measured at the field scale using satellites, unmanned aerial vehicles 
(drones), or other platforms, the development of an SOC index 
based solely on the visible spectrum would allow variations in SOC 
to be efficiently assessed without the use of multispectral or hyper-
spectral imagery that include data in the SWIR-NIR wavelengths.

Spectral methods that use combinations of visible (VIS, 400–
700 nm) and NIR bands (Chen et al., 2000; Peón et al., 2017) have 
been developed for small geographical areas but have not been cali-
brated using data from larger spatial scales. For example, image in-
tensity values in the VIS wavelengths calculated from an aerial image 
of a 115-ha field in Georgia were used to develop a multiple linear 
regression model that predicted SOC with an R2 of 0.93; however, 
the regression was calibrated using only 28 soil samples (Chen et al., 
2000). A spectral index (SI) with the form of the normalized dif-
ference vegetation index [SI1001–679 nm = (r1001 - r679)/(r1001  + 
r679)], which is typically used in phenological studies of vegetation, 
has been shown to be useful as an SOC index (Peón et al., 2017). A 
maximum R2 value of 0.56 was observed for the correlation between 
SOC and the SI1001–679 nm calculated from satellite hyperspectral 
measurements from 39 soil samples collected in northwestern Spain 

(Peón et al., 2017). Although SOC has been shown to be well cor-
related with the SWIR/NIR and SI1001–679 nm indices, such studies 
have used a relatively small number of soil samples collected from a 
limited geographic extent. Hence, the utility of such indices at re-
gional to global scales remains untested.

In addition to using diffuse reflectance spectroscopy to develop 
spectral indices, the application of multivariate statistical techniques 
or machine learning algorithms, such as principal component anal-
ysis (Chang et al., 2001), regression trees (Peón et al., 2017), sup-
port vector machines (Aldana-Jague et al., 2016), artificial neural 
networks (Rossel and Behrens, 2010), and partial least squares re-
gression (Rossel et al., 2006), are used for SOC estimation. For ex-
ample, artificial neural networks were used with hyperspectral data 
from ~20,000 soil samples collected by the USDA Rapid Carbon 
Assessment (RaCA) to develop models for predicting SOC (Soil 
Survey Staff, 2013). Incorporating land use, master horizon, and 
textural class information into the models resulted in SOC predic-
tions with RMSE values between 0.5 and 1.5% (Wijewardane et 
al., 2016). However, transferring such multivariate statistical mod-
els between sensors is complex because wavelength position, band-
width, and number of bands vary between sensors (Li et al., 2012). 
Multivariate and machine learning techniques are hence specific to 
the sensors for which they are derived and require re-calibration for 
use with different sensors (Bartholomeus et al., 2008).

Although multiple approaches have been used to predict 
SOC from spectral data, there remains a need for the develop-
ment of a spectral index for SOC, based on wavelengths in the 
visible range, that can be applied to multispectral and hyperspec-
tral imagery at high spatial resolution (Peón et al., 2017). Here 
we use SOC measurements and hyperspectral reflectance data 
for soil samples collected across the United States to compare a 
newly developed index that relies only on the VIS wavelengths 
to the SWIR/NIR and the SI1001–679 nm indices. We then vali-
date the new index using a satellite image to generate a map of 
predicted SOC values for a field in Iowa and compare the predic-
tions against measured SOC concentrations.

Data and Methods
Laboratory data

The RaCA, undertaken by the Soil Science Division of 
the USDA National Resource Conservation Service, collected 
144,833 soil samples to 1 m depth at 6148 sites in the contermi-
nous United States (Soil Survey Staff, 2013; Wills et al., 2014). 
Soil samples were air-dried and sieved to <2 mm, and hyper-
spectral reflectance was measured from 350 to 2500 nm for all 
samples using an ASD Labspec Spectrometer (Analytical Spectral 
Devices, Inc., PANalytical NIR Excellent Center). The SOC con-
centration was measured for a subset of samples as the difference 
between total C and inorganic C (Wijewardane et al., 2016). To 
evaluate the ability of existing SOC indices and a new index based 
solely on the visible spectrum to predict SOC, we used 7916 mea-
surements of SOC and hyperspectral reflectance from the RaCA 
for mineral soil horizons (A- and B- horizons) from 2673 loca-
tions within the conterminous United States (Fig. 1).
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Development of a New Spectral Index and 
Comparison with Existing Indices

