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It is not well understood how bottom reflectance of optically shallow waters affects the algorithm per-
formance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm
that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or
coastal waters. The field sampling was conducted during four research cruises within the Saginaw
River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected
water samples, determined the depth at each sampling location and measured optical properties. The
sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m�1. Field sample analysis
revealed that bottom reflectance does significantly change water apparent optical properties. We devel-
oped a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively
reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom
contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of
CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently
separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was pro-
posed that references the amount of bottom effect in order to identify the most suitable algorithm (opti-
cally shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM
estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote
sensing in monitoring carbon pools at the land-water interface.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Inland waters (streams, rivers and lakes) are responsible for
transporting and transforming large amounts of carbon from ter-
restrial ecosystems to aquatic environments (Tranvik, 2014). Each
year, inland waters emit about 1 gigaton of carbon as CO2 to the
atmosphere and transfer an equivalent amount of carbon to ocean
waters (Battin et al., 2009). This flux is larger than originally esti-
mated and more than half of it results from the movement of dis-
solved organic carbon (DOC) from terrestrial environments
(Stedmon et al., 2000). Accordingly, riverine systems (streams
and rivers) govern much of the DOC export from terrestrial to
aquatic environments (IPCC, 2007) and dictate the spatial and tem-
poral variability of freshwater DOC in drainage watersheds. Shal-
low coastal and estuarine areas are the primary interface regions
for carbon exchange from terrestrial to aquatic ecosystems. The
variations of terrestrial carbon exports in these regions are heavily
associated with anthropogenic activities (Palmer et al., 2015).
Therefore, increased attention is being devoted to carbon monitor-
ing of optically shallow waters. Several studies have demonstrated
that remote sensing technologies show great promise for monitor-
ing freshwater DOC dynamics through bio-optical properties
(Brezonik et al., 2015; Kutser et al., 2015; Olmanson et al., 2016;
Zhu et al., 2015).

Colored dissolved organic matter (CDOM) is defined as the pho-
toactive fraction of dissolved organic matters in water (Brando and
Dekker, 2003). Light absorption by CDOM tends to be strongest at
short wavelengths (ultraviolet to blue) while diminishing to near
zero in the red wavelength region of the electromagnetic spectrum
(Markager and Vincent, 2000). So CDOM level is often represented
by a CDOM absorption coefficient within the highly absorbed short
wavelengths, and 440 nm is frequently used by the remote sensing
community (Brando and Dekker, 2003; Matsuoka et al., 2013;
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Menon et al., 2011; Watanabe et al., 2016). Many previous studies
have confirmed that CDOM levels are highly correlated to DOC
concentrations in coastal & inland waters influenced by river dis-
charge, regulated by terrestrial sources and seasonal effect (Del
Castillo et al., 1999; Del Vecchio and Blough, 2004; Ferrari et al.,
1996; Hestir et al., 2015; Kowalczuk et al., 2003). Therefore, CDOM
is often used as a proxy to trace the spatial distribution of DOC so
as to help quantify the transport of terrigenous organic carbon
(Mannino et al., 2008). Thus, the quantitative estimation of CDOM
absorption via remote sensing aids in the better understanding of
carbon cycling at the land-water interface.

Most research efforts on the remote sensing of water biogeo-
chemistry (CDOM, Chl-a and non-algal particles) have focused on
the estimation of water bio-optical properties in open oceans
(Lee, 2006; Mobley, 1999; Siegel et al., 2002). Generally, many of
these remote sensing algorithms empirically utilize band ratios
calibrated from regional datasets to retrieve water properties
(Kutser et al., 2005; Matthews, 2011). However, they are often
site-specific and need intensive calibration when applied to a
new environment. Semi-analytical algorithms made a significant
improvement to location independence by extracting water bio-
chemical properties based on bio-optical radiative transfer models.
Representative algorithms include multi-band quasi-analytical
algorithm (QAA) (Lee et al., 2002), Carder-MODIS (Carder et al.,
2004), Garver-Siegel-Maritorena (GSM) (Maritorena et al., 2010,
2002), and Linear Matrix (LM) model (Hoge and Lyon, 1996;
Yang et al., 2011). Unfortunately, these algorithms cannot separate
CDOM absorption from adg(440), the combined absorption of
CDOM and non-algal particles (NAP), due mainly to their similar
absorption spectra. Recently, several studies endeavored to extend
mainstream ocean color algorithms to derive CDOM absorption for
coastal and open ocean waters (Budhiman et al., 2012; Cui et al.,
2014; Matsuoka et al., 2013; Shanmugam, 2011; Zhu and Yu,
2013). However, when these relatively mature semi-analytical
ocean color algorithms are directly applied to inland waters, the
uncertainty of the resulting CDOM estimation is prohibitively high
(Zhu et al., 2013b).

In general, there are two major challenges with the current
semi-analytical algorithms used for CDOM retrieval of inland
waters. First, the bottom effect of shallow freshwater introduces
significant uncertainty on CDOM estimation. Ocean color algo-
rithms are developed for optically deep waters, which assume
the upwelling water leaving radiance is only the result of water
column constituents and ignore bottom reflectance (Stedmon
et al., 2000). This assumption is not valid for optically shallow
inland and coastal waters, and therefore greatly limits the usage
of these algorithms for inland waters (Aitkenhead-Peterson et al.,
2003). Specifically, none of the aforementioned algorithms con-
sider the contribution of bottom reflectance and therefore they
are not capable of accounting for the high uncertainty introduced
by bottom effects in optically shallow waters. Second, semi-
analytical algorithms often incorporate empirical parameters into
bio-optical models (water radiative transfer models). Such param-
eters are largely calibrated via ocean and offshore observations.
Inland fresh waters are often much richer in water-borne con-
stituents, (i.e., a higher concentration of CDOM, Chl-a and/or sus-
pended sediment), so these algorithms are often not optimal for
handling in-land water environments (Zhu and Yu, 2013; Zhu
et al., 2013b). Except for a few cases, the majority of published
research on CDOM retrieval in optically shallow lake waters adopt
empirical methods (Campbell et al., 2011; Kutser et al., 2005, 2015;
Odermatt et al., 2012; Olmanson et al., 2016).

