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Issues and Potential Improvement of Multiband
Models for Remotely Estimating Chlorophyll-a
in Complex Inland Waters

Weining Zhu, Qian Yu, Yong Q. Tian, Brian L. Becker, and Hunter Carrick

Abstract—Remote estimation of chlorophyll-a (chl-a) in com-
plex freshwaters remains a challenging problem due to the rapid
spatial variability and wide range as influenced by terrestrial
constituents. A controversial issue is whether or not 2-B models
possess sufficient wavelength information for accurately estimat-
ing Chl-a concentrations from remote sensing data for freshwater
environments. This study introduced a systemic approach and
proved that adding additional wavelength information to 2-B
model could not significantly improve the estimation of freshwater
chl-a, but acted to increase model uncertainty. This convinc-
ing solution was based on a large synthetic data set (38 937
samples) combined with a set of in situ data (51 samples) col-
lected in three cruises in Lake Huron. The synthetic data set
has two distinct features: 1) large data items and 2) covers a
broad range of chl-a (0-1000 mg/ m?), colored dissolved organic
matter (CDOM) (0-50 m_l), and NAP (nonalgal particles)
(0-500 mg/l). Additionally, this study reveals how hyperspectral
wavelength selection, number of bands, bandwidth, and param-
eter calibration are associated with the uncertainty in remote
sensing of chl-a. The systematic analysis approach was used to
evaluate 34 chl-a algorithms by using optimal location and num-
ber of wavelengths as well as calibrated parameters. The study
introduced a set of new 2-B, 3-B, and 4-B models derived also
from using optimized parameters, suggested wavelengths, and
bands available in MERIS and MODIS satellite images. Validation
results demonstrated that these models are suitable to general
freshwater environments because of broad ranges of biochemical
and physical properties in both synthetic and in situ data.

Index Terms—Chlorophyll, coastal waters, model, remote
sensing.
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I. INTRODUCTION

S THE MAIJOR photosynthetic pigments of phytoplank-

ton, chlorophyll plays a fundamental role in aquatic
ecosystems. Estimation of chlorophyll using remote sensing is
a key technique in the study of global/regional carbon cycles,
calculations of aquatic plant biomass, evaluations of water qual-
ity, and studies centered on gaining a better understanding of
human-climate interactions, etc. [1], [2]. Chlorophyll estima-
tions in open oceans have been successful through the use of
ocean color satellite sensors and blue/green band-ratio models
[3], [4]. NASA routinely publishes global oceanic chloro-
phyll concentration distribution as SeaWiFS product using the
well-known OCv4 algorithm [5].

Increasingly, algorithms and models developed for open
sea waters are being applied to inland freshwaters, which are
heavily influenced by their adjacent terrestrial environment
and anthropogenic activities. Unfortunately, many studies have
shown that open sea chlorophyll estimation models do not
work well when applied to complex coastal and inland waters
[6]-[10]. Freshwater chlorophyll estimation is challenging for
three main reasons: 1) chlorophyll concentrations in inland
aquatic environments could vary, from near zero to as high as
1600 mg/m? [11]. 2) The presence of multiple types of chloro-
phyll (i.e., chl-a, chl-b, and chl-c) often contribute equally to
what can be highly varied optical properties. 3) Two addi-
tional color components [i.e., colored dissolved organic matter
(CDOM) and nonalgal particles (NAP)], are often in high con-
centrations and are highly visible [12], [13], which can severely
interfere with the estimation of chlorophyll [14].

The most common chl-a algorithms are based on band-ratio
models. The 2-B model suggests that chl-a concentration is
proportional to a ratio of B1/B2, where B1 and B2 typically
fall within the blue and green bands/wavelengths for open-sea
[3], [4]. It has been suggested that the two bands should fall
within the NIR and red regions in turbid coastal/inland waters
[71, [15], [16]. Alternatively, three-band semianalytical mod-
els [6], [17] usually incorporate one red (B1: 660-690 nm) and
two NIR bands (B2: 710-730, and B3: >730nm). The red B1
is usually set at a chl-a sensitive wavelength e.g., 667 nm. B2 is
effective in minimizing the influences of CDOM and NAP with
the assumption that chl-a absorption is minimal in this wave-
length domain. B3 was introduced to minimize the influence
of particulate backscattering on reflectance. Recently, a 4-B
model has also been proposed for removing the impact of high
concentrations of sediments or elevated turbidity [18], [19].
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4-B models usually include a fourth band within the NIR wave-
length (e.g., 750-780 nm) in addition to the three bands found
in 3-B models.

A controversial issue on the above band ratio algorithms
is whether or not 2-B models possess sufficient wavelength
information for accurately estimating chl-a concentrations from
remote sensing data, especially comparing to 3-B/4-B mod-
els for freshwater environments. The controversial was mostly
raised from case studies using two-, three-, and four-band
ratio models. In theory, 3-B/4-B models should perform bet-
ter than 2-B models do in general scenarios because of
additional wavelength information. 2-B models incorporat-
ing a red and NIR band are most common relative to other
model configurations (3-B and 4-B) for turbid inland waters.
Dall’Omlo and Gitelson [21] reported in some cases, that the
2-B model slightly outperformed the 3-B model when using
two band pairings: B1 = 673 nm paired with B3 > 730 nm, or
B1 = 665 nm paired with B3 = 705 nm [21]. This study also
brought up another issue on what are the best wavelengths in
2-B model for general freshwater environment. Contrarily,
some case studies [18] concluded that a 4-B model provided
more accurate chl-a estimations than similarly configured 2-B
and 3-B models in turbid waters. Recently, another case study
by Gurlin et al., [29] showed that 2-B model outperformed
3-B/4-B models in estimating chl-a for turbid water. This
unclear picture identified the need to improve our under-
standing of factors affecting chl-a estimation, such as optimal
number of bands and the most appropriate wavelength domain
by using large and identical synthetic and field data from
representative freshwater environments.

Three shortcomings in current remote sensing of chl-a are:
1) limited/biased in situ data from case studies did not encap-
sulate enough variability to represent the inherent complexity
of complex inland waters; 2) lack of a systematic approach
for understanding the issues and potential improvements in
the available 2-/3-/4-B models by using the same data set that
has a wide range of chl-a concentrations; 3) neglect of band
and parameter optimization strategies to determine a suitable
model.