We developed a new SOC index (SOCI) by performing 
linear regression between combinations of visible bands and 
SOC using the national RaCA soil sample data and choosing a 
combination of bands that minimized the RMSE (Supplemental 
Table S1). We term the band combination that yielded the mini-
mum RMSE value the SOCI:

Blue

Red Green

SOCI
r

r r
=

⋅
� [1]

We used reflectance at 478, 546, and 659 nm for blue, green, 
and red, respectively, which correspond to the center wavelengths 
of the WorldView-2 sensor.

Soil properties, such as SOC concentrations, exhibit high de-
grees of spatial correlation (Cambardella et al., 1994; Mishra et al., 
2009); hence, the strength of relationships between remote sens-
ing indices and measured SOC values likely varies with spatial scale 
between and within regions due to differences in predominant soil 
forming factors. To assess the role of scale and regional variability, 
we examined the R2 and RMSE between measured SOC and the 
SOCI, the SWIR/NIR index, and the SI1001–679 nm for RaCA 
soil sample datasets of varying spatial extent: the conterminous 
United States, three large and predominantly agricultural USEPA 
Level I ecoregions (Great Plains, Eastern Temperate Forests, and 

Mediterranean California), and 54 Level III ecoregions nested 
within the larger Level I ecoregions (Omernik, 1987).

Application of the New Index to Soil Organic C 
Mapping Using Satellite Imagery

We used a 1.9-m pixel resolution WorldView-2 satellite im-
age of a 15-ha agricultural field in Iowa to assess the ability of the 
SOCI to predict spatial patterns in SOC. Within the field, pre-
vious workers collected 228 soil samples to a depth of 30 cm (Li 
et al., 2018). The samples were sieved to <2 mm and ground to a 
powder, and the depth-averaged SOC concentrations for the 30-
cm profile were measured (Li et al., 2018). The image was acquired 
on 4 May 2010, when the field was plowed and lacked both crop 
residue and crop cover. We used the SOCI to predict SOC within 
the field using two methods: (i) we used a subset of the measure-
ments from the field to locally calibrate a relationship between 
the SOCI and SOC and then used the local calibration to predict 
measured SOC values, and (ii) we developed a regional calibration 
between the SOCI and SOC using RaCA data from the Western 
Corn Belt Plains Level III ecoregion, where the agricultural field is 
located, and used the regional calibration to predict SOC.

Local Calibration
To determine if radiometric correction of the image is nec-

essary for the index to be applied, we calculated the SOCI from 

Fig. 1. Map of USDA Rapid Carbon Assessment (RaCA) soil sample locations and USEPA ecoregions: The Great Plains, Mediterranean California, and 
Eastern Forests Level I ecoregions and the Level III Western Corn Belt Plains region. The RaCA sample locations are shown as black circles. Black stars 
are locations of calibration sites where RaCA samples were collected; bare soil is exposed in a WorldView-2 (DigitalGlobe, https://www.digitalglobe.
com) satellite image. The field where 228 soil samples were measured for soil organic C (Li et al., 2018) is marked as a black triangle.
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the uncorrected, raw 11-bit digital number (DN) image and from 
reflectance data derived by radiometrically calibrating the image. 
The image was radiometrically corrected to derive reflectance 
using an empirical line calibration method (Smith and Milton, 
1999). A deep, clear water pixel and an aluminum metal roof pixel 
were identified and calibrated against reflectance values for dis-
tilled water and aluminum metal roofing from the ASTER spec-
tral library (Baldridge et al., 2009). The SOCI was then calculated 
from the reflectance data. For the DN image and the reflectance 
image, we extracted the SOCI from each pixel with a correspond-
ing soil sample. We predicted SOC for each sample location by 
developing a linear regression between SOC and the SOCI using 
a calibration dataset of 45 random samples (20%) of the measured 
SOC concentrations and SOCI values from both the DN and re-
flectance images. We then used the calibration to predict SOC for 
the remaining 183 pixels where samples were collected.

