Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

Jiwei Li, Qian Yu, Yong Q. Tian, Brian L. Becker

Department of Geosciences, University of Massachusetts, Amherst, United States
Institute for Great Lakes Research, Central Michigan University, United States
Department of Geography, Central Michigan University, United States

Article Info

Article history:
Received 12 October 2016
Accepted 27 March 2017

Keywords:
CDOM
Carbon cycle
Optically shallow waters
Land-water interface
SBOP
Bottom effect index
Adaptive estimation approach

Abstract

It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m

1. Introduction

Inland waters (streams, rivers and lakes) are responsible for transporting and transforming large amounts of carbon from terrestrial ecosystems to aquatic environments (Tranvik, 2014). Each year, inland waters emit about 1 gigaton of carbon as CO2 to the atmosphere and transfer an equivalent amount of carbon to ocean waters (Battin et al., 2009). This flux is larger than originally estimated and more than half of it results from the movement of dissolved organic carbon (DOC) from terrestrial environments (Stedmon et al., 2000). Accordingly, riverine systems (streams and rivers) govern much of the DOC export from terrestrial to aquatic environments (IPCC, 2007) and dictate the spatial and temporal variability of freshwater DOC in drainage watersheds. Shallow coastal and estuarine areas are the primary interface regions for carbon exchange from terrestrial to aquatic ecosystems. The variations of terrestrial carbon exports in these regions are heavily associated with anthropogenic activities (Palmer et al., 2015). Therefore, increased attention is being devoted to carbon monitoring of optically shallow waters. Several studies have demonstrated that remote sensing technologies show great promise for monitoring freshwater DOC dynamics through bio-optical properties (Brezonik et al., 2015; Kutser et al., 2015; Olmanson et al., 2016; Zhu et al., 2015).

Colored dissolved organic matter (CDOM) is defined as the photoactive fraction of dissolved organic matters in water (Brando and Dekker, 2003). Light absorption by CDOM tends to be strongest at short wavelengths (ultraviolet to blue) while diminishing to near zero in the red wavelength region of the electromagnetic spectrum (Markager and Vincent, 2000). So CDOM level is often represented by a CDOM absorption coefficient within the highly absorbed short wavelengths, and 440 nm is frequently used by the remote sensing community (Brando and Dekker, 2003; Matsuoka et al., 2013; Zhu et al., 2015).
Many previous studies have confirmed that CDOM levels are highly correlated to DOC concentrations in coastal & inland waters influenced by river discharge, regulated by terrestrial sources and seasonal effect (Del Castillo et al., 1999; Del Vecchio and Blough, 2004; Ferrari et al., 1996; Hestir et al., 2015; Kowalczyk et al., 2003). Therefore, CDOM is often used as a proxy to trace the spatial distribution of DOC so as to help quantify the transport of terrigenous organic carbon (Mannino et al., 2008). Thus, the quantitative estimation of CDOM absorption via remote sensing aids in the better understanding of carbon cycling at the land-water interface.

Most research efforts on the remote sensing of water biogeochemistry (CDOM, Chl-a and non-algal particles) have focused on the estimation of water bio-optical properties in open oceans (Lee, 2006; Mobley, 1999; Siegel et al., 2002). Generally, many of these remote sensing algorithms empirically utilize band ratios calibrated from regional datasets to retrieve water properties (Kutser et al., 2005; Matthews, 2011). However, they are often site-specific and need intensive calibration when applied to a new environment. Semi-analytical algorithms made a significant improvement to location independence by extracting water biochemical properties based on bio-optical radiative transfer models. Representative algorithms include multi-band quasi-analytical algorithm (QAA) (Lee et al., 2002), Carder-MODIS (Carder et al., 2004), Garver-Siegel-Maritorena (GSM) (Maritorena et al., 2010, 2011), and Linear Matrix (LM) model (Hoge and Lyon, 1996; Yang et al., 2011). Unfortunately, these algorithms cannot separate CDOM absorption from non-algal particles (NAP), due mainly to their similar absorption spectra. Recently, several studies endeavored to extend mainstream ocean color algorithms to derive CDOM absorption for coastal and open ocean waters (Budhiman et al., 2012; Cui et al., 2014; Matsuoka et al., 2013; Shanmugam, 2011; Zhu and Yu, 2013). However, when these relatively mature semi-analytical ocean color algorithms are directly applied to inland waters, the uncertainty of the resulting CDOM estimation is prohibitively high (Zhu et al., 2013b).

In general, there are two major challenges with the current semi-analytical algorithms used for CDOM retrieval of inland waters. First, the bottom effect of shallow freshwater introduces significant uncertainty on CDOM estimation. Ocean color algorithms are developed for optically deep waters, which assume the upwelling water leaving radiance is only the result of water column constituents and ignore bottom reflectance (Stedmon et al., 2000). This assumption is not valid for optically shallow inland and coastal waters, and therefore greatly limits the usage of these algorithms for inland waters (Aitkenhead-Peterson et al., 2003). Specifically, none of the aforementioned algorithms consider the contribution of bottom reflectance and therefore they are not capable of accounting for the high uncertainty introduced by bottom effects in optically shallow waters. Second, semi-analytical algorithms often incorporate empirical parameters into bio-optical models (water radiative transfer models). Such parameters are largely calibrated via ocean and offshore observations. Inland fresh waters are often much richer in water-borne constituents, (i.e., a higher concentration of CDOM, Chl-a and/or suspended sediment), so these algorithms are often not optimal for handling in-land water environments (Zhu and Yu, 2013; Zhu et al., 2013b). Except for a few cases, the majority of published research on CDOM retrieval in optically shallow lake waters adopt empirical methods (Campbell et al., 2011; Kutser et al., 2005, 2015; Odermatt et al., 2012; Olmanson et al., 2016).