This paper addresses the three shortcomings mentioned
above and introduced a systematic approach for solving the
controversial in band ratio chl-a algorithms suitable to general
freshwater environment. Our hypothesis is that adding addi-
tional wavelength information to 2-B model could not make
significant improvement in estimating chl-a in freshwater envi-
ronment, but acted to increase model uncertainty. We tested
this hypothesis by using a large synthetic data set (38937
samples) combined with a set of in sifu data (51 samples) col-
lected in three cruises in Lake Huron. Two synthetic data sets
generated via a Hydrolight two distinct features: 1) large data
items and 2) covers a broad range of chl-a (0-1000 mg/m?),
CDOM (0-50 m~'), and NAP (0-500 mg/l). The study
reveals how hyperspectral wavelength selection, number of
bands, bandwidth, and parameter calibration are associated
with the uncertainty in remote sensing of chl-a by evaluating
34 chl-a algorithms. A most important outcome from this study
is a set of new 2-B, 3-B, and 4-B models derived also from

using optimized parameters and band selection. An indepen-
dent set of synthetic and in sifu data was used in validating that
our new models are suitable to general freshwater environments
because of broad ranges of biochemical and physical properties
in both synthetic and in situ data.

II. DATA AND METHODS
A. Study Site and Field Measurements

Three field measurements were conducted in the Saginaw
and Kawkawlin River plume regions of Lake Huron, on May
10, October 18, 2012, and May 7, 2013. The Saginaw River
(36 km) is the longest and highest volume river flowing into
the Saginaw Bay of Lake Huron, while the Kawkawlin River
is significantly smaller in length (28 km) and discharge. Their
mouths enter into Saginaw Bay approximately 1 km apart
(Fig. 1). Waters in the Saginaw River are typically turbid with
a much heavier sediment load, while the Kawkawlin River gen-
erally discharges clearer but stained waters which appear much
darker than the waters of Saginaw Bay. Detailed information of
the study site could be found by referring to Zhu et al. [22].

Fifty-one surface water samples were collected, dispensed
into amber bottles (polypropylene 500 ml), and stored in a
cooler kept at ambient water temperatures for processing in the
laboratory (within 6 h in Mount Pleasant, Michigan). The in situ
water optical properties, including water leaving radiance (L),
sky radiance (L;), and downwelling irradiance (FEs) were
measured via a HyperSAS (hyperspectral surface acquisition
system) and HyperOCR (hyperspectral ocean color radiome-
ter) produced by Satlantic Inc. The measurements were taken
from 10 A.M. to 2 P.M., under cloud free conditions and wind
speeds of ~4—10 m/s. The zenith and azimuth angles of the
HyperSAS sensors were adjusted according to solar position.
At each sampling point, ~20 spectral data were collected.

B. Laboratory Measuring and Processing

Chlorophyll-a (chl-a) concentrations of water samples col-
lected in three cruises were measured in a biology lab.
Subsamples (1-5 mL) were filtered onto membrane filters
[23]. Material on the filters was extracted using a 50:50 mix-
ture of 90% acetone and dimethylsulfoxide, and the chl-a
was quantified before and after acidification using a 10-AU
Turner Fluorometer. This allowed final chl-a concentrations
to be corrected for the presence of phaeopigments [23]. chl-a
concentrations are in unit mg/m?.

Water samples were filtered through GF/F glass microfiber
membrane (0.70 wm) under low pressure (<5 atm). The filters
were retained to measure chl-a concentration via HPLC (high
performance liquid chromatography). The filtrate was collected
and CDOM absorbance A(\) (200-800 nm) was measured by
a Cray-60 spectroradiometer with a 1-cm cuvette and Milli-
Q baseline correction. CDOM absorption coefficients acpons
were then calculated by

In (10) A (\)

I (M

acpom (A) =
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Fig. 1. Study site map for sampling dates and locations, land cover, and chl-a concentrations in the Saginaw River and Kawkawlin River plume regions of Lake

Huron.

where L is the path length of the cuvette in meter. In addi-
tion, the second filtrate samples were processed to determine
DOC concentrations, which were measured using a Shimadzu
TOC-V analyzer with high temperature combustion [24].

The remote sensing reflectance (R,.s) was calculated by

Ly — pL;

Rrs =
Eq

(@)
where p is the factor representing the proportion of the incident
light reflected by the water surface, which was set to a value of
0.028 as suggested by the HyperSAS manual. The L, L;, and
E; were derived by calculating the median values of the ~20
measured in situ spectra at each sampling point.

C. Simulated Data Set

The synthetic data used in this study were simulated by
Hydrolight [25], a well-known and widely used software envi-
ronment for radiative transfer simulation. The Hydrolight input
model was set to Case 2 water with three ocean color com-
ponents, and their concentrations were set across extremely
wide ranges: chl-a (0-500 mg/ms), CDOM (0-50 m— 1), and
NAP (0-500 mg/l) and with logarithmic intervals. For example,

we established 33 chl-a representative concentrations (0, 0.1,
02...1,2...10,20...100, 200 ... 500 mg/m3). Therefore,
we obtained 33 x 33 x 33 = 35937 samples. Above-surface
spectra were simulated from 400 to 800 nm with a 5-nm
interval. Other simulation parameters were established anal-
ogous to those used within the IOCCG (International Ocean
Colour Coordinating Group) synthetic data set [26]. Note
that the IOCCG synthetic data set is not suitable for algo-
rithm tests in complex inland and coastal waters because its
size is relatively small (500 samples), concentration ranges
are relatively narrow: chl-a (0.03-30 mg/m?’), and acpom
(0.0025-2.37 m™'), and ocean color components were not
completely independent (e.g., CDOM absorptions were set
based on chl-a concentrations).

In addition to the full synthetic data set described in
the previous paragraph, we created a second synthetic data
set (H3000) to be used solely for model validation. This
data set contains 3000 samples and their simulation param-
eters were within the range of the inherent optical prop-
erties (IOPs) of the full synthetic data set. However, the
IOPs of the H3000 data set (chl-a, CDOM, and NAP) were
randomly established. The resulting validation data set is
more indicative of the actual optical properties within our



ZHU et al.: ISSUES AND POTENTIAL IMPROVEMENT OF MULTIBAND MODELS FOR ESTIMATING CHLOROPHYLL-a 565

study area, and were found within a significantly smaller
range for all IOPs, chl-a, CDOM, and NAP concentra-
tion ranges are 0.297-184.84 mg/m3, 0.009-35.36 m~!, and
1.66-289.91 mg/l, respectively.

D. Accuracy Assessment

The uncertainty related to the in sifu chl-a concentration was
evaluated through the comparison of the 20 paired water sam-
ples collected at our 10 sampling locations of May 2012. At
each location, two samples were taken near simultaneously,
separated from each other by a distance <2 m. In the laboratory,
each sample was measured twice and the hence at each location,
we have four measured chl-a concentrations. The uncertainty
was then evaluated through the following equation:

Smin

S’rnaa: -

Uncertainty = x 100% 3)

Smean
where S,,02, Smin, and S;,eqn are max, min, and mean values
of the four measurements for a given sampling location.

The following statistical variables were used for algorithm
assessment and validation:

Mean normalized bias (MNB)

N Estimated Measured
S; — 5

1
MNB = N S]\/[easured : (4)

i=1
Mean absolute error (MAE)

N )
’SZ_Estlmated _ SZ_]Weasured|

1
MAE = N S]\/Ieasured (5)
%

i=1
Root mean square error (RMSE)

RMSE = \/ Zf; N (szEstmmted _ Sizweusu,,edy
N —2 .

