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This study evaluated fifteen algorithms representing four major categories of retrieval algorithms for
aquatic colored dissolved organic matter (CDOM): empirical, semi-analytical, optimization, and matrix
inversion methods. The specific goal here was to evaluate (and understand) the strengths and limits of
these algorithms in predicting CDOM dynamics along a gradient of varying water quality in a large,
freshwater ecosystem. The data were collected in May and October of 2012 from the estuarine areas of
the Kawkawlin and Saginaw Rivers, and Lake Huron. Algorithms were evaluated through comparisons to
in-situ CDOM measurements, such that the analysis of these field measurements showed that CDOM levels
in these areas displayed a range of CDOM absorption coefficients aCDOM(440) (0.1–8.5m

−1). In general, the
majority of the algorithms underestimated high CDOMwaters (aCDOM(440)N2m−1) and overestimated low
CDOM scenarios (b0.5 m−1). Six algorithms that performed consistently better compared with the other
models (overall RMSE of b0.45) in estimating in-situ CDOM levels were three empirical, two semi-
analytical, and one MIM algorithms. Our analysis identified a set of parameters for the matrix inversion
methods (MIM) that allow them to work effectively across a broad range of CDOM levels. Analysis of our
results indicated that the most effective wavelengths/band locations for estimating CDOM could vary
depending on the levels of spectral interference from high concentrations of particulate matter in the
water column. In addition, our results suggest that including wavelengths N 600 nm in the algorithms
improves CDOM estimation accuracy significantly, particularly for complex freshwater environments.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Colored dissolved organic matter (CDOM), the photo-active
component of dissolved organic carbon (DOC), is often viewed as
a reliable tracer of DOC. Many study results reported good
correlations between CDOM and DOC (Blough, Zafiriou, & Bonilla,
1993; Del Castillo, Coble, Morell, Lopez, & Corredor, 1999), but
their real relationships are complicated by environmental factors
and human related contaminations (Chen et al., 2004). Due to its
chromophoric and optical properties, CDOM is capable of being
estimated by remote sensing inversion algorithms. Early attempts
of CDOM-related remote sensing were mainly focused on
estimations from open sea environments where CDOM absorptivity
is generally low and spatially homogeneous. Open sea CDOM
is dominantly autochthonous through interactions with resident
biological assemblages via formation and deposition (Nelson &
s, University of Massachusetts,
l.: +1 413 545 2095; fax: +1

ghts reserved.
Siegel, 2002). More recently, the estimation of CDOM in fresh,
marine, or mixed water in both estuarine and coastal regions has
been studied using a variety of techniques and applications (Miller,
Del Castillo, & Mckee, 2005), aimed at assessing changes in salinity
(Bowers & Brett, 2008) or the occurrence and distribution of red
tides (Hu et al., 2005). To date, many CDOM estimation studies
(Ammenberg, Flink, Lindell, Pierson, & Strombeck, 2002; Bracchini
et al., 2006; Stedmon et al., 2006) have been directed towards inland
relatively CDOM-rich freshwaters, where CDOM is greatly influenced
by sources from land surface processes (i.e. allochthonous). Since
suspended solids affect the optical properties of water containing
CDOM, the optical estimations of CDOM in freshwaters are also
affected by a variety of aquatic components, such as microbiological
assemblages and suspended substances. In addition, CDOMabsorptivity
can be affected by environmental factors, such as hydrodynamics and
anthropogenic activities (Hoge & Lyon, 2002). Accordingly, CDOM
absorptivity (i.e. visible and near-IR) in inland freshwater environments
can be quite high, with absorption coefficients as high as 20 m−1

(Brezonik, Menken, & Bauer, 2005).
As interest in estimating CDOM absorptivity in inland environments

increases, accurate and robust algorithms will be needed. However, the
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validity of previous and current CDOM estimation algorithms has not
been well investigated.

Many CDOM estimation algorithms have been developed in the last
three decades (IOCCG 2006), such as empirical (band ratios) (Mannino,
Russ, & Hooker, 2008), semi-analytical/quasi-analytical (Lee, Carder, &
Arnone, 2002; Lee et al., 2007; Zhu & Yu, 2013), matrix inversion
methods (MIM) (Brando & Dekker, 2003; Hoge, Wright, Lyon, Swift, &
Yungel, 1999; Wang, Boss, & Roesler, 2005), spectral matching (Liu &
Miller, 2008), and artificial neural network (ANN) (Sandidge & Holyer,
1998; Tanaka & Oishi, 1998). Empirical approaches require less
knowledge of the fundamental relationships between water's
apparent and inherent optical properties, but require adequate
data to parameterize the model. The primary limitation to empirical
algorithms is that the derived relationship may only be valid for
parameter specific locations. These algorithms are thus particularly
sensitive to changes in the specific composition of water constituents
when boundary conditions are changed (IOCCG, 2000).