Bottom effects have been considered in some aquatic remote sensing studies, including estimating water optical depth (Brando et al., 2009; Majosi et al., 2014; Maritorena et al., 1994; Zhao et al., 2013), retrieval of the diffuse attenuation coefficient (Barnes et al., 2014, 2013; Dekker et al., 2011; Giardino et al., 2015; Volpe et al., 2011), and monitoring bottom sediments properties (Klonowski et al., 2007). All of these approaches include the contribution of bottom sediment reflectance to the total upwelling radiance, which inspired us to develop a CDOM retrieval algorithm for optically shallow waters that also incorporates bottom reflectance.

First, this paper examines in situ spectral data and demonstrates the spectral variation in response to water depths. Second, we developed the shallow water bio-optical properties (SBOP) algorithm which incorporates the bottom contribution into a CDOM retrieval algorithm. Third, we investigated the effectiveness of a proposed bottom effect index (BEI) to quickly separate optically shallow and optically deep waters. Finally, an adaptive approach based on our BEI was presented to identify the most suitable algorithm according to varied levels of bottom effect (optically shallow or deep water algorithms) in an effort to reduce overall uncertainty. This study aims to improve the capability of remote sensing to monitor carbon transportation from terrestrial to aquatic ecosystems across broad spatial and temporal scenarios.

2. Method

2.1. Study site

Saginaw Bay in Lake Huron was selected for sampling CDOM levels concurrently in situ remote sensing measurements across a broad range of CDOM levels. The sampling locations encompassed the Saginaw River, Kawakwlin River and inner Saginaw Bay (Fig. 1). The bathymetry ranged from 0.25 to 4 m with a median value of 1.6 m. Generally, the bottom is dominated by sand with intermittent patches of benthic algae (Cladophora) and other aquatic plants. Compared to that of pure sand, the sediments of the lake bottom are relatively dark due to this mixture of the sand and benthic plants. The two rivers mentioned above are of vastly different size and composition and their drainage basins are covered by different dominant vegetation. The Saginaw River is 36 km long with a watershed area of 22,260 km². The river has a mean annual discharge of 130 m³/s (2010–2016). The dominant landcover type is agriculture, which accounts for approximately 52% of the watershed. The Kawakwlin River flows into the Saginaw Bay approximately 1 km north of the Saginaw River mouth. It's length (28 km), discharge and drainage area (647 km²) are at a significant lower magnitude than those of the Saginaw River. The Kawakwlin River watershed is dominated by deciduous forest (40.2%) with a relatively high percentage of wetland (7.9%).

2.2. Field and laboratory measurements

A total of four cruises were carried out from 2012 to 2015. The cruises covered both spring and autumn seasons: May 7, 2015, May 7, 2013, May 10, 2012 and October 18, 2012. Field sampling design used a spatially stratified method to distribute the sampling locations at several water depth intervals within and near the river plumes; 54 samples were collected (Fig. 1). The sample points were distributed along five transects and sample locations were slightly shifted due to the conditions present on each sampling date. The water depths of 27 sampling locations were measured by a Vexilar® Hand-held Depth Sonar during the cruise on May 7, 2015. The depths of the earlier sampling locations were generated from bathymetry contours downloaded from Michigan Geographic Data Library (MiGDL). These generated depths have been verified by the 2015 field depth measures with a mean error of less than 10%.

Surface water samples and in situ spectral data were collected in parallel at each sampling location. Water samples collected were...
stored in amber bottles (polypropylene 500 ml) and kept chilled in
a cooler until laboratory measurements of CDOM levels were per-
formed. Samples at 5 locations were replicated for sampling uncer-
tainty assessment (mean error < 3%). The in situ spectral data were
collected at 2 m above the water surface with a Satlantic® Hyper-
SAS and HyperOCR sensors. The cruises were arranged during
cloud free weather and under ~2–8 m/s wind speed so that wave
effect is minimum. The HyperSAS instrument was deployed by fol-
lowing the operation instructions to ensure sensor view angles
were adjusted according to the solar position during above-
surface spectra data measurements. The in situ spectral data
included sky radiance (L_s), total upwelling radiance (L_t) and
down-welling irradiance (E_d) from 400 nm to 800 nm. The radiance sen-
sor for measuring L_t was pointed to the water surface at an angle
of 40° from nadir. The radiance sensor for measuring L_s was
pointed skyward with an angle of 40° from solar zenith. Both sen-
sors were set at the angle of 90° from solar azimuth angle. The E_d
irradiance sensor was mounted separately and perpendicularly to
the water surface. At least 20 radiance/irradiance measures were
recorded at each location. The averages of these 20 spectral curves
were used for all further analyses.

In situ below-surface spectral data were measured to observe
the water column light field. The below-surface upwelling irradi-
ance was logged via a ASD® Fieldspec equipped with an under-
water cosine corrected receptor. These below-surface spectra
across 300–1000 nm were collected at 6 locations with varied
depths (from ~0.6 m to ~4 m). These below-surface measure-
ments were conducted vertically from just below the water surface
to just above the bottom sediments at 0.3 m interval. All spectral
measurements were carried out between 10 A.M. and 2 P.M. in
cloud free weather and wind conditions ranged from ~2–4 m/s
(2–8 knots) that were associated with waves ranging from 0.15
to 0.45 m according to the data from the National Weather Service.
Other environment conditions did not vary significantly during the
field measurements (depth, sediments, etc.).

The CDOM measurements for all the collected water samples
were completed within six hours of collection. The water samples
were first filtered using glass microfiber filters GF/F (nominal
0.7 μm pore size) according to the standard laboratory measure-
ment of CDOM (Mannino et al., 2008; Vodacek et al., 1997). Then
the filtrate was transferred into 0.01 m cuvettes to measure CDOM
absorbance $A(λ)$ via a Cary® 60 UV–Vis Spectrophotometer with
Milli-Q water as blank. The CDOM absorption coefficient $a_g(\lambda)$ was calculated from Eq. (1):

$$a_g(\lambda) = \frac{\ln(10)}{L} \times A(\lambda) = 230.3 \times A(\lambda)$$ \hspace{1cm} (1)

where L is the diameter of cuvette in meters. All laboratory measurements were performed in triplicate and averaged in order to increase overall accuracy.