Bottom effects have been considered in some aquatic remote
sensing studies, including estimating water optical depth (Brando
et al., 2009; Majozi et al., 2014; Maritorena et al., 1994; Zhao
et al., 2013), retrieval of the diffuse attenuation coefficient
(Barnes et al., 2014, 2013; Dekker et al., 2011; Giardino et al.,
2015; Volpe et al., 2011), and monitoring bottom sediments prop-
erties (Klonowski et al., 2007). All of these approaches include the
contribution of bottom sediment reflectance to the total upwelling
radiance, which inspired us to develop a CDOM retrieval algorithm
for optically shallow waters that also incorporates bottom
reflectance.

First, this paper examines in situ spectral data and demonstrates
the spectral variation in response to water depths. Second, we
developed the shallow water bio-optical properties (SBOP) algo-
rithm which incorporates the bottom contribution into a CDOM
retrieval algorithm. Third, we investigated the effectiveness of a
proposed bottom effect index (BEI) to quickly separate optically
shallow and optically deep waters. Finally, an adaptive approach
based on our BEI was presented to identify the most suitable algo-
rithm according to varied levels of bottom effect (optically shallow
or deep water algorithms) in an effort to reduce overall uncer-
tainty. This study aims to improve the capability of remote sensing
to monitor carbon transportation from terrestrial to aquatic
ecosystems across broad spatial and temporal scenarios.
2. Method

2.1. Study site

Saginaw Bay in Lake Huron was selected for sampling CDOM
levels concurrently with in situ remote sensing measurements
across a broad range of CDOM levels. The sampling locations
encompassed the Saginaw River, Kawkawlin River and inner Sagi-
naw Bay (Fig. 1). The bathymetry ranged from 0.25 to 4 m with a
median value of 1.6 m. Generally, the bottom is dominated by sand
with intermittent patches of benthic algae (Cladophora) and other
aquatic plants. Compared to that of pure sand, the sediments of the
lake bottom are relatively dark due to this mixture of the sand and
benthic plants. The two rivers mentioned above are of vastly differ-
ent size and composition and their drainage basins are covered by
different dominant vegetation. The Saginaw River is 36 km long
with a watershed area of 22,260 km2. The river has a mean annual
discharge of 130 m3/s (2010–2016). The dominant landcover type
is agriculture, which accounts for approximately 52% of the
watershed. The Kawkawlin River flows into the Saginaw Bay
approximately 1 km north of the Saginaw River mouth. Its length
(28 km), discharge and drainage area (647 km2) are at a significant
lower magnitude than those of the Saginaw River. The Kawkawlin
River watershed is dominated by deciduous forest (40.2%) with a
relatively high percentage of wetland (7.9%).
2.2. Field and laboratory measurements

A total of four cruises were carried out from 2012 to 2015. The
cruises covered both spring and autumn seasons: May 7, 2015,
May 7, 2013, May 10, 2012 and October 18, 2012. Field sampling
design used a spatially stratified method to distribute the sampling
locations at several water depth intervals within and near the river
plumes; 54 samples were collected (Fig. 1). The sample points were
distributed along five transects and sample locations were slightly
shifted due to the conditions present on each sampling date. The
water depths of 27 sampling locations were measured by a Vexi-
lar� Hand-held Depth Sonar during the cruise on May 7, 2015.
The depths of the earlier sampling locations were generated from
bathymetry contours downloaded from Michigan Geographic Data
Library (MiGDL). These generated depths have been verified by the
2015 field depth measures with a mean error of less than 10%.

Surface water samples and in situ spectral data were collected in
parallel at each sampling location. Water samples collected were



Fig. 1. The 54 samples located in the Saginaw River, Kawkawlin River, Saginaw Bay, and Lake Huron. The four field cruises were conducted from May 2012 to May 2015.
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stored in amber bottles (polypropylene 500 ml) and kept chilled in
a cooler until laboratory measurements of CDOM levels were per-
formed. Samples at 5 locations were replicated for sampling uncer-
tainty assessment (mean error < 3%). The in situ spectral data were
collected at 2 m above the water surface with a Satlantic� Hyper-
SAS and HyperOCR sensors. The cruises were arranged during
cloud free weather and under �2–8 m/s wind speed so that wave
effect is minimum. The HyperSAS instrument was deployed by fol-
lowing the operation instructions to ensure sensor view angles
were adjusted according to the solar position during above-
surface spectra data measurements. The in situ spectral data
included sky radiance (Ls), total upwelling radiance (Lt) and down-
welling irradiance (Ed) from 400 nm to 800 nm. The radiance sen-
sor for measuring Lt was pointed to the water surface at an angle
of 40� from nadir. The radiance sensor for measuring Ls was
pointed skyward with an angle of 40� from solar zenith. Both sen-
sors were set at the angle of 90� from solar azimuth angle. The Ed
irradiance sensor was mounted separately and perpendicularly to
the water surface. At least 20 radiance/irradiance measures were
recorded at each location. The averages of these 20 spectral curves
were used for all further analyses.
In situ below-surface spectral data were measured to observe
the water column light field. The below-surface upwelling irradi-
ance was logged via a ASD� Fieldspec equipped with an under-
water cosine corrected receptor. These below-surface spectra
across 300–1000 nm were collected at 6 locations with varied
depths (from �0.6 m to �4 m). These below-surface measure-
ments were conducted vertically from just below the water surface
to just above the bottom sediments at 0.3 m interval. All spectral
measurements were carried out between 10 A.M. and 2 P.M. in
cloud free weather and wind conditions ranged from �2–4 m/s
(2–8 knots) that were associated with waves ranging from 0.15
to 0.45 m according to the data from the National Weather Service.
Other environment conditions did not vary significantly during the
field measurements (depth, sediments, etc.).