(6)

Algorithm outputs representing unreasonable or invalid val-
ues (i.e., outside of the range from 0 to 1000 mg/m?®) were
not included in our accuracy assessment. As shown in Table I,
N represents the total number of algorithm outputs while n is
number of valid outputs. Accordingly, the n/N values shown in
Table I represent the percentage of algorithm outputs that were
deemed valid.

ITI. RESULTS AND DISCUSSIONS
A. Chl-a Range, Spatial, and Temporal Variations

The in situ measurements show that water properties in
our study site are highly varied in magnitude, time (season),
and space. The measured chl-a concentrations ranged from
1.62-51.68 mg/m® with a mean value (i) of 20.46 mg/m?.
The range and the mean of our freshwater derived samples are
more varied and systematically higher than those of open ocean
environments, which are usually lower than 10 mg/m® [26].

The chl-a range and mean from samples collected during
three different sampling campaigns indicate some temporal

+ Uncertainty (%)
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Fig. 2. Measured chl-a concentration ranges and uncertainties for each sam-
pling point collected on May 10, 2012. The floating bars show the max, min,
and mean values of each point, and the cross symbols show their uncertainties.

variations due to the mixed effects of precipitation events and
seasonal variations. The measured chl-a concentrations from
May 10, 2012 displayed a range of 1.62-14.24 mg/m®, with
1= 8.91 mg/m® (Fig. 2). The chl-a properties from October
18, 2012 increased to 6.52-43.68 mg/m?>, p = 18.03 mg/m>.
The measurements from May 7, 2013 demonstrated an extreme
precipitation effect on chl-a concentrations, since there was
the largest precipitation event in 60 years approximately
three weeks prior to our sampling campaign. The same sea-
son (approximately 1 year later from May 2012) and same
sampling sites, chl-a concentrations from May 2013 went
up significantly, ranged from 11.57-51.68 mg/m®, with ;=
32.70 mg/m®.

The samples from each sampling run captured the spa-
tial variation of chl-a concentrations in the two river plume
areas, river channel, and bay region. The lowest chl-a con-
centration 1.62 mg/m® was observed in the open Saginaw Bay
region consistently on each of the sampling dates. The high-
est chl-a concentrations were observed in the plume area of
the Kawkawlin River. Unlike riverine CDOM concentrations,
the chl-a concentrations have not demonstrated a clear gradient
along the river plumes. This indicates that chl-a concentrations
are largely driven by distributions of phytoplankton and algal
plants originated in rivers and their diverse network of drainage
canals due to eutrophication. The paired samples collected
within a 5 m radius showed that chl-a could display significant
differences across short distances [uncertainties calculated by
(3)]. The differences ranged from 4.94% to 60.3% with a mean
value of 21% (Fig. 2). The complex spatial variations of chl-
a concentrations challenge the consistency of remote sensing
estimations of chl-a levels.

Results showed that CDOM and chl-a had no covariation in
our samples (Fig. 3). This is consistent to some open sea scenar-
ios reported in [3] and [27]. It should be noted that the lowest,
middle, and highest recorded CDOM values all occurred as
chl-a were approximately 8-15 mg/m?® (see the vertical shadow
area in Fig. 3). Particularly, when chl-a = 8-15 mg/m?® and
CDOM = 1-4 m~! a complex interaction occurs where one
component may highly interfere with the accurate measure-
ment of the second. No correlation between CDOM and chl-a
does not indicate that the variation of CDOM levels would not
affect remote sensing of chl-a. Our study site displayed highly
varied chl-a/CDOM values, sharp sampling gradients, varied
responses to precipitation events and seasonal differences, mak-
ing it an appropriate location at which to evaluate algorithms.
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TABLE 1
ASSESSMENT OF CHL-A ALGORITHMS FOR In Situ DATA
No.  Algorithm Type n/N MNB MAE R RMSE
(%)

1 0C2S BG Emp 100 -0.33 0.63 0.11 18.91
2 0C3S BG Emp 100 -0.34 0.63 0.11 18.93
3 0ocC4 BG Emp 100 -0.37 0.62 0.17 19.18
4 0OC3M BG Emp 100 -0.2 0.63 0.09 17.91
5 0C30 BG Emp 100 -0.32 0.62 0.11 18.72
6 0C3C BG Emp 100 —-0.38 0.62 0.09 19.4
7 oc2M BG Emp 100 -0.34 0.67 0.03 19.48
8 0C20 BG Emp 100 -0.32 0.62 0.11 18.73
9 0C40 BG Emp 100 -0.34 0.6 0.1 18.97
10 Morel 02 BG Emp 100 -0.03 0.63 0.12 16.58
11 Morel 03 BG Emp 100 0.49 1.08 0 17.53
12 Morel 04 BG Emp 100 2.46 2.48 0.12 24.64
13 CalCOFI 4 BG Emp 100 -0.43 0.63 0.33 19.4
14 CalCOFI 3 BG Emp 100 -0.43 0.65 0.13 20
15 CalCOFI 2C BG Emp 100 0.26 0.77 0.11 14.74
16 CalCOFI 21 BG Emp 100 -0.13 0.6 0.12 17.38
17 POLDER BG Emp 100 3.58 3.63 0.01 46.05
18 OCTS-p BG Emp 100 0.2 0.9 0 17.18
19 OCTS-c BG Emp 100 -0.02 0.66 0.11 16.45
20 C3B BG Emp 100 -0.64 0.74 0.02 22.13
21 GPs BG Emp 100 -0.43 0.64 0.12 20.18
22 Aiken-C BG Emp 100 -0.64 0.73 0.13 21.9
23 Aiken-P BG Emp 100 -0.53 0.69 0.12 20.83
24 Carder-S BG Emp 100 -0.54 0.72 0.24 22.93
25 QAA-4 Semi. Emp 78.05 -0.09 0.75 0.16 19.54
26 QAA-5 Semi. Emp 82.93 1.73 1.89 0.28 53.62
27 GSM MIM 100 -0.12 0.55 0.02 17.46
28 Boss MIM 97.56 -0.59 0.65 0.3 17.79
29 Lyon MIM 97.56 -0.5 0.52 0.47 16.8
30 Brando MIM 92.68 0.53 0.87 0.54 25.51
31 Gitelson 2B Red-NIR 95.12 1.07 1.2 0.12 19.02
32 Gitelson 3B Red-NIR 80.49 -0.18 0.55 0.45 16.01
33 Le 4B Red-NIR 85.37 —-0.06 0.65 0.16 16.35
34 Le 4BC Red-NIR 82.93 —0.11 0.57 0.54 12.91

Note: Algorithm No. 1-24 blue-green (BG) band ratio models: N is the number of data tested, while n is
the number of valid retrievals. References: Algorithm No. 1-9: NASA Ocean Color Chlorophyll (OC) v6
(http://oceancolor.gsfc.nasa.gov/ANALY SIS/ocv6/); No. 10-23: [5]; No. 24-29: [26], IOCCG website
(http://www.ioccg.org/groups/software.html); No. 30: [32]; No. 31-32: [17]; No. 33-34: [18], [19].
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are for individual sampling cruise.