Regional Calibration
The RaCA calibration data are based on laboratory spec-

tral measurements rather than on satellite-based measurements. 
Hence, we first needed to account for offset between the satel-
lite- and laboratory-derived indices, which arise due to different 
measurement conditions, such as sieving of laboratory samples 
and imperfect radiometric correction. We scaled the satellite-
derived index to the laboratory-derived index by developing a 
linear regression relationship between satellite- and laboratory-
derived SOCI using reflectance data from 16 locations where an 
RaCA sample was collected from a location with a WorldView-2 
satellite image with bare soil at the sample site.

The SOCI data derived from imagery predict SOC concen-
trations for the soil surface, but the measured SOC values are an 
average concentration for a depth interval extending from the soil 
surface to a depth of 30 cm (Li et al., 2018). To compare the SOC 
predictions from the satellite-derived SOCI values with the mea-
sured SOC values, we scaled the predicted SOC values to an average 
SOC concentration for the upper 30 cm of the soil profile by assum-
ing an exponential depth-distribution of SOC (Mishra et al., 2009):

SOC = aebz � [2]

where a and b are fitted parameters describing the surface SOC 
concentration and the rate of decay, respectively, and z is depth 
within the profile. The depth at which the average SOC concen-
tration occurs is described by 1/b (Lilliefors, 1969). The a and b 
parameters are not available for the field in Iowa, so we determined 
them by fitting Eq. [2] to 15 SOC-depth profiles with five or more 
SOC-depth measurements at RaCA sites in the Western Corn 
Belt Plains Level III ecoregion. We used the average of the a and b 
parameters from all profiles to calculate the average SOC for the 
upper 30 cm of the soil. The surface- and depth-averaged predic-
tions were compared against the depth-averaged measurements. 
All statistical analyses were performed using the NumPy (version 
1.14.3) and SciPy (version 0.18.1) packages in Python 3.

Results
Index Validation Using Laboratory Spectral Data

For the nationwide dataset of SOC measurements, the 
SOCI, SWIR/NIR, and SI1001–679 nm indices are similarly 
correlated with SOC. The SOCI has a power-law relationship 
with SOC (Fig. 2a) and has an R2 of 0.35 and RMSE of 1.5%. 
The SWIR/NIR index also has a power-law relationship with 
SOC (Fig. 2b), where the R2 is 0.17 and the RMSE is 1.2%. The 
SI1001–679 nm is exponentially correlated with SOC (Fig. 2c), 
where the R2 is 0.21 and the RMSE is 2.8%. (Table 1)

Results from the Level I ecoregions indicate there were higher 
correlation coefficients and lower errors for the Great Plains and 
Mediterranean ecoregions relative to the nationwide data (Table 
1). The respective Great Plains and Mediterranean California 
Level I ecoregion RMSE values for the SOCI were 1.4 and 1.8%, 
which were comparable to the SWIR/NIR index values of 0.98 and 
1.3%, both of which were lower than the SI1001–679 nm values of 
3.3 and 4.1%. Results from the Eastern Temperate Forests Level I 
ecoregion were comparable to values from the nationwide analysis; 
RMSE values were similar for the SOCI (1.5%) and were slight-
ly higher for the SWIR/NIR index (1.3%) and the value for the 
SI1001–679 nm index was higher (4.1%). Generally, the results for 
the 54 Level III ecoregions had lower errors and higher correlations 
than the Level I ecoregions (Supplemental Table S2). The RMSE 
values for SOCI (0.42–2.6%) were comparable to the SWIR/

Fig. 2. Spectral indices versus soil organic C (SOC) for the nationwide dataset (n = 7916) for (a) the soil organic C index (SOCI) developed in this study, 
(b) the shortwave-infrared (SWIR)/ near-infrared (NIR) index, and (c) the spectral index (SI)1001–679 nm. Black lines show the regression for each index. 
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NIR values (0.43–1.9%), and both were lower than those from 
the SI1001–679 nm (0.60–9.1%) (Fig. 3; Supplemental Table S2).