The CDOM measurements for all the collected water samples
were completed within six hours of collection. The water samples
were first filtered using glass microfiber filters GF/F (nominal
0.7 lm pore size) according to the standard laboratory measure-
ment of CDOM (Mannino et al., 2008; Vodacek et al., 1997). Then
the filtrate was transferred into 0.01 m cuvettes to measure CDOM
absorbance A(k) via a Cary� 60 UV–Vis Spectrophotometer with
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Milli-Q water as blank. The CDOM absorption coefficient ag(k) was
calculated from Eq. (1):

agðkÞ ¼ lnð10Þ
L

� AðkÞ ¼ 230:3� AðkÞ ð1Þ

where L is the diameter of cuvette in meters. All laboratory mea-
surements were performed in triplicate and averaged in order to
increase overall accuracy.

The remote sensing reflectance Rrs was calculated from in situ
spectral radiances and irradiance by

Rrs ¼ Lt � /Ls
Ed

ð2Þ

where Ed is downwelling irradiance, Ls is sky radiance, Lt is total
upwelling radiance and / is a proportionality factor that relates
the Ls to water-surface reflected radiance, set as 0.028 (Mobley,
1999). Then just below-surface remote sensing reflectance (rrs)
was derived from Rrs as (Lee et al., 1998):

rrsðkÞ ¼ RrsðkÞ
0:52þ 1:7RrsðkÞ ð3Þ
2.3. Shallow water bio-optical properties (SBOP) algorithm

A shallow water bio-optical properties algorithm (SBOP) was
developed for CDOM absorption retrieval to reduce the uncertainty
caused by bottom sediments. In optically shallow waters, the
water-leaving reflectance is made up of contributions from both
waterbody and bottom sediments. So the below-surface remote
sensing reflectance rrs can be modeled as (Lee et al., 2007):

rrs ¼ rcrs þ rbrs ¼ rdprs ð1� e�DcðatþbbÞHÞ þ 1
p
qe�DbðatþbbÞH ð4Þ

where rcrs represents the water column contribution. rbrs represents
the bottom sediments contribution. Dðat þ bbÞ represents the light
attenuation caused by water column absorption and backscattering
for water column light components (Dc) or light components from
bottom (Db). Finally, Dc and Db are empirical factors associated with
under-water photon path elongation due to scattering and can be
calculated as below (Lee et al., 1999):

Dc ¼ 1:03 1þ 2:4
bb

at þ bb

� �0:5

ð5Þ

Db ¼ 1:05 1þ 5:5
bb

at þ bb

� �0:5

ð6Þ

The value 1.05 and 5.5 used in the calculation were determined
after repeated experiments and they were found to be the optimal.

rdprs represents below-surface remote sensing reflectance when the
water is infinitely deep and can be modeled as (Lee et al., 2013):

rdprs ¼ 0:089þ 0:125
bb

at þ bb

� �
bb

at þ bb
ð7Þ

Several previous studies as well as our model calibration results

showed that using 0.089 and 0.125 for the calculation of rdprs would
Table 1
Sensitivity analysis of the algorithm parameters.

Parameters General setting

Db ¼ 1:05 1þ 5:5 bb
atþbb

� �0:5 1.05, 5.5
New version HOPE

rdprs ¼ 0:089þ 0:125 bb
atþbb

� �
bb

atþbb
0.089, 0.125
General water

Spectral slope S 0.015
Global mean
improve model applicability to shallow waters (open waters,
coastal waters, and inland waters) (Barnes et al., 2013; Lee et al.,
2009, 2013; Yang et al., 2013; Zhu and Yu, 2013). Then rrs can be
determined by the following bio-optical variables: bottom reflec-
tance q, water depth H, absorption and backscattering coefficients
at and bb. For the SBOP algorithm, the total absorption coefficients
(atÞ at a given wavelength (k) is modeled from three components:

atðkÞ ¼ awðkÞ þ apðkÞ þ agðkÞ ð8Þ
where awðkÞ is the pure water absorption coefficient, agðkÞ is the
CDOM absorption coefficient, and apðkÞ represents the particle
absorption coefficient, which include both phytoplankton and
non-algal particles. The total backscattering coefficients bbðkÞ is cal-
culated via two components:

bbðkÞ ¼ bbwðkÞ þ bbpðkÞ ð9Þ
where bbwðkÞ and bbpðkÞ are backscattering coefficients of pure
water and particles, respectively. The values of awðkÞ and bbwðkÞ
are known (Morel, 1974; Pope and Fry, 1997). The bbpðkÞ and agðkÞ
were modeled as follows (Lee et al., 2013):

bbpðkÞ ¼ P
k

555

� � y

ð10Þ

agðkÞ ¼ Me�Sðk�440Þ ð11Þ
where y is the spectral parameter that determines the scattering
decay and was estimated as (Lee et al., 2002):

y ¼ 2 1� 1:2e�0:9Rrs ð444ÞRrs ð555Þ
� �

ð12Þ

S is the parameter establishing the absorption decay slope
(spectral slope) and its value is approximately 0.015 as derived
from the global average value (Zhu et al., 2014). This value is more
applicable to a broad range of water cases and reduces the bias in
algorithm comparison. The unknown factorM is the CDOM absorp-
tion coefficient at 440 nm. P is the particle backscattering coeffi-
cient at 555 nm. There is a good positive correlation between
apðkÞ and bbpðkÞ as both are associated with suspended particulate
matter (Babin et al., 2003; Zhu et al., 2014). Ultimately, apðkÞ was
modeled as:

apðkÞ ¼ qP
k

555

� � y

ð13Þ

where q = 0.75 which represents the empirical ratio of ap and bbp

(Zhu and Yu, 2013; Zhu et al., 2013b). The bottom reflectance
(qðkÞ) at each wavelength is expressed as:

qðkÞ ¼ BqbottomðkÞ ð14Þ
where qbottomðkÞ is the dominant bottom material spectrum (sand)
and it is normalized by the reflectance at 555 nm (Lee et al.,
2007). The B is an unknown factor which represents the bottom
reflectance at 555 nm. A sensitivity analysis was conducted in order
to confirm that global values are suitable for the relevant parame-
ters (Table 1). Overall, using alternative settings has a negligible
effect on the results compared to general setting. The general
Alternative setting Accuracy change