B. Above-Surface Spectra

The measured above-surface spectra (R, ¢) from each sam-
pling location are shown in Fig. 4. The spectral shapes and fea-
tures are typical to freshwater environments as those observed
from other studies [17], [18]. A common feature is the steady

increase in R,.; from 400 to 570 nm. The steady increase corre-
sponded to a pronounced chl-a absorption feature at ~667 nm.
Some of these spectral features correspond to the level of
CDOM as described by Zhu et al. [28]. This previous research
proved that the quality of spectra from in sifu measurements is
satisfactory. Another possible factor that may affect on R, is
the NAP [14], but generally water turbidity in the study site is
moderate, since the measured spectra do not show significant
uplift within long wavelength >750 nm due to the backscatter-
ing from NAP. Visually, we cannot tell if the remote sensing
reflectances (spectra) are related to chl-a concentrations, since
they are not clustered with respect to their relative chlorophyll
concentration. If this was indeed true, estimating chl-a via sim-
ple clustering tools would be possible, and more sophisticated
algorithms would not be needed. Therefore, we examined 34
available algorithms for extracting chl-a information from a
complex freshwater environment.

C. Red-NIR Band Ratio Outperform Other Algorithms

Results showed that four red-NIR 2-B, 3-B, and 4-B band
ratio models (No. 31-34, in Table I) outperform the other
algorithms (No. 1-30) for in-land waters. The 34 unaltered
(original parameterization) algorithms were evaluated with the
same data set consisting of all 39 samples collected through-
out the sampling campaigns. Algorithms 1-30 can be thought
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Fig. 4. Measured remote sensing reflectance, colored by chl-a concentrations.

of as alternatives to the red-NIR methods, including blue-green
band ratio, semianalytical and MIM (matrix inversion method)
models. Some of the alternative algorithms use a, (440) (chl-a
absorption coefficients at 440 nm) as a proxy for chl-a concen-
tration. In this case, we converted a,, (440) into a concentration
©) (mg/m3) using the following equation [5]:

apn (440) = 0.0403 x (C)*%%. (7)

These results demonstrated that red-NIR multiband algo-
rithms are capable of performing well in complex inland fresh-
waters as represented by our study site. The evaluation results
averaged among all red-NIR algorithms was a mean MAE =
0.74, R? = 0.32, and RMSE = 16.07. The chl-a estimations
from the Gitelson 3-B is as accurate as that from two 4-B mod-
els (Le 4BC, and Le 4B, Fig. 5). However, none of the tested
3-B and 4-B algorithms displayed significant improvements
over that of the 2-B algorithm.

Our results also indicated that at red-NIR band ratio mod-
els performed better than the blue-green band ratio models
(algorithms No. 1-23), which all underestimated the chl-a
measurements (median MNB = —0.33, mean MAE = (.89,
R? =0.10, and RMSE = 20.23).

This study revealed the advantages of red-NIR algorithms
(No. 31-34) over semianalytical (no. 28-30), and MIM models.
Despite the fact that many semi-analytical and MIM algo-
rithms were specifically designed for use in marine estuarine
and coastal/inland case 2 waters, they were unsatisfactory in
estimating chl-a concentrations in waters from our study site
(mean MAE = 0.85, R? = 0.29, and RMSE = 24.81).

D. Spectral Interference From CDOM

Our result also indicated that CDOM levels could inter-
fere with the estimation of chl-a concentrations from remote
sensing measurements. This was made evident when the mea-
sured versus predicted chl-a concentrations were plotted against
each other (Fig. 5). Two distinct clusters are evident, as out-
lined by the vertical and horizontal dashed regions. Note that
these results are clustered in two chl-a concentration ranges in
Fig. 5(a)—(f), and Fig. 5(h)—(i). All algorithms overestimated
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the low chl-a concentrations (<10 mg/m?’), such as the Morel
03 model [Fig. 5(b)]. The largest estimation errors occurred
around a chl-a concentration of 10 mg/m®. In most instances,
these two clusters are separated by the chl-a concentration
of 10 mg/m>. The pattern of predicted versus measured chl-
a are similar to that of chl-a versus CDOM levels displayed
in Fig. 3. The similar distribution patterns suggest that the
two clusters of over- and under-estimation might indeed be
caused by the spectra interference of CDOM, where consid-
erable CDOM absorptions were mistaken as chl-a absorptions.
Our data illustrates that interference from CDOM absorptions
(ranging from 1-4 m~—!) was prevalent in those cases where
chl-a >10 mg/m®. Therefore, CDOM is a significant interfer-
ence factor for chl-a estimation in estuarine and lakeshore
CDOM-rich waters. Unfortunately, understanding the interfer-
ences of optical properties between biological and/or organic
substances remains a challenge for aquatic color research.

E. Sensitivity of 2-B Red-NIR Band Ratio Models

It is a general concept that 4-B model is better than 3-B
and then better than 2-B [17], [18], [21]. However, so far
there are no complete comparisons among the three models.
Interestingly, Gurlin et al. [29] recently reported that 2-B model
using two MERIS bands was even better than 3-B models.
In order to gain a better understanding of how sensitive 2-B
red-NIR models are to the manipulation of band position (wave-
length domain), we further applied our in situ and synthetic
data sets to 2-B red-NIR models configured with varied band-
sets and compared it with 3-B and 4-B models. Through these