The remote sensing reflectance R_s was derived from in situ spectral radiances and irradiance by

$$R_s = \frac{L_s - \phi L_s}{E_d}$$ \hspace{1cm} (2)

where E_d is downwelling irradiance, L_s is sky radiance, L_c is total upwelling radiance and ϕ is a proportionality factor that relates the L_s to water-surface reflected radiance, set as 0.028 (Mobley, 1999). Then just below-surface remote sensing reflectance (r_{ns}) was derived from R_s as (Lee et al., 1998):

$$r_{ns}(\lambda) = \frac{R_s(\lambda)}{0.52 + 1.7R_s(\lambda)}$$ \hspace{1cm} (3)

2.3. Shallow water bio-optical properties (SBOP) algorithm

A shallow water bio-optical properties algorithm (SBOP) was developed for CDOM absorption retrieval to reduce the uncertainty caused by bottom sediments. In optically shallow waters, the water-leaving reflectance is made up of contributions from both waterbody and bottom sediments. The below-surface remote sensing reflectance r_{ns} can be modeled as (Lee et al., 2007):

$$r_{ns} = r_{ns}^w + r_{ns}^b = r_{ns}^w \left[1 - e^{-D(a_g + b_d)H} \right] + \frac{1}{\pi} \rho e^{-D(a_g + b_d)H}$$ \hspace{1cm} (4)

where r_{ns}^w represents the water column contribution, r_{ns}^b represents the bottom sediments contribution, $D(a_g + b_d)$ represents the light attenuation caused by water column absorption and backscattering for water column light components (D_c) or light components from bottom (D_b). Finally, D_c and D_b are empirical factors associated with under-water photon path elongation due to scattering and can be calculated as below (Lee et al., 1999):

$$D_c = 1.03 \left[1 + 2.4 \left(\frac{b_d}{a_g + b_d} \right) \right]^{0.5}$$ \hspace{1cm} (5)

$$D_b = 1.05 \left[1 + 5.5 \left(\frac{b_d}{a_g + b_d} \right) \right]^{0.5}$$ \hspace{1cm} (6)

The value 1.05 and 5.5 used in the calculation were determined after repeated experiments and they were found to be the optimal. r_{ns}^w represents below-surface remote sensing reflectance when the water is infinitely deep and can be modeled as (Lee et al., 2013):

$$r_{ns}^w = \left[0.089 + 0.125 \left(\frac{b_d}{a_g + b_d} \right) \right] \left(\frac{b_d}{a_g + b_d} \right)$$ \hspace{1cm} (7)

Several previous studies as well as our model calibration results showed that using 0.089 and 0.125 for the calculation of r_{ns}^w would improve model applicability to shallow waters (open waters, coastal waters, and inland waters) (Barnes et al., 2013; Lee et al., 2009, 2013; Yang et al., 2013; Zhu and Yu, 2013). Then r_{ns} can be determined by the following bio-optical variables: bottom reflectance ρ, water depth H, absorption and backscattering coefficients a_g and b_d. For the SBOP algorithm, the total absorption coefficient at a given wavelength (λ) is modeled from three components:

$$a_g(\lambda) = a_{uw}(\lambda) + a_g(\lambda) + a_q(\lambda)$$ \hspace{1cm} (8)

where $a_{uw}(\lambda)$ is the pure water absorption coefficient, $a_g(\lambda)$ is the CDOM absorption coefficient, and $a_q(\lambda)$ represents the particle absorption coefficient, which include both phytoplankton and non-algal particles. The total backscattering coefficients $b_g(\lambda)$ is calculated via two components:

$$b_g(\lambda) = b_{uw}(\lambda) + b_{bp}(\lambda)$$ \hspace{1cm} (9)

where $b_{uw}(\lambda)$ and $b_{bp}(\lambda)$ are backscattering coefficients of pure water and particles, respectively. The values of $a_{uw}(\lambda)$ and $b_{uw}(\lambda)$ are known (Morel, 1974; Pope and Fry, 1997). The $b_{bp}(\lambda)$ and $a_q(\lambda)$ were modeled as follows (Lee et al., 2013):

$$b_{bp}(\lambda) = P \left(\frac{\lambda}{555} \right)^y$$ \hspace{1cm} (10)

$$a_q(\lambda) = Me^{-S(\lambda-440)}$$ \hspace{1cm} (11)

where y is the spectral parameter that determines the scattering decay and was estimated as (Lee et al., 2002):

$$y = 2 \left[1 - 1.2e^{-0.084/\lambda} \right]$$ \hspace{1cm} (12)

S is the parameter establishing the absorption decay slope (spectral slope) and its value is approximately 0.015 as derived from the global average value (Zhu et al., 2014). This value is more applicable to a broad range of water cases and reduces the bias in algorithm comparison. The unknown factor M is the CDOM absorption coefficient at 440 nm. P is the particle backscattering coefficient at 555 nm. There is a good positive correlation between $a_q(\lambda)$ and $b_{uw}(\lambda)$ as both are associated with suspended particulate matter (Babin et al., 2003; Zhu et al., 2014). Ultimately, $a_g(\lambda)$ was modeled as:

$$a_g(\lambda) = qP \left(\frac{\lambda}{555} \right)^y$$ \hspace{1cm} (13)

where $q = 0.75$ which represents the empirical ratio of a_g and b_{uw} (Zhu and Yu, 2013; Zhu et al., 2013b). The bottom reflectance $(\rho(\lambda))$ at each wavelength is expressed as:

$$\rho(\lambda) = B \rho_{bottom}(\lambda)$$ \hspace{1cm} (14)

where $B \rho_{bottom}(\lambda)$ is the dominant bottom material spectrum (sand) and it is normalized by the reflectance at 555 nm (Lee et al., 2007). The B is an unknown factor which represents the bottom reflectance at 555 nm. A sensitivity analysis was conducted in order to confirm that global values are suitable for the relevant parameters (Table 1). Overall, using alternative settings has a negligible effect on the results compared to general setting. The general