1.04, 5.4
Old version HOPE

+0.5%

0.084, 0.17
High scattering water

+2.5%

0.0152
Field data-based

�0.5%



Fig. 2. Conceptual flowchart of adaptive approach and SBOP algorithm. In the SBOP
algorithm, the H, B, P, and M were four unknown factors which were derived from
optimization. The depth H affected the water column reflectance (rcrs) and bottom
reflectance (rbrs). The bottom reflectance B contributed to the below-surface remote
sensing reflectance rrs . The CDOM absorption M and the particle backscattering P
determined the light attenuation (at þ bb).
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setting is preferable as algorithm validation is dependent less upon
the study site.

Through Eqs. (4)–(14), rrs is constructed to describe optically
shallow waters’ bio-optical properties and contains four unknown
variables B, M, P and H:

rrsðkÞ ¼ f ðB;M; P;HÞðkÞ ð15Þ
The SBOP algorithm solves for these four unknown variables via

spectral optimization. In the SBOP processing, the initial values of
the B, M, P and H were set as following (Lee et al., 2013):

B ¼ 0:1 ð16Þ

M ¼ 0:075
Rrsð444Þ
Rrsð555Þ

� ��1:7

ð17Þ

P ¼ 0:025
Rrsð444Þ
Rrsð555Þ

� ��1:7

ð18Þ

H ¼ 1:5 ð19Þ
B, bottom reflectance at 555 nm, was set as 0.1. H, the average

depth was set as 1.5 m according to study site conditions. After
tests these initial values were found to be the best. Our optimiza-
tion process minimizes the differences between modeled below-
surface reflectance crrs and measured below-surface reflectance
rrsðkÞ (obtained from in situ spectral measurements or remote sens-
ing images), ultimately determining each variable in order to
derive CDOM absorption and bottom contribution. Specifically,
the optimization aims to find these four variables that minimize
the following error function:

err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðrrsðkiÞ � crrsðkiÞÞ2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1rrsðkiÞ
q ð20Þ

The nonlinear system solver function in Matlab was applied in
this study, which used the trust region dogleg algorithm to process
the optimization (Powell, 1968). The SBOP algorithm requires a
minimum of four rrs values at different wavelengths as input. So
potentially it can be applied to both multispectral and hyperspec-
tral data. In this study, the hyperspectral data (120 rrs bands) was
applied to estimate the CDOM absorption. The algorithm perfor-
mance was evaluated by comparing remote sensing derived CDOM
results with laboratory measurements of CDOM using field water
samples. The following five statistical metrics were assessed: bias,
mean normalized bias (MNB), absolute mean error (AME), root
mean squared error (RMSE, log space) and R2 (regression, Type II).

2.4. Adaptive approach for computation efficiency

In estimating CDOM in inland and coastal waters, a single scene
of satellite data often contains a broad range of water depths (e.g.
Landsat 8). The estimation of CDOM through the SBOP algorithm is
generally both time and computation intensive, for the relatively
complex equations illustrated above need to be solved through
optimization. One way to improve optimization efficiency is to
separate the water spectral data into high or low bottom effect
groups and only apply SBOP to the high bottom effect (optically
shallow) group. We introduce an adaptive approach of applying
the SBOP algorithm only to optically shallow waters and applying
the deep water semi-analytical algorithm (QAA-CDOM) to optically
deep waters.

The QAA-CDOM is a representative semi-analytical algorithm
for CDOM retrieval in deep waters (Zhu et al., 2014). This algorithm
can be efficiently applied to a wide range of water conditions,
including estuarine and coastal waters assuming the water is
optically deep. It calculates CDOM absorption directly from Rrs in
13 steps. The first ten steps derive the total absorption coefficient
atð440Þ and bbpð555Þ (Lee et al., 2002; Zhu et al., 2013a). Then last
three steps derive the absorption of particulates apð440Þ from
bbpð555Þ in order to calculate agð440Þ by the following equations:

apðkÞ ¼ J1bbpð555ÞJ2 ð21Þ

agð440Þ ¼ atð440Þ � awð440Þ � apð440Þ ð22Þ
where J1 ¼ 0:63 and J2 ¼ 0:88 are two parameters that were esti-
mated from in situ data from inland waters (Zhu and Yu, 2013).
The required inputs of the QAA-CDOM algorithm are Rrs at wave-
lengths of 440, 490, 555 and 640 nm.

Water depth is a key factor determining the bottom effect and is
often used to separate optically deep or optically shallow waters.
However, the bottom effect is also highly influenced by water col-
umn attenuation (Barnes et al., 2014; Zhao et al., 2013). A tangible
example is that bottom reflectance could contribute significantly
to water-leaving radiance for deep but clear/transparent water
with a highly reflective bottom such as sand. Therefore, the bottom
effect index (BEI) was introduced which considers both the bathy-
metry and water column attenuation to quickly identify waters for
which bottom reflectance is significant. It is defined as an exponen-
tial function because it has been established that underwater light
is exponentially attenuated with water depth (Markager and
Vincent, 2000):

BEI ¼ e
� Rrs ðk1 Þ

Rrs ðk2 Þ

� �
H ð23Þ

where H is the water depth. The Rrs band ratio (e.g. 690/555 nm)
represents light attenuation by the water column and was often
used as a proxy for water turbidity in previous research
(Dall’Olmo et al., 2005; Dogliotti et al., 2015; Doxaran et al., 2005,
2002). The ratio 690/555 nm was applied in this study.
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The adaptive approach applies either the SBOP or QAA-CDOM
algorithm for individual location/spectra depending on the signifi-
cance of bottom effect (Fig. 2). Initially, the field spectral data is
subjected to the BEI in order to determine whether the waters
are categorized as optically shallow or optically deep waters. Then,
the optically shallow waters are processed via SBOP while the opti-
cally deep waters are processed by QAA-CDOM to estimate the
CDOM absorption. This adaptive approach aims to improve the
computation efficiency for the regions with known bathymetry
data (e.g. the Great Lakes regions), which are largely available for
near-coastal shallow waters. Alternatively, for multi-temporal
CDOM monitoring, the bathymetry of the site can be derived from
SBOP algorithm once, and then be applied for other seasons when
using the adaptive approach.