568 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 2, FEBRUARY 2015

TABLE 11
BANDS AND PARAMETERS USED IN 2/3/4B CHL-A MODELS
Model Model Band used (nm) k b R? RMSE Data set /
# name B, B, B; By reference
This study
1 2SG 665 685 - - 154.19 -128.09 0.7 6 Insitu
2 2MR 665 705 - - 37.74  -15.59 0.17 991 Insitu
3 2MO 667 748 - - 6.98 12.82  0.004 10.89  In situ
4 2SG 665 760 — - 119.62 -26.2 0.77 56.59  Synthetic
5 2MR 665 705 - - 167.99 -117.07 0.616 73.02  Synthetic
6 2MO 665 745 - - 113.17 -25.11 0.766 56.97 Synthetic
7 3SG 666 686 730 - 391.37 22.63 0.74 5.56 Insitu
8 3MR 665 705 755 - 150.31 18.54 0.088 10.42  In situ
9 3SG 655 680 740 - 464.22  -18.65 0.78 55.56  Synthetic
10 3MR 665 705 755 - 154.61 40.15 0.7 64.4  Synthetic
11 4SG 665 685 700 720 -141.77 26.51 0.59 6.75 In situ
12 4SG 670 605 725 760 -25.66 1091 0.757 58.06 Synthetic
13 4MR 665 620 750 760 -8.02 -3.52  0.759 57.85 Synthetic
Previous studies
14 2SG 670 720 - - 59.826 —17.546 0.788 8.39  Gitelson (2007)
15 2SG 666 713 - - N/A N/A N/A N/A  [29]
16 2MR 665 705 - - N/A N/A  0.95 N/A  [29]
17 2MO 667 748 - - 136.3 -16.2  0.928 N/A [17]
18 2MO 667 748 - - 190.34  -32.45 0:/5 N/A  [29]
19 3SG 671 710 740 - 125 16 0.94 14.6 [20]
20 3SG 675 695 730 - 17894  10.139 0.811 7.9 Gitelson (2007)
21 3SG 666 712 724 - N/A N/A N/A N/A  [29]
22 3SG 660 692 740 - 434.78 14.78 0.87 N/A  [18]
23 3SG 630 710 740 - N/A N/A 0.97 N/A  [19]
24 3MR 665 715 750 - 117.42 23.09 0.94 N/A  [17]
25 3MR 665 705 755 - N/A N/A 0.95 N/A  [29]
26 4SG 663 693 705 740 103.09 13.07 0.97 N/A  [18]
27 4SG 650 710 700 730 61.757 25221 0.97 N/A  [19]

Median band values for each multiband model, calculated from all above results

2B 665 720

3B 665 705 740

4B 665 685 705 740
Note: In column 2, the number in model name indicates how many bands used, and SG, MR, and MO indi-
cate the bands derived from the calibrated suggestions, MERIS, and MODIS available bands, respectively.
k and b are slope and intersect in the model of (C) = kX + b.

calibration efforts, we aimed to better understand the advan-
tages and limits of each of red-NIR band ratio models for chl-a
estimation.

1) 2-B models: Generic two-band ratio models for esti-
mating chl-a concentrations are in the form of the equation
below

[C’]ch—B—Q.

(®)

There are two main considerations when evaluating red-NIR
band ratio algorithms. The first is to select the optimal combina-
tions of the two wavelengths, B1 and B2, from the wavelength
range of 400-800 nm. The second is to set the model parame-
terization so that there is a good correlation between X (band
ratio index) and the chl-a concentration C' (Table II). The selec-
tion of the optimal wavelengths and parameterization are based
on RMSE between the estimated and our measured in situ chl-a
concentrations.

The RMSE generated from each of the possible two-band
combinations ranged from 7.2 to 10.8 with a mean value 10.56
[Fig. 6(a)]. The lowest RMSE corresponded to a pair of bands
separated by only 5 nm [B1 = 541 nm and B2 = 537 nm, see
R1 region in Fig. 6(a)]. The close proximity of the two bands
(near the diagonal region) very likely indicates that these two
wavelengths contain redundant spectral information or would
not truly be two independent variables. It is also impractical

since most satellite sensors do not provide high enough spec-
tral resolution in 5 nm. For example, MERIS, MODIS, and
Hyperion, popular ocean satellite sensors, have bands separated
by 10 nm. Therefore, we implemented (9) as a constraint

|B1 — B2| > 10nm. )

Under such constraint, those relatively low RMSE regions
close to the diagonal line [dashed lines in Fig. 6(a) and (b)]
violate (9); so these bands were removed from considera-
tion. Therefore, our results showed that wavelengths at 685
and 665 nm [R2 region in Fig. 6(a)] correspond to the best
2-B model [Model 1 in Table II, R? = 0.7 and RMSE = 6.0,
Fig. 7(a)]. A model configured as such should be thought as a
dual-red band ratio model instead of the red-NIR model.

The resulted RMSE ranged from 55.16 to 117.76 with a
mean value of 107.69 [Fig. 6(b)], when the same processes
were applied to the synthetic data set that has a much wider
range of chl-a concentrations (0.1—1000 mg/m?®). The area of
the two band combination associated to the lowest RMSE val-
ues crossed both the red and NIR wavelengths [R5 in Fig. 6(b)].
The optimal two bands were 665 and 760 nm (Model 4 in
Table II), with R? = 0.78 and RMSE = 55.56 [Fig. 7(i)].

Our results also indicate that blue-green band ratio models,
which are often used for open sea waters are not suitable for
complex inland waters. There were no paired blue and green
bands selected as significant in our analysis, although either



ZHU et al.:

800
RMSE

700 10.8
= 10.2
£
=4 9.6
— 600
‘8 §o
o}
)

8

400 =
800

500

600
Band 2 (nm)

700

ISSUES AND POTENTIAL IMPROVEMENT OF MULTIBAND MODELS FOR ESTIMATING CHLOROPHYLL-a

569

Band 1 (nm)

600
Band 2 (nm)

700 800

Fig. 6. Determining the best two bands in 2-B models using (a) in situ data and (b) synthetic data. The in situ and synthetic results are in 1 and 5 nm resolutions,
respectively. The suggested best two bands are B1 = 685 nm and B2 = 665 nm for in situ data, and B1 = 760 nm and B2 = 665 nm for synthetic data.

2 Bands 3 Bands 4 Bands
1 0.04 0.1
5 @ @ e 0
| of & oo O 5, 2%
3] ®! sagics @ .o 0.1 foo sl
% 09| &89 -0.04}007 8% gnl
“ os 0.08 03!
12 0.04
(b) © (h)
g I e 0
B ogl et 6;&"--1;""""9 ¢
= o ¥ 20.041 0% .
0.6/ R R
04l 0,08
0.6
2] ©,
Q 04 o
g > __."T?.."..sv-«,---v----
02 80@" o In situ data
0 ;
0 10 20 30 40 50
Measured chl-a (mg/m3)
6 08— 80
3 (d) ¢ 0] 40]
| © | Of-ooll-Soolll-tog oo, | O]
3 ¢ e -1 4
9 2 #% | 08} & 06 60000 -0 40080 - ¢ 000~ ©
> “"3% @5 |
3 4 150
e i ' +(m)
v o, © 835 30 ¢ | 100
i é 2 £ s é
2 Ve caias- uﬁziﬁé‘ ! 32 Sp——
o Ob -5 ousts -5 i 50l 355 0F-$Mum-S0uy- s 0o
2 | -50
- U} s
[a) 4 s
o x )
= T, Synthetic data
RPN N L bl

01 1 10 100 1000
Simulated chl-a (mg/m3)

Fig. 7. Calibrations for multiband models for both the in sifu and synthetic
data sets. Values of Y-axis are the remote sensed indices derived from 2-B,
3-B, and 4-B models. The values of X are the measured chl-a concentrations
(mg/m3). (a) R2 = 0.70. (b) R? = 0.17. (c) R? = 0.0008. (d) R? = 0.77.
(e)R% = 0.61.(HR? = 0.77. () R? = 0.74. (h) R? = 0.09. (i) R = 0.78.
() R? = 0.70. (k) R? = 0.59. (1) R? = 0.76. (m) R? = 0.76.

blue or green wavelength paired with a NIR in B1 [region 4
in Fig. 6(a) and region 7 in Fig. 6(b)] had satisfactory chl-a
estimation. It is worth noting that the regions (hotspots) leading
to low RMSE for the synthetic data [R5 in Fig. 6(b)] did not
overlap with those for our in situ results [R2 in Fig. 6(a)]. This
illustrates how critical proper calibration of current 2-B mod-
els is when applied to inland waters with high CDOM levels.