<table>
<thead>
<tr>
<th>Parameters</th>
<th>General setting</th>
<th>Alternative setting</th>
<th>Accuracy change</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_b</td>
<td>$1.05 \left[1 + 5.5 \left(\frac{b_d}{a_g + b_d} \right) \right]^{0.5}$</td>
<td>$1.05, 5.5$</td>
<td>$+$0.5%</td>
</tr>
<tr>
<td>r_{ns}^w</td>
<td>$0.089 + 0.125 \left(\frac{b_d}{a_g + b_d} \right) \left(\frac{b_d}{a_g + b_d} \right)$</td>
<td>$0.085, 0.125$</td>
<td>$+$2.5%</td>
</tr>
<tr>
<td>Spectral slope S</td>
<td>0.015</td>
<td>0.0152</td>
<td>$-$0.5%</td>
</tr>
</tbody>
</table>
setting is preferable as algorithm validation is dependent less upon the study site.

Through Eqs. (4)–(14), \(r_{rs} \) is constructed to describe optically shallow waters’ bio-optical properties and contains four unknown variables \(B, M, P \) and \(H \):

\[
r_{rs}(\lambda) = f(B, M, P, H)(\lambda)
\]

(15)

The SBOP algorithm solves for these four unknown variables via spectral optimization. In the SBOP processing, the initial values of the \(B, M, P \) and \(H \) were set as following (Lee et al., 2013):

\[
B = 0.1
\]

(16)

\[
M = 0.075 \left(\frac{R_{rs}(444)}{R_{rs}(555)} \right)^{-1.7}
\]

(17)

\[
P = 0.025 \left(\frac{R_{rs}(444)}{R_{rs}(555)} \right)^{-1.7}
\]

(18)

\[
H = 1.5
\]

(19)

\(B \), bottom reflectance at 555 nm, was set as 0.1. \(H \), the average depth was set as 1.5 m according to study site conditions. After tests these initial values were found to be the best. Our optimization process minimizes the differences between modeled below-surface reflectance \(r_{rs} \) and measured below-surface reflectance \(r_{rs}(\lambda) \) (obtained from in situ spectral measurements or remote sensing images), ultimately determining each variable in order to derive CDOM absorption and bottom contribution. Specifically, the optimization aims to find these four variables that minimize the following error function:

\[
err = \sqrt{\frac{\sum_{i=1}^{N} (r_{rs}(\lambda_i) - r_{rs}(\lambda_i))^2}{\sum_{i=1}^{N} r_{rs}(\lambda_i)}}
\]

(20)

The nonlinear system solver function in Matlab was applied in this study, which used the trust region dogleg algorithm to process the optimization (Powell, 1968). The SBOP algorithm requires a minimum of four \(r_{rs} \) values at different wavelengths as input. So potentially it can be applied to both multispectral and hyperspectral data. In this study, the hyperspectral data (120 \(r_{rs} \) bands) was applied to estimate the CDOM absorption. The algorithm performance was evaluated by comparing remote sensing derived CDOM results with laboratory measurements of CDOM using field water samples. The following five statistical metrics were assessed: bias, mean normalized bias (MNB), absolute mean error (AME), root mean squared error (RMSE, log space) and \(R^2 \) (regression, Type II).

2.4. Adaptive approach for computation efficiency

In estimating CDOM in inland and coastal waters, a single scene of satellite data often contains a broad range of water depths (e.g. Landsat 8). The estimation of CDOM through the SBOP algorithm is generally both time and computation intensive, for the relatively complex equations illustrated above need to be solved through optimization. One way to improve optimization efficiency is to separate the water spectral data into high or low bottom effect groups and only apply SBOP to the high bottom effect (optically shallow) group. We introduce an adaptive approach of applying the SBOP algorithm only to optically shallow waters and applying the deep water semi-analytical algorithm (QAA-CDOM) to optically deep waters.

The QAA-CDOM is a representative semi-analytical algorithm for CDOM retrieval in deep waters (Zhu et al., 2014). This algorithm can be efficiently applied to a wide range of water conditions, including estuarine and coastal waters assuming the water is optically deep. It calculates CDOM absorption directly from \(R_{rs} \) in 13 steps. The first ten steps derive the total absorption coefficient \(a_{i}(440) \) and \(b_{bp}(555) \) (Lee et al., 2002; Zhu et al., 2013a). Then last three steps derive the absorption of particulates \(a_{p}(440) \) from \(b_{bp}(555) \) in order to calculate \(a_{q}(440) \) by the following equations:

\[
a_{q}(440) = a_{i}(440) - a_{b}(440) - a_{p}(440)
\]

(22)

where \(a_{b}(440) = a_{i}(440) - a_{q}(440) \). The required inputs of the QAA-CDOM algorithm are \(R_{rs} \) at wavelengths of 440, 490, 555 and 640 nm.

Water depth is a key factor determining the bottom effect and is often used to separate optically deep or optically shallow waters. However, the bottom effect is also highly influenced by water column attenuation (Barnes et al., 2014; Zhao et al., 2013). A tangible example is that bottom reflectance could contribute significantly to water-leaving radiance for deep but clear/transparent water with a highly reflective bottom such as sand. Therefore, the bottom effect index (BEI) was introduced which considers both the bathymetry and water column attenuation to quickly identify waters for which bottom reflectance is significant. It is defined as an exponential function because it has been established that underwater light is exponentially attenuated with water depth (Markager and Vincent, 2000):

\[
BEI = e^{-\frac{R_{rs}(690/555)}{H}}
\]

(23)

where \(H \) is the water depth. The \(R_{rs} \) band ratio (e.g. 690/555 nm) represents light attenuation by the water column and was often used as a proxy for water turbidity in previous research (Dall’Olmo et al., 2005; Dogliotti et al., 2015; Doxaran et al., 2005, 2002). The ratio 690/555 nm was applied in this study.