3. Results and discussions

3.1. Spatial and seasonal variation of CDOM from field observation

Field water samples showed that CDOM levels exhibit a distinct
spatial trend, descending from the near-shore lower river channel
and river plume regions to the inner bay. The sampled CDOM
absorption agð440Þ widely ranged from 0.12 m�1 to 8.46 m�1

(Fig. 1). CDOM levels at the river sample locations were generally
high, with the Saginaw River having a value as high as 8.45 m�1.
The average of CDOM levels around the plume area of the Kawkaw-
lin River (5.38 m�1) is much higher than that of the Saginaw River
(1.73 m�1). This marked difference was attributed to the terrestrial
ecology of the drainage watersheds. The large proportion of both
deciduous forest and associated litter and wetland areas within
the Kawkawlin River watershed likely caused the higher CDOM
levels in its plume area. The field sampling generally captured
the complex spatial variation of CDOM in this area and provided
a good foundation for evaluating these remote sensing algorithms.

Distinct seasonal variations of freshwater CDOM between May
and October were also observed, likely driven by the organic
carbon supply in the drainage watersheds and hydrological pro-
cesses (Tian et al., 2013). The mean CDOM absorption of samples
collected in May was 2.75 m�1, much higher than that in October
(mean value of 0.54 m�1). The higher CDOM levels during the
Fig. 3. River discharge of the Saginaw River from USGS streamflow data (the left) and
median and the 25th percentiles of the CDOM absorption. The snowmelt started in Ma
sample date in May 2015, so the CDOM level in May 2015 is lower than that in May 20
spring season are analogous to trends reported in a recent study,
which reported that the surface and subsurface hydrology associ-
ated with snow melt is responsible for transporting organic
matters from soil organic carbon pools into the river systems
(Tian et al., 2013). Similarly, the Saginaw River watershed is dom-
inated by the agricultural land use which has increased metabolic
activities on crop residues in the spring (Spedding et al., 2004). The
second most dominant land cover in the Saginaw River watershed
is deciduous forest. The large proportion of soil carbon originates
from the biological decay of both crop litters and forest leaf litters,
so the soil carbon levels are much higher in spring when the large
accumulation of carbon is flushed out of the soil through snow-
melt. Meanwhile, the consumption of organic matters throughout
the growing season leads to relatively lower soil carbon levels in
October (Kalbitz et al., 2000).

These seasonal hydrological processes also explain inter-annual
CDOM variability (Berto et al., 2010; Raymond and Oh, 2007). The
sampled CDOM level in May 2015 was clearly lower (mean
2.05 m�1) than that in 2013 (mean 3.51 m�1) and 2012 (mean
3.70 m�1). The winter of 2014–15 had relatively large snowfall
accumulations and peak snowmelt occurred in April, much earlier
than in 2012 and 2013 (Fig. 3). The available soil organic matter in
the watersheds was largely depleted during this early spring thaw
in mid-April 2015, which likely resulted in the observed lower
CDOM levels during the May 2015 sampling campaign. Contrarily,
the relatively higher CDOM levels sampled in May 2012 and 2013
were associated with the receding leg of a more normal spring dis-
charge event.

Above-surface Rrs measured by the HyperSAS spectrometer
demonstrated the potential of using remote sensing for the estima-
tion of CDOM levels and other bio-optical properties of water.
Fig. 4 illustrates how Rrs measured via HyperSAS is spectrally
contaminated by strong bottom reflectance. The 27 samples on
turbidity measurements (Secchi disk depth) were collected in
May 2015 and were accompanied with comparable measurements
of CDOM levels. All the spectra data in Fig. 4 were under the same
general water turbidity conditions. The light attenuations by the
water column were generally the same in these sites, but did differ
with depth. The shallow water samples (0.6 m < Depth < 0.9 m)
show reflectance (Rrs) twice as high as that of the deep water
sampled CDOM absorption in boxplot (the right). The boxplot draws the 75th, the
rch 2015. Spring flood depleted much of the terrestrial organic carbon before the
13 and May 2012.



Table 2
Validation of SBOP and comparison to the QAA-CDOM algorithm.

Method RMSE Bias MNB AME R2

QAA-CDOM 0.31 1.6129 0.8534 0.9343 0.48
SBOP 0.22 0.0701 0.3393 0.5441 0.74

Fig. 4. The measured remote sensing reflectance at shallow (0.6 m < depth < 0.9 m)
and deep (2.7 m < depth < 3.7 m) waters with similar CDOM absorption
(1.8�1 < ag(440) < 2.3 m�1) and turbidity in May 2015.
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samples (2.7 m < Depth < 3.7 m), which is attributed to the bottom
sediments reflectance. Therefore, neglecting bottom reflectance
could introduce significant uncertainties in CDOM retrieval for
optically shallow waters. Higher bottom effect will lead directly
to higher water-leaving radiance. Consequently, the prevailing
deep waters CDOM retrieval algorithms would significantly over-
estimate CDOM levels (Zhu et al., 2013b). Therefore, our in situ
spectra observations strongly suggest that bottom reflectance
must be considered when applying CDOM retrieval algorithms
for optically shallow waters.