Spectral interferences among chl-a, CDOM, and sediment in
freshwaters, proper parameterization and the selection of opti-
mal wavelengths for chl-a estimation all vary greatly depending
on conditions at specific sites.

Band selection for satellite sensors is not as flexible as
that for high-resolution in sifu spectroradiometer data. The
best wavelengths for a 2-B model are band 7 (665 %+ 10 nm)
and band 9 (708.75 4 10) nm for MERIS [RMSE = 9.91,
Fig. 7(b)] when the calibration was conducted with in sifu data.
Similarly, the best wavelengths for a 2-B model for MODIS
are band 13 (662-672 nm) and band 15 (743-753) nm with
(RMSE = 10.89) in Fig. 7(c). The actual 2-B models calibrated
with in situ data for MERIS and MODIS bands are models 2
and 3 in Table II, respectively. These results show no significant
difference between MODIS and MERIS sensors for relatively
low chl-a concentrations (0-50 mg/m®) measured for specific
study sites (in situ data). In contrast, MODIS data performed
slightly better (RMSE: 56.97) than MERIS bands (RMSE =
73.02) as specified by models 5-6 of Table II. RMSE values
derived from satellite sensors are in the similar ranges to those
derived from suggested bands for both in sifu and synthetic data
calibrations. Therefore, our results confirmed that using satel-
lite bands are as efficient as using in sifu spectroradiometers for
aquatic chl-a estimation.

2) 3-B Models: The generic 3-B models are usually in the
form of the following equation:

(C) o X = <Bil - BLQ)B?,.

Determination of the optimal wavelengths at 1 nm spec-
tral resolution for the 3-B models involved the examination of
approximately 64 million three-band combinations from 400
to 800 nm. In order to increase computational efficiency, we
resampled our in sifu data to S nm resolution. Fig. 8(a) shows
the best band combinations as indicated by the lowest RMSE
without the constraint of (9). With the constraint of (9) in
place, the lowest three-band RMSE of 5.56 [Fig. 8(c)] was
achieved (Model 7, Table II; B1 = 666 nm, B2 = 686 nm, and
B3 = 730 nm). The first two bands, B1 and B2 are very close to
those selected for the dual-red band ratio model shown above.
The B3 is close to the B2 in 2-B model calibrated from using

(10)



570 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 2, FEBRUARY 2015

Band 3 (nm)

4
Nm)~ 682 454 655

600
Band 2 (nm)

Fig. 8. Determining the best three bands in 3-B models using (a) in situ data, where RMSE > 8 are not shown and (b) synthetic data, where RMSE > 60 are
not shown. (c) illustrates the zoom-in region where the suggested three bands were selected for B1 from 650 to 680 nm, B2 from 680 to 710 nm, and B3 from 730
to 760 nm, at 1 nm intervals. (d) is the top view of the subfigure (a), and (e) is the side view of the subfigure (a).

synthetic data sets. With additional band, the calibrated 3-B
band model (RSMB, 5.56) has no significant improvement over
both dual-red 2-B (RSME 6.0) models.

When the synthetic data set was used to calibrate 3-B models,
the lowest RMSE of 54.61 was achieved with the three-band
combination: B1 = 705 nm, B2 = 720 nm, and B3 = 740 nm.
All three bands are in the NIR [eagle-shaped zone; Fig. 8(b)].
The best band combination utilizing a red band was 655,
680, and 740 nm (Model 9 in Table II). Including this sin-
gle red band represented only a slight improvement in RMSE
from 54.61 to 55.56. Therefore, utilizing the synthetic data set
for calibration had very little influence on three-band model
results. Comparing to 2-B model and synthetic scenario, B2 =
680 nm is the additional band. The best three band combi-
nations derived with in situ data (Model 7 in Table II) are
essentially equivalent to that derived from the synthetic data set
(Model 9 in Table II).

3-B models can be applied to the MERIS bands by using
B1 =665 nm, B2 =705 nm, and B3 = 755 nm. The three
bands derived from both in sifu (Model 8 in Table II) and syn-
thetic data (Model 10 in Table II) are the same. Corresponding
RMSE values are 10.42 and 64.4 for in situ and synthetic data,
respectively. The suggested 3-B models are consistent to that
introduced by Gurlin et al. [29]. Unfortunately, MODIS does
not have bands near enough to all of the three optimal bands
to make a 3-B red/NIR MODIS models possible. Ultimately,
chl-a estimation via 3-B models had only a limited influence
of model performance compared to 2-B models, approximately
5% with respect to in situ data and 11% with respect to synthetic
data.

Comparing the results from our analysis and other previous
studies (Table IT) demonstrated that the two optimal bands in the
3-B models are associated with the spectral properties of chl-a.
B1 is associated with an absorption peak of chl-a at 665 nm. B2
is associated with the two local maximums of chl-a florescence
at 673 and 726 nm. It is common to set B2 at approximately
700 nm in many existing models. But our results suggest that
B2 should be shifted to a slightly lower wavelength region cen-
tered at 685 nm. The third band, B3 remained relatively fixed
to the range: 730-740 nm for the majority of 3-B models. An
exception is Gurlin’s proposed model utilized a slightly smaller
wavelength centered at 724 nm [29].

3) 4-B Models: Equation below is the general form of four
bands (4-B) chl-a models

11 11\t

O] X = (Bl B2> (34 Bg) |

The number of four-band combinations across 400-800 nm

is much greater than that for 3-B models. A dual-band tuning
technique similar to those single-band tuning methods in the
literature [10], [30] was used to identify an optimal four-band
combination leading to the lowest RMSE. Via band-tuning, the
optimal band selection process was divided into three steps.
First was to preselect the best two bands: Bl = 666 nm and
B2 = 686 nm which were the suggested two bands in the best
3-B model (Model 7). Then the optimal B3 and B4 were deter-
mined by checking all possible two-band combinations against
the fixed B1 and B2. The resultant best B3 and B4 were 700 and
720 nm, respectively [Fig. 9(a)]. The final step is to re-examine
the best B1 and B2, with the fixed B3, and B4. The re-selected

D
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optimal B1 and B2 are 665 and 685 nm, respectively [Fig. 9(b)].
The resulted four-band combination is B1 = 665, B2 = 685,
B3 = 700, and B4 = 720 nm (Model 11 in Table II). The B1
and B2 are very consistent to that selected in 2-B model (666
and 686 nm).