Index Validation Using Satellite Image
Local Calibration

The calibration dataset derived from the SOC measure-
ments in the field (Fig. 4a) and the SOCI calculated from the 
DN image (Fig. 4b) predicted SOC with a RMSE of 0.53% 
(Fig. 4c). Similarly, when the SOCI was calculated from the re-
flectance image, the local calibration (Fig. 4d) predicted SOC 
with a RMSE of 0.54% (Fig. 4e).

Regional Calibration
The comparison of SOCI values calculated from colocated 

RaCA soil samples and WorldView-2 imagery indicates the two in-
dices are linearly correlated (R2 = 0.82) (Fig. 5). Because the SOCI 
values are well correlated, the regression relationship was used to 
scale WorldView-2 satellite–derived SOCI values to the same range 
of SOCI values determined from the RaCA samples. The scaled, 
regionally calibrated SOCI, based on the RaCA samples, generated 
SOC predictions that were comparable to the calibrations that were 
locally calibrated, but only after accounting for depth-averaged SOC 
concentrations. We found that surface SOC concentrations predict-
ed from the satellite image are correlated to the average SOC for the 
upper 30 cm of the soil profile (R2 = 0.66; RMSE = 4.8% SOC) 
(Fig. 6a). However, after estimating the average SOC concentration 
within the upper 30 cm of the profile using an exponential decay 
function (Fig. 6b), the RMSE improved to 0.54% SOC (Fig. 6c).

Discussion
The SOCI is effective at estimating SOC because it tracks 

changes in the reflectance of the red and green wavelengths, 
which have been demonstrated to be relevant for SOC estima-
tions (Bartholomeus et al., 2008; Stevens et al., 2010). The slopes 
of reflectance curves in the visible wavelengths generally decline 
as a function of SOC, and the reflectance values for each of 
the visible wavelengths decrease with increasing SOC (Fig. 7). 
Concentrations of pedogenic iron-bearing minerals, which impart 
a red hue to soil, have been found to be inversely correlated to con-
centrations of SOC, such that soils with a red hue often have less 
organic matter and more iron oxide minerals than dark-colored, 
SOC-rich soils (Frazier and Cheng, 1989; Palacios-Orueta and 
Ustin, 1998). Hence, soils enriched in pedogenic iron relative to 

SOC have increased reflectance in the red and green wavelengths 
relative to soils enriched in SOC (Huete and Escadafal, 1991; 
Palacios-Orueta and Ustin, 1998). The large increase in red and 
green reflectance in samples with low SOC, relative to darker 
samples with high SOC (Fig. 6), results in decreased SOCI values.

For the national dataset, the three Level I ecoregions, and 
the 54 Level III ecoregions, the ability of the SOCI to predict 
SOC is comparable to the predictive power of the SWIR/NIR 
index and better than the SI1001–679 nm index. An artificial neu-
ral network model, developed using ~20,000 samples from the 
RaCA database that incorporated textural as well as spectral in-
formation about the soil samples, predicted SOC, with RMSE 
values that ranged from 0.5 to 1.5% (Wijewardane et al., 2016). 
Likewise, using a dataset of ~8600 samples from the RaCA, a 
random forest model, which also included horizon and texture 
information, was able to predict SOC, with RMSE values rang-
ing from 2.0 to 2.5% (Sequeira et al., 2014). The SOCI perfor-
mance for the national and Level I ecoregion datasets (RMSE 
1.5–1.8%) is within the range of or slightly better than these 
multivariate techniques, which, along with its similar perfor-
mance to the SWIR/NIR index, indicates that the SOCI has 
potential for SOC prediction. Furthermore, because the SOCI 
uses fewer wavelengths for predictions than multivariate and ma-
chine learning methods, it can be readily applied to multispectral 
imagery, as demonstrated by the calculation of the index from 
the WorldView-2 data (Fig. 5 and 6).

Table 1. Equations, correlation coefficients, and RMSE values for soil organic carbon (SOC) prediction using the three spectral 
indices for the national dataset, three major US agricultural Level I ecoregions, and the Western Corn Belt Level III ecoregion.