Fig. 2. Conceptual flowchart of adaptive approach and SBOP algorithm. In the SBOP algorithm, the \(H, B, P, \) and \(M \) were four unknown factors which were derived from optimization. The depth \(H \) affected the water column reflectance \(r_{rs} \) and bottom reflectance \(r_{bb} \). The bottom reflectance \(B \) contributed to the below-surface remote sensing reflectance \(r_{rs} \). The CDOM absorption \(M \) and the particle backscattering \(P \) determined the light attenuation \((a_{r} + b_{r}) \).
The adaptive approach applies either the SBOP or QAA-CDOM algorithm for individual location/spectra depending on the significance of bottom effect (Fig. 2). Initially, the field spectral data is subjected to the BEI in order to determine whether the waters are categorized as optically shallow or optically deep waters. Then, the optically shallow waters are processed via SBOP while the optically deep waters are processed by QAA-CDOM to estimate the CDOM absorption. This adaptive approach aims to improve the computation efficiency for the regions with known bathymetry data (e.g. the Great Lakes regions), which are largely available for near-coastal shallow waters. Alternatively, for multi-temporal CDOM monitoring, the bathymetry of the site can be derived from SBOP algorithm once, and then be applied for other seasons when using the adaptive approach.

3. Results and discussions

3.1. Spatial and seasonal variation of CDOM from field observation

Field water samples showed that CDOM levels exhibit a distinct spatial trend, descending from the near-shore lower river channel and river plume regions to the inner bay. The sampled CDOM absorption \(a_{\lambda}(440)\) widely ranged from 0.12 m\(^{-1}\) to 8.46 m\(^{-1}\) (Fig. 1). CDOM levels at the river sample locations were generally high, with the Saginaw River having a value as high as 8.45 m\(^{-1}\). The average of CDOM levels around the plume area of the Kawkawlin River (5.38 m\(^{-1}\)) is much higher than that of the Saginaw River (1.73 m\(^{-1}\)). This marked difference was attributed to the terrestrial ecology of the drainage watersheds. The large proportion of both deciduous forest and associated litter and wetland areas within the Kawkawlin River watershed likely caused the higher CDOM levels in its plume area. The field sampling generally captured the complex spatial variation of CDOM in this area and provided a good foundation for evaluating these remote sensing algorithms.

Distinct seasonal variations of freshwater CDOM between May and October were also observed, likely driven by the organic carbon supply in the drainage watersheds and hydrological processes (Tian et al., 2013). The mean CDOM absorption of samples collected in May was 2.75 m\(^{-1}\), much higher than that in October (mean value of 0.54 m\(^{-1}\)). The higher CDOM levels during the spring season are analogous to trends reported in a recent study, which reported that the surface and subsurface hydrology associated with snow melt is responsible for transporting organic matters from soil organic carbon pools into the river systems (Tian et al., 2013). Similarly, the Saginaw River watershed is dominated by the agricultural land use which has increased metabolic activities on crop residues in the spring (Spedding et al., 2004). The second most dominant land cover in the Saginaw River watershed is deciduous forest. The large proportion of soil carbon originates from the biological decay of both crop litters and forest leaf litters, so the soil carbon levels are much higher in spring when the large accumulation of carbon is flushed out of the soil through snowmelt. Meanwhile, the consumption of organic matters throughout the growing season leads to relatively lower soil carbon levels in October (Kalbitz et al., 2000).

These seasonal hydrological processes also explain inter-annual CDOM variability (Berto et al., 2010; Raymond and Oh, 2007). The sampled CDOM level in May 2015 was clearly lower (mean 2.05 m\(^{-1}\)) than that in 2013 (mean 3.51 m\(^{-1}\)) and 2012 (mean 3.70 m\(^{-1}\)). The winter of 2014–15 had relatively large snowfall accumulations and peak snowmelt occurred in April, much earlier than in 2012 and 2013 (Fig. 3). The available soil organic matter in the watersheds was largely depleted during this early spring thaw in mid-April 2015, which likely resulted in the observed lower CDOM levels during the May 2015 sampling campaign. Contrarily, the relatively higher CDOM levels sampled in May 2012 and 2013 were associated with the receding leg of a more normal spring discharge event.

Above-surface \(R_a\) measured by the HyperSAS spectrometer demonstrated the potential of using remote sensing for the estimation of CDOM levels and other bio-optical properties of water. Fig. 4 illustrates how \(R_a\) measured via HyperSAS is spectrally contaminated by strong bottom reflectance. The 27 samples on turbidity measurements (Secchi disk depth) were collected in May 2015 and were accompanied with comparable measurements of CDOM levels. All the spectra data in Fig. 4 were under the same general water turbidity conditions. The light attenuations by the water column were generally the same in these sites, but did differ with depth. The shallow water samples (0.6 m < Depth < 0.9 m) show reflectance \(R_a\) twice as high as that of the deep water.
samples (2.7 m < Depth < 3.7 m), which is attributed to the bottom sediments reflectance. Therefore, neglecting bottom reflectance could introduce significant uncertainties in CDOM retrieval for optically shallow waters. Higher bottom effect will lead directly to higher water-leaving radiance. Consequently, the prevailing deep waters CDOM retrieval algorithms would significantly overestimate CDOM levels (Zhu et al., 2013b). Therefore, our in situ spectra observations strongly suggest that bottom reflectance must be considered when applying CDOM retrieval algorithms for optically shallow waters.