Optimal four-band combinations derived using the synthetic
data set were B1 = 670, B2 = 605, B3 = 725, and B4 = 760
(Model 12 in Table II). The diagrammatic description of the
optimal band combination regions are shown in Fig. 9(d)
and (e). Two bands (B2 and B4) are very different from those
derived from in sifu data. This difference indicates that optimal
band combinations are indeed dependent on water properties
and the range of chl-a concentrations. Conceptually, one might
believe that three out of the four bands in a 4-B model should
overlap with the wavelengths used in 3-B model, or two bands
of a 2-B model. In reality, these wavelengths are not completely
independent from each other. Such correlations might have
contributed to the wavelength differences between 4-B models
derived from in situ and synthetic data sets. A second consid-
eration that may drive the selection of different optimal band
combinations is the form of associated mathematical equations.
Optimal band combinations are selected differently than the
stepwise statistical analysis that ranks significant variables. Due
to this mathematical difference, optimal bands in 4-B models
should be independent from that selected in the 3-B models.

Performance of estimating chl-a concentrations via 4-B mod-
els had no significant improvements over that using 2-B models
with respect to our in situ data. The 4-B model derived from
in situ data achieved an RMSE of 6.75. In fact, the 2-B mod-
els were slightly better (RMSE: 6.0) than the 4-B models. This
was also true for the synthetic data set, the 2-B model resulted
in slight better performance (RMSE: 56.59) over the 4-B model
(RMSE: 58.06).

A 4-B model derived from synthetic data for MERIS bands
(RMSE: 57.85) achieved about 27% improvement in terms
of RMSE values of estimating chl-a concentrations compared
to 2-B models (RMSE: 73.02), although this improvement is
still within error margins [Fig. 9(f) and (g)]. This result was
obtained by using four band combinations: B1 = 665 £ 10 nm
(band 7), B2 =708.75+ 10 (band 9), B3 =510+ 10 nm
(band 4), and B4 = 760.625 4= 3.75 nm [band 11, Fig. 9(c)].
The combination consists of one green, one red and two NIR
bands (Model 13 in Table II). The results confirmed that it is
indeed feasible to use MERIS bands (RMSE: 58.06) as a sub-
stitution for in situ remote sensing techniques (RMSE: 57.85)
in estimating chl-a concentration via 4-B models.

4) Evaluation Highlights: There are three major differ-
ences between using in situ and synthetic data in evaluating
band ratio models for estimating freshwater chl-a concentra-
tions. First, RMSE values from the evaluated algorithms are
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Fig. 10. Validations for multiband chl-a models using in situ (May 2013) data. (a) 2B in situ suggested. (b) 2B in situ MERIS. (c) 2B in situ MODIS. (d) 3B
in situ suggested. (e) 3B in situ MERIS. (f) 2B synthetic suggested. (g) 2B synthetic MERIS. (h) 2B synthetic MODIS. (i) 3B synthetic MERIS. (j) 3B synthetic

suggested. (k) 4B synthetic suggested. (1) 4B in situ suggested.

heavily influenced by the ranges of chl-a concentrations. Since
the range of chl-a concentrations presented in synthetic data
are 20 times broader than that of in situ measurements, the
resulting RMSE values from this synthetic data are more than
10 times larger than that from using in situ data set. Second, the
band ratio indices from in sifu data have a limited range from
—0.3 to 1.1 which is approximately 150 times smaller than the
indices derived from synthetic data (ranged from —50 to 150).
Therefore, ranges of chl-a concentrations determine the ranges
of band ratio indices. Third, the correlations between band ratio
indices and chl-a concentrations represented in synthetic data
and in situ data are similar, except that R? derived from syn-
thetic data had a narrower range (0.61-0.78) than that from
in situ data set (0.0008-0.74). Finally, the optimal band com-
bination for band ratio models varies tremendously with water
properties and the range of chl-a concentrations.

Our analysis demonstrated that 2-B band ratio algorithm can
perform as well as 3-B and 4-B algorithms. Accordingly, a
2-B band ratio algorithm would be the best choice for chl-a
estimation in freshwater environments. Since it requires fewer
bands, it should be more robust and less likely to be over-
fitted/influenced with local measurements and environmental
conditions. The two bands calibrated from the in situ and syn-
thetic are both associated with wavelengths sensitive to either
peak absorption or maximum fluorescence of chl-a, or a wave-
length positioned near the intersect between the absorption
curves of chl-a and chl-b.

Red and NIR wavelengths near 700 nm are selected in all
of tested band ratio algorithms. This is consistent to many pre-
vious research results in which lower wavelength NIR bands
were found to be optimal when applied to the turbid waters of
the Lake Taihu, Lake Chaohu, and Three Gorges Reservoir in

China [18], [31]. However, our results indicate that these lower
wavelengths may not be suitable to CDOM-rich waters, such as
waters at Kawkawlin River plume area (Fig. 1).

5) Validating the Analysis Results With Independent Data
Set: We validated all red-NIR band ratio models (shown in
Table II) with two independent data sets: one is the in situ
data collected on May 7, 2013 and anther is the synthetic data
(H3000) containing 3000 samples.

Validation results confirmed that 3-B and 4-B models have
no significant advantages in freshwater chl-a estimation com-
paring to 2-B models. Fig. 10(a), (d), and (i) plot sampled
against modeled chl-a concentrations for 2-B, 3-B, and 4-B
band ratio algorithms, respectively. Mean RMSE values for 2-B
models suggested from using in situ data and MERIS bands are
15.088 and 12.887. The corresponding RMSE values are 15.34
and 12.911 for 3-B models suggested from in situ and MERIS
models, respectively. RMSE is 15.978 for 4-B model suggested
from in situ data. The best performing model was the 2-B in situ
MERIS model [Fig. 10(b), RMSE = 12.88], which is slightly
better than the 3-B in situ MERIS model [Fig. 10(e), RMSE =
12.91]. Similarly, the results from H3000 (Table IIT and Fig. 11)
shown that over all, the 2-B models (mean RMSE = 13.00)
were better than the 3-B models (mean RMSE = 18.98) and
the 4-B did indeed perform the worst (mean RMSE = 38.68).
In fact, all of the validation results show that 2-B models con-
sistently resulted in slightly smaller RMSE values. The 2-B
models were the most robust with all n/N ratios over 97%.
Related RMSE values are consistent to that from the model
calibration and optimal band selection analysis.