3.2. Algorithm performance and validation of SBOP

We validated SBOP with laboratory measured CDOM from field
water samples and assessed the algorithm performance in
Fig. 5. The measured vs. derived ag(440) from SBOP (the left) and QAA-CDOM (the right
levels (between �1.8 m�1 to �3.5 m�1). Group C represents the shallow water samples
water samples (>1.5 m).
comparison to QAA-CDOM (Table 2). The SBOP algorithm per-
formed better than QAA-CDOM with respect to all five error met-
rics. In particular, QAA-CDOM resulted in a much higher bias
(1.6129). In the shallow waters, the high bottom reflectance signif-
icantly increases the reference at longer wavelengths, which leads
to the high spectral slope of remote sensing reflectance (440–
600 nm). Consequently, CDOM is overestimated in deep water
algorithm QAA-CDOM. In contrast, the SBOP (bias = 0.0701) suc-
cessfully modeled both the bottom and water column components
of Rrs and greatly reduced the error and bias. Since over half of the
sample sites were located in optically shallow waters, the perfor-
mance of the QAA-CDOM algorithm was indeed affected by the
intrusive bottom reflectance, whereas the SBOP algorithm success-
fully reduced uncertainty on CDOM retrieval for optically shallow
waters. The SBOP algorithm dramatically improves the accuracy
of CDOM estimation in optically shallow freshwater environments.

The remote sensing derived ag(440) vs. ground truth ag(440) for
individual samples is shown in Fig. 5. The overall R2 of SBOP
(R2 = 0.74) significantly outperformed QAA-CDOM (R2 = 0.48). The
SBOP performs significantly better by taking into consideration
the bottom reflectance in the shallow water regions (labeled as
Group B and Group C). Furthermore, the error range resulting from
the QAA-CDOM algorithm was also larger and some samples have
estimated CDOM (between �10 m�1 and �14 m�1) two or three
times larger than the measured values. These overestimations
were from samples located at the most shallow and clearer loca-
tions (less than 1 m) in the Saginaw River and near shore regions
where ground-truthed CDOM levels were relatively low (labeled
as group B). These results further confirmed that neglecting bottom
reflectance does indeed result in much higher algorithm uncer-
tainty. Comparatively, the QAA-CDOM algorithm produced more
accurate CDOM estimation for samples in shallow waters that
had relatively high CDOM levels (between �4 m�1 and �8 m�1)
(labeled as group C). This scenario occurred in the Kawkawlin River
plume regions where water color was stained brown resulting
from its watershed being dominated by deciduous forest (leaf lit-
ters) and wetland. In essence, high CDOM levels and associated
strong water column absorption reduced the overall negative influ-
ence of the bottom effect. CDOM levels of deep water samples
labeled as group A were slightly underestimated by the SBOP
) algorithm. Group B represents the shallow water samples (<1 m) with low CDOM
(<1 m) with high CDOM levels (between �4 m�1 and �8 m�1). Group A is the deep



J. Li et al. / ISPRS Journal of Photogrammetry and Remote Sensing 128 (2017) 98–110 105
algorithm. This is caused by the over-estimation of bottom reflec-
tance for deep water samples, as the trend line deviated from the
45 degree 1:1 line. However, the performance of both algorithms
degraded when the CDOM level is very low. Specifically, low CDOM
samples collected in May 2015 have relatively larger errors.

3.3. Bottom contribution effect on SBOP algorithm uncertainty

The ASD measured spectra within the water column at six
selected locations were assessed to study the relative role of bot-
tom effect and to examine the SBOP algorithm’s overall effective-
ness. Fig. 6 is an example of the differences in the remote
sensing reflectance at three levels of water depths: just below
water surface, just above bottom, and at mid depth measured with
ASD Fieldspec. Remote sensing reflectance decreases with mea-
surement depth due to absorption and scattering in the optical
transmission processes. We choose two measured variables, just
below surface reflectance (rrs) and just above bottom sediments
reflectance (q) at 555 nm to be compared to their estimated values
by SBOP. Fig. 7 compared these ASD measured values and the SBOP
Fig. 6. The below surface remote sensing reflectance was measured by the ASD
Fieldspec from just below the water surface to just above the bottom. The plot
showed the spectral results on shallow (0.76 m) site.

Fig. 7. Comparisons of ASD measured reflectance and SBOP modeled just above the botto
remote sensing reflectance (rrs) and bottom reflectance (q) at 555 nm were assessed at s
maximum of the error was calculated to be the shade area boundary.
estimated rrs and q. The R2 value was 0.89 for rrs(555) and 0.79 for
q (555). These relatively high correlations demonstrate that SBOP
reasonably modeled water optical properties with a bottom reflec-
tance effect. This deviation is understandable since rrs and B were
solved via optimization with 54 total samples/locations. The rela-
tive error of SBOP modeled rrs(555) and B(555) were displayed
for different depths (Fig. 7c). The algorithm generally performs
well at shallow to moderate depths (�1 m to �2.5 m). In these
regions the bottom contributions account for a relatively lower
percentage of total water leaving reflectance (�15%) when com-
pared to the extremely shallow water sites (�30%). The large
percentage of the bottom contribution in extremely shallow
waters (<1 m) does indeed lead to relatively high errors. Overall,
the errors are smaller in optically shallow waters than optically
deep waters. The implication might be that the set of parameters
(determined by optimization) describe the light field of the well-
mixed water columns in these near-shore waters better, but intro-
duces increasing errors as water depth increases lead to absorption
and scattering.