3.2. Algorithm performance and validation of SBOP

We validated SBOP with laboratory measured CDOM from field water samples and assessed the algorithm performance in comparison to QAA-CDOM (Table 2). The SBOP algorithm performed better than QAA-CDOM with respect to all five error metrics. In particular, QAA-CDOM resulted in a much higher bias (1.6129). In the shallow waters, the high bottom reflectance significantly increases the reference at longer wavelengths, which leads to the high spectral slope of remote sensing reflectance (440–600 nm). Consequently, CDOM is overestimated in deep water algorithm QAA-CDOM. In contrast, the SBOP (bias = 0.0701) successfully modeled both the bottom and water column components of R_e and greatly reduced the error and bias. Since over half of the sample sites were located in optically shallow waters, the performance of the QAA-CDOM algorithm was indeed affected by the intrusive bottom reflectance, whereas the SBOP algorithm successfully reduced uncertainty on CDOM retrieval for optically shallow waters. The SBOP algorithm dramatically improves the accuracy of CDOM estimation in optically shallow freshwater environments.

The remote sensing derived $a_g(440)$ vs. ground truth $a_g(440)$ for individual samples is shown in Fig. 5. The overall R^2 of SBOP ($R^2 = 0.74$) significantly outperformed QAA-CDOM ($R^2 = 0.48$). The SBOP performs significantly better by taking into consideration the bottom reflectance in the shallow water regions (labeled as Group B and Group C). Furthermore, the error range resulting from the QAA-CDOM algorithm was also larger and some samples have estimated CDOM (between 10^{-1} and 14^{-1}) two or three times larger than the measured values. These overestimations were from samples located at the most shallow and clearer locations (less than 1 m) in the Saginaw River and near shore regions where ground-truthed CDOM levels were relatively low (labeled as group B). These results further confirmed that neglecting bottom reflectance does indeed result in much higher algorithm uncertainty. Comparatively, the QAA-CDOM algorithm produced more accurate CDOM estimation for samples in shallow waters that had relatively high CDOM levels (between 4^{-1} and 8^{-1}) (labeled as group C). This scenario occurred in the Kawkawlin River plume regions where water color was stained brown resulting from its watershed being dominated by deciduous forest (leaf litter) and wetland. In essence, high CDOM levels and associated strong water column absorption reduced the overall negative influence of the bottom effect. CDOM levels of deep water samples labeled as group A were slightly underestimated by the SBOP

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>Bias</th>
<th>MNB</th>
<th>AME</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAA-CDOM</td>
<td>0.31</td>
<td>1.6129</td>
<td>0.8534</td>
<td>0.9343</td>
<td>0.48</td>
</tr>
<tr>
<td>SBOP</td>
<td>0.22</td>
<td>0.0701</td>
<td>0.3393</td>
<td>0.5441</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Fig. 4. The measured remote sensing reflectance at shallow (0.6 m < depth < 0.9 m) and deep (2.7 m < depth < 3.7 m) waters with similar CDOM absorption (1.8$^{-1}$ < $a_g(440)$ < 2.3 m$^{-1}$) and turbidity in May 2015.

Fig. 5. The measured vs. derived $a_g(440)$ from SBOP (the left) and QAA-CDOM (the right) algorithm. Group B represents the shallow water samples (<1 m) with low CDOM levels (between 1.8^{-1} to 3.5^{-1}). Group C represents the shallow water samples (<1 m) with high CDOM levels (between 4^{-1} to 8^{-1}). Group A is the deep water samples (>1.5 m).
algorithm. This is caused by the over-estimation of bottom reflectance for deep water samples, as the trend line deviated from the 45 degree 1:1 line. However, the performance of both algorithms degraded when the CDOM level is very low. Specifically, low CDOM samples collected in May 2015 have relatively larger errors.

3.3. Bottom contribution effect on SBOP algorithm uncertainty

The ASD measured spectra within the water column at six selected locations were assessed to study the relative role of bottom effect and to examine the SBOP algorithm’s overall effectiveness. Fig. 6 is an example of the differences in the remote sensing reflectance at three levels of water depths: just below water surface, just above bottom, and at mid depth measured with ASD Fieldspec. Remote sensing reflectance decreases with measurement depth due to absorption and scattering in the optical transmission processes. We choose two measured variables, just below surface reflectance (r_{rs}) and just above bottom sediments reflectance (ρ) at 555 nm to be compared to their estimated values by SBOP. Fig. 7 compared these ASD measured values and the SBOP estimated r_{rs} and ρ. The R^2 value was 0.89 for $r_{rs}(555)$ and 0.79 for ρ (555). These relatively high correlations demonstrate that SBOP reasonably modeled water optical properties with a bottom reflectance effect. This deviation is understandable since r_{rs} and ρ were solved via optimization with 54 total samples/locations. The relative error of SBOP modeled $r_{rs}(555)$ and $\rho(555)$ were displayed for different depths (Fig. 7c). The algorithm generally performs well at shallow to moderate depths (~1 m to ~2.5 m). In these regions the bottom contributions account for a relatively lower percentage of total water leaving reflectance (~15%) when compared to the extremely shallow water sites (~30%). The large percentage of the bottom contribution in extremely shallow waters (<1 m) does indeed lead to relatively high errors. Overall, the errors are smaller in optically shallow waters than optically deep waters. The implication might be that the set of parameters (determined by optimization) describe the light field of the well-mixed water columns in these near-shore waters better, but introduces increasing errors as water depth increases lead to absorption and scattering.