Semi- or quasi-analytical algorithms incorporate both empirical
parameters and bio-optical models (i.e. radiative transfer models). They
describe the relationship between in-water constituents and water-
leaving radiance or reflectance analytically or semi-analytically (IOCCG,
2000; Sathyendranath & Platt, 1997). The MIM algorithms also use
some semi-analytical methodologies, but require knowledge about
specific inherent optical properties (SIOPs) to be preset, such as the
specific absorption coefficient of chlorophyll and the absorption slopes
of CDOMandnon-algal particles (Brando&Dekker, 2003). Again, because
these parameters can be site specific, MIM approaches are generally not
applicable across different environments without field measured SIOPs.
Other algorithms, such as ANN and LUT, require multiple regions of
interest to be painstakingly identified and delineated as input for forward
spectralmatching,making themdifficult to apply to a large set of satellite
images. While the above algorithms have been thoroughly developed
and successfully applied to specific regional environments (i.e. open sea
and coastal regions), their utility to make predictions across a range of
varying water quality conditions, or within a single, complex freshwater
ecosystem have not been sufficiently tested. Thus, it is necessary to
evaluate the performance of current algorithms in complex freshwater
environments, (i.e. inland river mouths) where CDOM absorptivity is
often spatially and temporally quite diverse.

This study evaluated 15 CDOM estimation algorithms with samples
collected within and near plume areas of the Kawkawlin and Saginaw
Rivers, where each enters into Lake Huron. CDOM absorptivity is
generally high, due to the terrestrial input from each watershed (i.e.
forested and agricultural regions). We analyzed the relative strengths
and weaknesses of these algorithms, as well as examined the influence
that specific algorithmparameters had on their estimation performance
(e.g. wavelength selection, CDOM absorption slopes).
2. Methods

2.1. Study sites

Sampling was conducted along a spatial gradient where two major
tributaries (Kawkawlin and Saginaw Rivers) discharge into Saginaw
Bay, Lake Huron; sites were selected to encompass the conditions
within each river, the sediment plumes at their confluence into the
bay, and conditions that reflected offshore waters of the inner bay
(Fig. 1). The Saginaw River is the largest river flowing into the Saginaw
Bay, with an overall length of 36km and awatershed of 22,260km2. The
headwaters of the Saginaw River are mainly forested, which represent
approximately 30% of the overall watershed. The majority of the
lower portions of the watershed are agricultural, which represent
approximately 52% of the overall watershed. An additional 10% of the
watershed is designated as wetland, which is largely found directly
adjacent to the river channel.
The Kawkawlin River is a smaller river with an overall length of
28.2 km and a watershed of 647 km2, whose mouth is less than a
kilometer from that of the Saginaw River (Fig. 1). This watershed is
dominated by deciduous forests (40.2%), with a significant amount of
wetland habitat (7.9%) found adjacent to the channel. The rivers also
differ in water clarity, with the Saginaw River typically clouded with a
much heavier sediment load, while the Kawkawlin River generally
discharges clearer but stained waters.

2.2. Field measurements

Field measurements were made on May 10, 2012 and October
18, 2012 at which time 10 and 18 samples were retrieved,
respectively (Fig. 1). Whenever possible, the locations of sampling
sites were kept constant between the two dates (GPS identified
locations); this allowed for more meaningful seasonal inferences
to be made between specific locations. Surface water samples
were collected using a bucket, dispensed into amber bottles
(polypropelyene 500 mL), and stored in a cooler kept at ambient
water temperatures until further processed in the laboratory
(within 6 h in Mount Pleasant, Michigan). Concurrent to the
collection of water samples, above-surface spectra, including
water leaving radiance Lt and sky radiance Li, were measured via a
HyperSAS (Hyperspectral Surface Acquisition System; Satlantic
Inc.) spectroradiometer. A HyperOCR (Hyperspectral Ocean Color
Radiometer) was also used to measure above-surface downwelling
irradiance Ed. The HyperSAS and HyperOCR were deployed as
outlined in their operation manuals, making sure to adjust the
zenith and azimuth angles of the HyperSAS according to the solar
position before the spectra were collected. The Lt sensor was
pointed at the water surface at an angle of 40° from Nadir, and at
an angle 90° from the sun's azimuth, the Li sensor was at the
identical azimuth angle with Lt and pointed to the sky at an angle
of 40° from the Zenith, and the Ed sensor was mounted at the
highest point of the boat. The HyperSAS is specially designed for
use in an aquatic environment, in which Lt, Li, and Ed are measured
by three sensors simultaneously. Therefore spectra derived from
this system are generally of higher quality/accuracy than those
from other less robust instruments.