Spectral 
index†

Relationship with  
SOC using national data

Nationwide 
(n = 7916)

Level I ecoregions Level III ecoregion‡

Great Plains  
(n = 1767)

Eastern Forests  
(n = 4243)

Mediterranean 
California (n = 153)

Western Corn Belt 
Plains (n = 595)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SOCI SOC = 0.3·SOCI1.4 0.35 1.5% 0.43 1.4% 0.31 1.5% 0.36 1.8% 0.54 1.0%

SWIR/NIR SOC = 0.7·SWIR/NIR2.2 0.17 1.2% 0.36 0.98% 0.13 1.3% 0.26 1.3% 0.46 1.4%

SI1001–679 nm SOC = 1.6·e3.7· SI1001–679 nm - 1.7 0.21 2.8% 0.29 3.3% 0.18 4.1% 0.31 2.9% 0.42 2.7%
† NIR, near-infrared; SOCI, soil organic carbon index; SWIR/NIR, shortwave-infrared and near-infrared; SI, spectral index.
‡ Data from all 54 Level III ecoregions are shown in Supplemental Table S2.

Fig. 3. Probability density function of RMSE values for the three 
indices calculated for each of the 54 Level III ecoregions. NIR, near-
infrared; SI, spectral index; SWIR, shortwave-infrared.
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The application of the SOCI to the WorldView-2 image of 
the field in Iowa, where soil properties are less variable than in the 
nationwide and ecoregion datasets, provides a test of its ability to 
predict SOC. There, SOCI is well correlated with SOC (RMSE 
= ~0.5%), demonstrating that the index is a useful method for 
remotely measuring SOC. Because the SOCI relies only on the 
visible spectrum, it has potential to be more widely applied than 
the SWIR/NIR index because SWIR and NIR wavelengths are 
often not available or are much costlier for very-high-resolution 

satellite sensors (£4 m). For example, the SOC predictions for 
the field in Iowa would not be possible with the SWIR/NIR 
index, given the current resolution and library of SWIR imag-
ery. Due to spatial variability in factors such as topography and 
erosion, SOC varies widely on small spatial scales; for example, 
within the 15-ha field in Iowa, SOC ranges from 0.2 to 5.0% 
(Li et al., 2018). Publicly available platforms with global cover-
age of SWIR measurements (e.g., Landsat OLI, ASTER) often 
measure SWIR at 30 m spatial resolution (Roy et al., 2014). Such 
coarse-resolution pixels are a mixture of soil properties (Adams et 
al., 1986), limiting the spatial scale at which SWIR-based indices 
can be used to predict SOC concentrations. Although there are 
satellite sensors that measure in the SWIR region at high spatial 
resolution, the library of images is not yet as spatially extensive as 
VIS data from other platforms.

Application of SOCI to imagery of plowed agricultural fields 
with exposed soil has the potential to provide a rapid and robust quali-
tative assessment of the distribution of degraded soils from field to 
regional scales as well as quantitative estimates of SOC. The SOCI 
can be applied to SOC prediction in at least two ways. For example, 
within the RaCA study region, the SOCI can be calculated from 
radiometrically calibrated imagery and scaled to the RaCA-derived 
values (Fig. 4d). Soil organic C can then be predicted using the regres-
sion relationships that are listed in Supplemental Table S2 between 
SOC and SOCI for the ecoregion of interest. For areas where data like 
those in the RaCA database do not exist, regression relationships be-

Fig. 4. (a) Map of the soil organic C (SOC) index (SOCI) calculated from a digital number (DN) image of a field in Iowa where SOC was measured in 
228 soil samples (Li et al., 2018). Sample locations are shown as circles; those shown in black are the random 20% selection used in the calibration. (b) 
Measured SOC versus SOCI values derived from the DN image (R2 = 0.68). (c) Predicted SOC versus measured SOC, where predictions are calculated 
from the relationship shown in (b). The predicted SOC is correlated with measured SOC with R2 = 0.70 and RMSE = 0.53%. (d) Measured SOC versus 
SOCI values derived from the reflectance image for the calibration dataset (R2 = 0.67). (e) Predicted SOC vs. measured SOC, where predictions are 
calculated from the relationship shown in (d). The predicted SOC is correlated with measured SOC, with R2 = 0.66 and RMSE = 0.54%.