We plotted percent error with regard to depth or bottom effect index (BEI) at individual sampling sites, to investigate the influence of bottom effect on algorithm performance of the optically shallow water algorithm (SBOP) and the optically deep water semi-analytical algorithm (QAA-CDOM) (Fig. 8). Such comparisons help to determine the threshold for the optically deep and optically shallow waters at our study site. At a depth <1.5 m, the SBOP generated a reasonably small error (MNB = 0.0915, R^2 = 0.67) while the QAA-CDOM algorithm significantly over-estimates CDOM levels. The MNB (1.2007) and R^2 (0.24) indicated that the QAA-CDOM caused very large uncertainty in such shallow waters (Table 3, Fig. 9). Similarly, in waters with high bottom effect (BEI ≥ 0.2), the SBOP (RMSE = 0.16, R^2 = 0.75) generates more reasonable results compared to the QAA-CDOM (RMSE = 0.32, R^2 = 0.30). Conversely, in the waters with negligible bottom effect (BEI < 0.2) the QAA-CDOM results in a slightly lower RMSE and higher R^2 than
SBOP (QAA-CDOM: RMSE = 0.26, $R^2 = 0.81$; SBOP: RMSE = 0.27, $R^2 = 0.47$). CDOM levels were under-estimated by SBOP compared to the QAA-CDOM where the bottom effect was low (Fig. 9). As water depth increases, the light is strongly attenuated by the water column and its constituents in both the downward and upward paths. Theoretically, at a certain depth, bottom reflectance contributed no light to the total water leaving radiance (Dogliotti et al., 2015). However, the SBOP output does indicate a minimal bottom contribution to the total water leaving radiance at these relatively high depths, which inherently over-emphasizes the water column contribution. The constraints of B was set to the range of $0.01 \leq B \leq 0.9$. After the optimization, the minimal B was approximately 0.05 for the optically deep waters. The SBOP algorithm does not produce a B constraint for the non-bottom effect waters. This might explain why SBOP outputs slightly under-estimation for the optically deep waters. This limitation of the SBOP algorithm creates the need to choose the more suited CDOM retrieval algorithm (QAA-CDOM and SBOP) for waters with low bottom effect or high bottom effect respectively.

3.4. The bottom effect adaptive approach

Adaptive approach improves the CDOM retrieval accuracy and saves computation time by applying the most suitable algorithm according to the amount of bottom effect (i.e., SBOP for optically shallow waters and QAA-CDOM for optically deep waters). It overcomes the limits of each individual algorithm and considers bottom contribution only when necessary. We examined both water depth and BEI as a metric used to classify optically deep vs. optically shallow waters. The thresholds were set as optically shallow waters (depth ≤ 1.5 m or BEI ≥ 0.2) and optically deep waters (depth > 1.5 m or BEI < 0.2). The threshold values were assessed through the comparisons of the algorithm performances. The BEI = 0.2 and depth = 1.5 m was generated through the performances of SBOP and QAA-CDOM algorithms (Fig. 8). These two

![Fig. 8. The percent errors of CDOM estimation from QAA-CDOM and SBOP methods related to depth and bottom effect index. When depth < 1.5 m or BEI > 0.2, the QAA-CDOM outputs high error results.](image)

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>Bias</th>
<th>MNB</th>
<th>AME</th>
<th>R^2</th>
<th>Optically depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAA-CDOM</td>
<td>0.26</td>
<td>0.2488</td>
<td>0.5913</td>
<td>0.7219</td>
<td>0.80</td>
<td>$Depth > 1.5$ m</td>
</tr>
<tr>
<td>SBOP</td>
<td>0.26</td>
<td>0.1418</td>
<td>0.5144</td>
<td>0.6749</td>
<td>0.72</td>
<td>$Depth > 1.5$ m</td>
</tr>
<tr>
<td>QAA-CDOM</td>
<td>0.35</td>
<td>3.5169</td>
<td>1.1922</td>
<td>1.2007</td>
<td>0.24</td>
<td>$Depth \leq 1.5$ m</td>
</tr>
<tr>
<td>SBOP</td>
<td>0.16</td>
<td>-0.0326</td>
<td>0.0915</td>
<td>0.3607</td>
<td>0.67</td>
<td>BEI > 0.2</td>
</tr>
<tr>
<td>QAA-CDOM</td>
<td>0.26</td>
<td>0.2551</td>
<td>0.6302</td>
<td>0.7038</td>
<td>0.81</td>
<td>BEI < 0.2</td>
</tr>
<tr>
<td>SBOP</td>
<td>0.27</td>
<td>0.1186</td>
<td>0.5182</td>
<td>0.6842</td>
<td>0.47</td>
<td>BEI < 0.2</td>
</tr>
<tr>
<td>QAA-CDOM</td>
<td>0.32</td>
<td>2.9375</td>
<td>0.9819</td>
<td>1.0481</td>
<td>0.30</td>
<td>BEI ≥ 0.2</td>
</tr>
<tr>
<td>SBOP</td>
<td>0.16</td>
<td>0.0330</td>
<td>0.1494</td>
<td>0.3761</td>
<td>0.75</td>
<td>BEI ≥ 0.2</td>
</tr>
</tbody>
</table>
threshold values also provide the most accuracy separation for the adaptive approach (optically deep waters used QAA-CDOM & optically shallow waters used SBOP). We tested multiple values to get these threshold values. The estimation results from the adaptive method are validated in Fig. 10 and Table 4. The BEI and depth adaptive methodologies can both utilize the advantages of the QAA-CDOM and SBOP algorithms to output reliable results (Tables 2 and 4). The performance evaluation shows that the BEI adaptive method (RMSE = 0.22 and $R^2 = 0.81$) has the advantage over the depth adaptive method (RMSE = 0.23 and $R^2 = 0.78$) (Table 4). The trend line of the BEI method is closer to the 45 degree 1:1 line at relatively high CDOM levels, indicating BEI introduces less bias for these high CDOM samples (Fig. 10). Due to the relatively lower number of samples with deep clear waters and high bottom effect, the performance of the BEI adaptive approach is not markedly better than the depth adaptive method. When one considers both

Fig. 9. Derived vs. measured $a_g(440)$ for optically shallow and deep groups when separated by the depth or BEI threshold. SBOP significantly outperforms QAA-CDOM in optically shallow waters (depth ≤ 1.5 m or BEI > 0.2), while it slightly under-estimates for optically deep waters (depth > 1.5 m or BEI < 0.2).

Fig. 10. Derived vs. measured $a_g(440)$ from Depth (the left) and BEI (the right) adaptive methods. The trend line resulted from BEI adaptive approach is closer to the 1:1 line and indicates a better overall performance.
the computation efficient and accuracy, the adaptive approach is
the suggested scheme to derive CDOM levels for inland freshwater
and shallow coastal waters.