Band ratio models derived from a synthetic data set with
a wide range of chl-a concentrations worked very well for
water environments with narrow chl-a concentration ranges.
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TABLE III
VALIDATIONS FOR 2/3/4B CHL-A MODELS USING In Situ DATA ON MAY 2013 AND SYNTHETIC DATA SET H3000
Val. Band Band used Calibration n/N MNB MAE R’ RMSE
Data # data %

2 Suggested In situ 100  0.215 0.521 0.024 15.088

2 MERIS In situ 100 -0.018 0.381 0.596 12.877

2 MODIS In situ 100 -0.402  0.496 0.519 22.887

2 Suggested Synthetic 100 —0.345 0.442 0.343 18.676

2 MERIS Synthetic 100 1.636 1.636 0.596 46.255

2 MODIS Synthetic 100  -0.32  0.377 0.533 17.058

3 Average 100  0.128  0.642 0.435 22.14
g 3 Suggested In situ 100  0.127  0.507 0.001 15.34
3 3 MERIS In situ 100 -0.114  0.338 0.662 12911
R 3 Suggested Synthetic 76.923 -0.609  0.609 0.679 26.454
= 3 MERIS Synthetic 100 0.729  0.729 0.662 18.13
Average 94.231 0.033  0.546 0.501 18.209

4 Suggested In situ 100 0412 0574 0.001 15.978

4 Suggested Synthetic 100 -0.471 0.482 0.750 21.686

4 MERIS Synthetic 69.231 —-0.481 0.932 0.007 43.973
Average 89.744 -0.18  0.662 0.253 27.212

2 Suggested In situ 99.83 -0.426  0.484 0.653 13.593

2 MERIS In situ 100 0.942 1.151 0.812 12.056

2 MODIS In situ 100 1.550 1.764 0.603 14.917

2 Suggested Synthetic 99.87 2309  2.342 0.589 14.649

2 MERIS Synthetic 97.87  0.350 0.565 0.812 8.052

- 2 MODIS Synthetic 99.90  2.367 2.392 0.605 14.750
2 Average 99.578 1.182 1.450 0.679 13.003
3 3 Suggested In situ 19.67 -2.597 2.600 0.362 24.446
2 3 MERIS In situ 4133 -1.539 1.539 0.688 16.641
§ 3 Suggested Synthetic 100  3.942 3.944 0.718 23.004
g 3 MERIS Synthetic 100 1.888 1.948 0.688 11.836
n Average 65.250 0.424  2.508 0.614 18.982
4 Suggested In situ 5.37 -7.332  7.340 0.008 71.219

4 Suggested Synthetic 100  3.552 3.575 0.432 20.198

4 MERIS Synthetic 99.97  4.038  4.042 0.523 24.610
Average 68.447  0.086  4.986 0.321 38.676

The shadowed values are the best results from all multiband algorithms.
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Fig. 11. Validations for multiband chl-a models using synthetic (H3000) data. (a) 2B in situ suggested. (b) 2B in situ MERIS. (c) 2B in situ MODIS. (d) 3B
in situ suggested. (e) 3B in situ MERIS. (f) 2B synthetic suggested. (g) 2B synthetic MERIS. (h) 2B synthetic MODIS. (i) 3B synthetic suggested. (j) 3B synthetic
MERIS. (k) 4B synthetic suggested. (1) 4B in situ suggested.

The RMSE values from synthetic data validations are 18.676,
26.454, and 26.454 for 2-B, 3-B, and 4-B models, respec-
tively. These values are much smaller than those (56.59, 55.56,

and 58.06) resulted in the model calibration phases (Table II).
These smaller RMSE values from the synthetic validation
efforts are due to the narrow range of chl-a concentrations
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(0-184.84 mg/m® instead of 0-1000 mg/m®) in the valida-
tion synthetic data set. Models derived from synthetic data
that inherently has a much wider range of chl-a concentra-
tion are more applicable across a broad range of environmental
scenarios.

Band ratio models calibrated with the narrow range, in situ
data of chl-a concentrations also worked satisfactorily for
water environments with wide chl-a concentration ranges. Chl-a
concentrations in the in situ data used for validation were
ranged from 10 mg/m® to 52 mg/m® (see May 2013 data in
Fig. 3), which is slightly broader range than those in the in situ
data used for band and parameter calibrations (5—45 mg/m?).
However, the RMSE values resulted in the validation are
15.088, 15.34, and 15.978, respectively, for 2-B, 3-B and
4-B models that are also satisfactory. The chl-a concentrations
within 1.62-51.68 mg/m® represent most of freshwater scenar-
ios. Therefore, 2-B, 3-B, and 4-B models derived using in situ
data are applicable to most freshwater cases.

IV. CONCLUSION

This study demonstrated that using large set of synthetic
data combined with in situ measurements is an effec-
tive approach of evaluating chl-a estimation algorithms.
Typical advantages of synthetic data used in this study
are the broad ranges of chl-a (0.1-1000 mg/m®), CDOM
(0-50 m~1), and NAP (0-500 mg/l). Similarly, our in situ
measurements from Lake Huron also have wide ranges
of chl-a concentrations (1.62-51.68 mg/m®) and CDOM
(0.11-8.46 m~1). An extremely wide range of chl-a concen-
trations (0.1-1000 mg/m®) in synthetic data set established the
new models applicable across broad environmental conditions.
The synthetic approaches (model analysis and data) can be
widely applied to test scientific hypotheses in ocean optical
science. The study had the following two scientific conclusions.

First, the study successfully tested the hypothesis that adding
additional wavelength information to 2-B model could not
make significant improvement in estimating freshwater chl-a,
but acted to increase model uncertainty. This key result also
answered Gurlin’s question [29] that if a simple NIR-red two-
band model are essential and sufficient for freshwater chl-a
estimation. The reason of 2-B model performing better is that
it is just simple and sufficient without involving further more
uncertainty factors. The optimal wavelengths for 2-B model
are red-NIR bands. When comparison is for using MERIS or
MODIS images, the best two-band combination is the band 7
and band 9 of MERIS that performed better than those red-NIR
bands of the MODIS.

Second, we introduced a set of new 2-B, 3-B, and 4-B models
derived from using optimized parameters and band selection.
These models were introduced in Sections III-E1 (2-B model),
III-E2 (3-B) and III-E3 (4-B). The validation results demon-
strated that these models are suitable to general freshwater
environments because of broad ranges of biochemical and phys-
ical properties in both synthetic and in situ data. RMSE values
from the evaluated algorithms are heavily influenced by the
ranges of chl-a concentrations as displayed in Table II.

Thirdly, the study reveals that optimal hyperspectral wave-
lengths for individual models (2-B, 3-B, and 4-B) are subjective
to the ranges of chl-a, CDOM, and NAP. The phenomena
explain why previous case studies had resulted in controver-
sial issues in band ratio chl-a algorithms. This phenomenon was
confirmed by evaluating the performance of 34 chl-a algorithms
with their original wavelengths and wavelengths suggested
through optimization analysis. Parameter calibration are also
associated with the uncertainty in remote sensing of chl-a.
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