We plotted percent error with regard to depth or bottom effect
index (BEI) at individual sampling sites, to investigate the influence
of bottom effect on algorithm performance of the optically shallow
water algorithm (SBOP) and the optically deep water semi-
analytical algorithm (QAA-CDOM) (Fig. 8). Such comparisons help
to determine the threshold for the optically deep and optically
shallow waters at our study site. At a depth <1.5 m, the SBOP gen-
erated a reasonably small error (MNB = 0.0915, R2 = 0.67) while the
QAA-CDOM algorithm significantly over-estimates CDOM levels.
The MNB (1.2007) and R2 (0.24) indicated that the QAA-CDOM
caused very large uncertainty in such shallow waters (Table 3,
Fig. 9). Similarly, in waters with high bottom effect (BEI � 0.2),
the SBOP (RMSE = 0.16, R2 = 0.75) generates more reasonable
results compared to the QAA-CDOM (RMSE = 0.32, R2 = 0.30).
Conversely, in the waters with negligible bottom effect (BEI < 0.2)
the QAA-CDOM results in a slightly lower RMSE and higher R2 than
m (a) and just below the surface (b) reflectance. The relative errors of below surface
ix different locations (c). The shaded area indicates the error trend of the SBOP. The



Fig. 8. The percent errors of CDOM estimation from QAA-CDOM and SBOP methods related to depth and bottom effect index. When depth < 1.5 m or BEI > 0.2, the
QAA-CDOM outputs high error results.

Table 3
Validations of QAA-CDOM and SBOP for optically shallow and deep groups when applying Depth or BEI threshold for separation.

Method RMSE Bias MNB AME R2 Optically depth

QAA-CDOM 0.26 0.2488 0.5913 0.7219 0.80 Depth > 1.5m
SBOP 0.26 0.1418 0.5144 0.6749 0.72 Depth > 1.5m
QAA-CDOM 0.35 3.5169 1.1922 1.2007 0.24 Depth � 1.5m
SBOP 0.16 �0.0326 0.0915 0.3607 0.67 Depth � 1.5m
QAA-CDOM 0.26 0.2551 0.6102 0.7038 0.81 BEI < 0.2
SBOP 0.27 0.1186 0.5182 0.6842 0.47 BEI < 0.2
QAA-CDOM 0.32 2.9375 0.9819 1.0481 0.30 BEI � 0.2
SBOP 0.16 0.0330 0.1494 0.3761 0.75 BEI � 0.2

106 J. Li et al. / ISPRS Journal of Photogrammetry and Remote Sensing 128 (2017) 98–110
SBOP (QAA-CDOM: RMSE = 0.26, R2 = 0.81; SBOP: RMSE = 0.27,
R2 = 0.47). CDOM levels were under-estimated by SBOP compared
to the QAA-CDOM where the bottom effect was low (Fig. 9). As
water depth increases, the light is strongly attenuated by the water
column and its constituents in both the downward and upward
paths. Theoretically, at a certain depth, bottom reflectance con-
tributed no light to the total water leaving radiance (Dogliotti
et al., 2015). However, the SBOP output does indicate a minimal
bottom contribution to the total water leaving radiance at these
relatively high depths, which inherently over-emphasizes the
bottom contribution and consequently underestimates the water
column contribution. The constraints of B was set to the range of
0:01 6 B 6 0:9. After the optimization, the minimal B was approx-
imately 0.05 for the optically deep waters. The SBOP algorithm
does not produce a B constraint for the non-bottom effect waters.
This might explain why SBOP outputs slightly under-estimation for
the optically deep waters. This limitation of the SBOP algorithm
creates the need to choose the more suited CDOM retrieval
algorithm (QAA-CDOM and SBOP) for waters with low bottom
effect or high bottom effect respectively.

3.4. The bottom effect adaptive approach

Adaptive approach improves the CDOM retrieval accuracy and
saves computation time by applying the most suitable algorithm
according to the amount of bottom effect (i.e., SBOP for optically
shallow waters and QAA-CDOM for optically deep waters). It
overcomes the limits of each individual algorithm and considers
bottom contribution only when necessary. We examined both
water depth and BEI as a metric used to classify optically deep
vs. optically shallow waters. The thresholds were set as optically
shallow waters (depth � 1.5 m or BEI � 0.2) and optically deep
waters (depth > 1.5 m or BEI < 0.2). The threshold values were
assessed through the comparisons of the algorithm performances.
The BEI = 0.2 and depth = 1.5 m was generated through the perfor-
mances of SBOP and QAA-CDOM algorithms (Fig. 8). These two



Fig. 10. Derived vs. measured ag(440) from Depth (the left) and BEI (the right) adaptive methods. The trend line resulted from BEI adaptive approach is closer to the 1:1 line
and indicates a better overall performance.

Fig. 9. Derived vs. measured ag(440) for optically shallow and deep groups when separated by the depth or BEI threshold. SBOP significantly outperforms QAA-CDOM in
optically shallow waters (depth � 1.5 m or BEI � 0.2), while it slightly under-estimates for optically deep waters (depth > 1.5 m or BEI < 0.2).
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threshold values also provide the most accuracy separation for the
adaptive approach (optically deep waters used QAA-CDOM & opti-
cally shallow waters used SBOP). We tested multiple values to get
these threshold values. The estimation results from the adaptive
method are validated in Fig. 10 and Table 4. The BEI and depth
adaptive methodologies can both utilize the advantages of the
QAA-CDOM and SBOP algorithms to output reliable results (Tables
2 and 4). The performance evaluation shows that the BEI adaptive
method (RMSE = 0.22 and R2 = 0.81) has the advantage over the
depth adaptive method (RMSE = 0.23 and R2 = 0.78) (Table 4). The
trend line of the BEI method is closer to the 45 degree 1:1 line at
relatively high CDOM levels, indicating BEI introduces less bias
for these high CDOM samples (Fig. 10). Due to the relatively lower
number of samples with deep clear waters and high bottom effect,
the performance of the BEI adaptive approach is not markedly
7better than the depth adaptive method. When one considers both



Fig. 11. The bottom contribution vs. depth (a) and bottom contribution vs. bottom effect index (b) for individual samples. The turbid water samples indicate that the bottom
contributions are less than 20%. Two deep clear water samples with high bottom contribution were reasonably categorized as optically shallow water by the BEI method,
different from using our Depth threshold. Panel c plots the BEI value as isolines as a function of the depth and turbidity. The BEI considers both the bathymetry and water
column attenuation to separate the optically shallow and optically deep waters.