Fig. 5. The soil organic C index (SOCI) derived from USDA Rapid 
Carbon Assessment laboratory spectral data versus SOCI derived from 
WorldView-2 satellite imagery spectral data (n = 16).
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tween SOC and the SOCI can be locally developed from laboratory 
and satellite spectral data and SOC measurements to predict SOC. 
Alternatively, the strong correlation between SOC and the SOCI 
calculated from the DN image (Fig. 4c), as well as the similarity in 
the RMSE between the DN- and reflectance-derived SOCI values, 
suggests that raw imagery can be used to estimate the concentration 
of SOC without performing radiometric correction. Such a finding 
implies that any true-color image can be used to estimate SOC, in-
cluding those collected from cameras on manned or unmanned aer-
ial vehicles. The SOCI hence provides the ability to rapidly perform 
large-scale, high-resolution assessments of C stocks and to identify 
SOC-poor soils within agricultural fields. Such information can guide 
agriculture land management decisions by allowing farmers to target 
SOC-depleted soils for remediation and precision nutrient applica-
tion (McCarty and Reeves, 2006; Rossel et al., 2006).

Conclusions
We used 7916 hyperspectral and SOC measurements from soil 

samples collected by the USDA Rapid Carbon Assessment from 
the conterminous United States to develop a new spectral index 
for predicting SOC concentrations that uses only the visible (red, 
green, and blue) wavelengths. We find that our new index performs 
similarly to the SWIR/NIR index and better than the SI1001–679 nm 
index, both of which rely on longer wavelengths than those in the 
visible spectrum. We calculated the new index on a high-resolution 
WorldView-2 image of a field in Iowa where SOC had previously 
been measured to test its ability to predict SOC concentrations. 
With local calibration data, the new SOCI calculated from both a 
raw image and a radiometrically corrected reflectance image predicts 
SOC concentrations with an RMSE of ~0.5%, indicating that, with 
the use of local calibration data, radiometric correction of imagery is 
not necessary for application of the index. We also showed that the 
SOCI can be used to predict SOC with a region-wide calibration 
by scaling the WorldView-2 satellite spectra to the same range as the 
Rapid Carbon Assessment laboratory spectra, where the index pre-
dicted measured SOC values with a RMSE of 0.54%. Because the 
new index relies only on the visible spectrum, it can be used to pre-

dict SOC using any true color image, which are captured by most sat-
ellite sensors and cameras, including those mounted on unmanned 
aerial vehicles, at increasingly high spatial resolution. Hence, the in-
dex has the potential to be widely applied to map SOC at the field to 
regional scale. Such maps have a wide range of potential applications 
for informing C budgets and guiding soil management.
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Fig. 6. (a) Soil organic C (SOC) predicted for a surface pixel versus the measured average SOC for a 30-cm profile (R2 = 0.67; RMSE = 4.8%). (b) The 
SOC-depth curves for 15 USDA Rapid Carbon Assessment sites within the Western Corn Belt Plains ecoregion (gray lines) and the average exponential 
function (black line), where a and b from Eq. [2] are 3.5% SOC −13.1, respectively. The SOC-depth profiles are normalized by the maximum SOC 
concentration for each profile. (c) Same data as in (a), except the predicted values have been scaled to the mean values for the upper 30 cm of the soil 
using the average exponential function in (b). The predicted SOC is linearly correlated to the measured SOC with R2 = 0.67 and an RMSE of 0.54% SOC.

Fig. 7. Influence of soil organic C (SOC) on spectral reflectance. 
Examples of spectral curves for samples within the USDA Rapid Carbon 
Assessment database with SOC concentrations ranging from 0.05 to 
11%. Vertical bars show the reflectance values used in the calculation 
of the SOC index: 478 nm (blue), 546 nm (green), and 659 nm (red).
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