Our newly proposed BEI quickly separates optically shallow vs.
optically deep waters based on both water depth and light attenu-
ation (approximated by a band ratio) prior to the implementation
of the adaptive method. In order to compare how well the two
metrics, water depth and BEI, represent bottom effect, each was
independently plotted relative to bottom contribution in
Fig. 11a and b, respectively. Note that for this investigation, bottom
contribution (BC) for each sample was calculated as the ratio of
bottom reflectance (R_b) and below-surface reflectance (rrs). In
Fig. 11a and b, the shaded region represents a bottom contribution
<20%, which referenced very turbid waters having low light
penetration and negligible bottom effect. Bottom contribution
>20% represents optically shallow waters, which theoretically not
only include shallow water, but also some relatively deep clear
water samples. Depth ranging from 0 to 4 m represents a gradient
from optically shallow to optically deep waters. In contrast, a BEI
index ranging from 1 to 0 represents a gradient from optically shal-
low to optically deep waters.

The depth metric cannot properly classify these clear deep or
optically shallow waters (dashed circle in Fig. 11a). These samples
lead to the high uncertainties in the depth adaptive approach since
they were processed by QAA-CDOM without considering bottom
reflectance. In contrast, BEI takes into account both water depth
and column attenuation. The deep clear water samples circled in
Fig. 11a (e.g. 4.2 m with the bottom contribution of 40%) were

![Fig. 11. The bottom contribution vs. depth (a) and bottom contribution vs. bottom effect index (b) for individual samples. The turbid water samples indicate that the bottom contributions are less than 20%. Two deep clear water samples with high bottom contribution were reasonably categorized as optically shallow water by the BEI method, different from using our Depth threshold. Panel c plots the BEI value as isolines as a function of the depth and turbidity. The BEI considers both the bathymetry and water column attenuation to separate the optically shallow and optically deep waters.](image)

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>Bias</th>
<th>MNB</th>
<th>AME</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth adaptive</td>
<td>0.23</td>
<td>0.1424</td>
<td>0.3931</td>
<td>0.5694</td>
<td>0.78</td>
</tr>
<tr>
<td>BEI adaptive</td>
<td>0.22</td>
<td>0.1523</td>
<td>0.3969</td>
<td>0.5521</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table 4: The validations of Depth and BEI adaptive methods for $a_g(440)$ retrieval.
properly distinguished as high bottom contamination samples (with BEI > 0.2) in Fig. 11b. For the “deep clear water”, the low turbidity waters have relatively low light attenuations, so even the physically deep waters have a high bottom effect. Therefore, these “deep clear water” locations should be classified as optically shallow waters. Fig. 11c presents the bottom effect index expressed as “deep clear water” locations should be classified as optically shallow waters have relatively low light attenuations, so even the deeper sample locations have a high bottom effect and should therefore be classified as optically shallow waters. Therefore, it is clear that utilizing the BEI metric leads to a more accurate adaptive approach than using our depth metric. Moreover, it can be easily derived and applied to many other aquatic remote sensing studies for fast identification of those areas where bottom reflectance influences CDOM measurements.

4. Conclusions

The optically shallow inland and coastal waters are important pathways for exporting terrestrial-derived carbon sources into aquatic ecosystems. However, bottom reflectance introduces high uncertainty to the remote sensing estimation of water bio-optical properties (e.g. \(a_d\)(440)). In addition, for terrestrial carbon dominated freshwater environments, CDOM levels exhibit a very broad range (e.g. 0.12 m\(^{-1}\) to 8.46 m\(^{-1}\) in this study). These two characteristics present challenges for the remote sensing retrieval of freshwater biogeochemistry in the coastal and inland waters. Based on multi-date in situ measurements, this study developed an efficient shallow water CDOM estimation algorithm (SBOP). The overall performance evaluation (RMSE = 0.22 and \(R^2 = 0.74\)) demonstrated that the SBOP algorithm can be successfully applied to the optically shallow fresh waters with relatively homogeneous bottom sediments/conditions.

Ultimately, the SBOP model is uniquely designed for estimating CDOM absorption in optically shallow waters by taking into account the bottom reflectance component of total upwelling radiance. The SBOP algorithm significantly outperforms QAA-CDOM in these optically shallow waters (SBOP \(R^2 = 0.74\) and QAA-CDOM \(R^2 = 0.48\)). In addition, the algorithm separately derives CDOM absorption as opposed to a combined absorption \(a_d\) from prevailing ocean color algorithms. The removal of bottom effect from total radiance reduces the CDOM estimation uncertainty, and therefore extends effective carbon monitoring capabilities to optically shallow inland and coastal waters.

Widespread monitoring of water carbon from remote sensing data in the inland and coastal shallow waters demands the processing of large volumes of satellite data. We propose a BEI adaptive approach for algorithm selection. The BEI is designed to improve the computation efficiency for the regions having reliable bathymetry data, which are largely available for near-coastal and inland shallow waters. The BEI is able to quickly identify bottom contaminated water spectra/pixels based on both the bathymetry and water turbidity, so as to differentiate optically shallow waters. The BEI adaptive approach (BEI \(R^2 = 0.81\)) can efficiently as well as accurately aid in the selection of the proper algorithm for the estimation of water CDOM absorption.

In summary, our study investigated the potentials of remote sensing methods for capturing seasonal and spatial dynamics of CDOM in optically shallow water environments. Our newly developed SBOP algorithm offers a new inversion algorithm that directly considers bottom effect in radiative transfer equation. The BEI based adaptive approach presents a more efficient and fast method for monitoring terrigenous carbon export to inland and coastal waters with broad CDOM conditions. The outcome of this investigation will ultimately improve the monitoring of carbon pools and their transport gradients and mechanisms from terrestrial to aquatic systems at both regional and global scales.

Acknowledgement

This research is supported by two collaborative grants from the National Science Foundation (Grant #: 1025547; Grant #: 1230261) and one Faculty Research Grant at University of Massachusetts-Amherst.

References