Table 4
The validations of Depth and BEI adaptive methods for ag(440) retrieval.

Method RMSE Bias MNB AME R2

Depth adaptive 0.23 0.1424 0.3931 0.5694 0.78
BEI adaptive 0.22 0.1523 0.3969 0.5521 0.81
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the computation efficient and accuracy, the adaptive approach is
the suggested scheme to derive CDOM levels for inland freshwater
and shallow coastal waters.

Our newly proposed BEI quickly separates optically shallow vs.
optically deep waters based on both water depth and light attenu-
ation (approximated by a band ratio) prior to the implementation
of the adaptive method. In order to compare how well the two
metrics, water depth and BEI, represent bottom effect, each was
independently plotted relative to bottom contribution in
Fig. 11a and b, respectively. Note that for this investigation, bottom
contribution (BC) for each sample was calculated as the ratio of
bottom reflectance (B) and below-surface reflectance (rrs). In
Fig. 11a and b, the shaded region represents a bottom contribution
<20%, which referenced very turbid waters having low light
penetration and negligible bottom effect. Bottom contribution
>20% represents optically shallow waters, which theoretically not
only include shallow water, but also some relatively deep clear
water samples. Depth ranging from 0 to 4 m represents a gradient
from optically shallow to optically deep waters. In contrast, a BEI
index ranging from 1 to 0 represents a gradient from optically shal-
low to optically deep waters.

The depth metric cannot properly classify these clear deep or
optically shallow waters (dashed circle in Fig. 11a). These samples
lead to the high uncertainties in the depth adaptive approach since
they were processed by QAA-CDOM without considering bottom
reflectance. In contrast, BEI takes into account both water depth
and column attenuation. The deep clear water samples circled in
Fig. 11a (e.g. 4.2 m with the bottom contribution of 40%) were
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properly distinguished as high bottom contamination samples
(with BEI > 0.2) in Fig. 11b. For the ‘‘deep clear water”, the low tur-
bidity waters have relatively low light attenuations, so even the
physically deep waters have a high bottom effect. Therefore, these
‘‘deep clear water” locations should be classified as optically shal-
low waters. Fig. 11c presents the bottom effect index expressed as
isolines as a function of the depth and turbidity (Rrs ratio). The BEI
0.2 isoline (shaded area) expresses the threshold between optically
shallow and optically deep waters that effectively separates high/
low bottom effect zones. High turbidity waters lead to high light
attenuation which indicates a much lower amount of light was
reflected upwards by the bottom, so only very shallow waters (less
than 1 m) were classified as optically shallow waters. In contrast,
the low turbidity waters have relatively low light attenuations,
so even the deeper sample locations have a high bottom effect
and should therefore be classified as optically shallow waters.
Therefore, it is clear that utilizing the BEI metric leads to a more
accurate adaptive approach than using our depth metric. More-
over, it can be easily derived and applied to many other aquatic
remote sensing studies for fast identification of those areas where
bottom reflectance influences CDOM measurements.

4. Conclusions

The optically shallow inland and coastal waters are important
pathways for exporting terrestrially derived carbon sources into
aquatic ecosystems. However, bottom reflectance introduces high
uncertainty to the remote sensing estimation of water bio-optical
properties (e.g. ag(440)). In addition, for terrestrial carbon domi-
nated freshwater environments, CDOM levels exhibit a very broad
range (e.g. 0.12 m�1 to 8.46 m�1 in this study). These two charac-
teristics present challenges for the remote sensing retrieval of
freshwater biogeochemistry in the coastal and inland waters.
Based on multi-date in situ measurements, this study developed
an efficient shallow water CDOM estimation algorithm (SBOP).
The overall performance evaluation (RMSE = 0.22 and R2 = 0.74)
demonstrated that the SBOP algorithm can be successfully applied
to the optically shallow fresh waters with relatively homogeneous
bottom sediments/conditions.

Ultimately, the SBOP model is uniquely designed for estimating
CDOM absorption in optically shallow waters by taking into
account the bottom reflectance component of total upwelling radi-
ance. The SBOP algorithm significantly outperforms QAA-CDOM in
these optically shallow waters (SBOP R2 = 0.74 and QAA-CDOM
R2 = 0.48). In addition, the algorithm separately derives CDOM
absorption as opposed to a combined absorption adg from prevail-
ing ocean color algorithms. The removal of bottom effect from total
radiance reduces the CDOM estimation uncertainty, and therefore
extends effective carbon monitoring capabilities to optically shal-
low inland and coastal waters.

Widespread monitoring of water carbon from remote sensing
data in the inland and coastal shallow waters demand the process-
ing of large volumes of satellite data. We propose a BEI adaptive
approach for algorithm selection. The BEI is designed to improve
the computation efficiency for the regions having reliable bathy-
metry data, which are largely available for near-coastal and inland
shallow waters. The BEI is able to quickly identify bottom contam-
inated water spectra/pixels based on both the bathymetry and
water turbidity, so as to differentiate optically shallow waters.
The BEI adaptive approach (BEI R2 = 0.81) can efficiently as well
as accurately aid in the selection of the proper algorithm for the
estimation of water CDOM absorption.

In summary, our study investigated the potentials of remote
sensing methods for capturing seasonal and spatial dynamics of
CDOM in optically shallow water environments. Our newly devel-
oped SBOP algorithm offers a new inversion algorithm that directly
considers bottom effect in radiative transfer equation. The BEI
based adaptive approach presents a more efficient and fast method
for monitoring terrigenous carbon export to inland and coastal
waters with broad CDOM conditions. The outcome of this investi-
gation will ultimately improve the monitoring of carbon pools and
their transport gradients and mechanisms from terrestrial to aqua-
tic systems at both regional and global scales.
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