Once in the laboratory, water samples were filtered through GF/F
glass microfiber membrane (0.70 μm) under low pressure (b5 atm).
The filters were retained to measure chlorophyll-a pigment in support
of a second research initiative. The filtrate was collected and CDOM
absorbance A(λ) within wavelength range 200–800nm was measured
by a Cray-60 spectroradiometer with a 1-cm cuvette and Milli-Q blank
correction. CDOM absorption coefficients were determined by

aCDOM λð Þ ¼ A λð Þ � ln 10ð Þ
Pathlength

¼ A λð Þ � 230:3: ð1Þ

The remote sensing reflectance (Rrs) required for nearly all of the
CDOM estimation algorithms was calculated by

Rrs ¼
Lt−ρLi

Ed
ð2Þ

where ρ=0.028was set according to the operationmanual of HyperSAS
and Mobley (1999). A second filtrate sample was retained to determine
DOC concentrations. DOC concentrationwasmeasured using a Shimadzu
TOC-V analyzer with high temperature combustion (Vlahos, Chen, &
Repeta, 2002). In this process, 50 μL injections of water samples were
combusted at 800 °C and the sample DOC concentration was calculated
from the resultant CO2measuredwith a non-dispersive infrared detector.
Both response factors and blanks were compared with inter-comparison
standards provided by J. Sharp (U. Delaware) and D. Hansell (U. Miami).



Fig. 1. Study site and sampling locations in the Saginaw River and Bay regions, Lake Huron in May and October, 2012.
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We collected two samples at each sampling point during the first
field trip to assess data uncertainty. Results from the 20 samples from
the 10 sampling locations demonstrated that uncertainty was small
(b5%). The small uncertainty achieved in thefirst cruise led to collecting
only one sample for each of the 18 sampling points during our second
cruise. Similarly, over 20 replicates of above-surface spectra at each
sampling point also had small uncertainties (b3%). The median of the
20 spectra was used in the final analysis.

2.3. CDOM estimation algorithms

There are many existing algorithms available for estimating CDOM
levels. These algorithms were developed with different focuses:
algorithm categories, available water cases, specific remote sensing
sensors, input wavelengths and parameters, and output CDOM proxies.
We selected 15 algorithms representing four major categories of CDOM
retrieval algorithms (Table 1): 8 empirical (EMP), 3 semi-analytical
(SA), 1 optimization (OPT), and 3 matrix inversion methods (MIM).
Algorithms with different versions, such as QAA-v4/v5 and Carder-1/2
(Carder, Chen, Lee, Hawes, & Kamykowski, 1999; IOCCG 2006; Lee,
Lubac, Werdell, & Arnone, 2009; Lee et al., 2002) were treated as
separate algorithms and evaluated independently. The algorithms
proposed by Lyon, Brando, and Boss were all MIM, but varied from
each other through the use of different wavelengths/bands and other
parameters (Brando & Dekker, 2003; Brando, Dekker, Park, &
Schroeder, 2012; Hoge & Lyon, 1996; Hoge, Wright, Lyon, Swift, &
Yungel, 2001; Wang et al., 2005). The formulas of the 8 empirical
algorithms (EMP) are listed in Appendix A. Note that there are
additional existing empirical algorithms of detecting CDOM to that
listed in Appendix A, such as those referenced in Matthews (2011).

The 15 algorithms range from those developed, calibrated, and
validated within very specific environmental characteristics (e.g. Case 1,
open ocean), to others that were developed to be applicable across a
wide range of aquatic environments. The QAA, GSM, and Boss algorithms
were developed using IOCCG (International Ocean Colour Coordinating
Group) synthetic and in situ data, for open sea environments with low
CDOM absorptivity (IOCCG 2006; Lee et al., 2002; Maritorena, Siegel, &
Peterson, 2002). In contrast, the D'Sa and Del Castillo algorithms were
developed with data collected from turbid water within the Mississippi
River (Del Castillo & Miller, 2008; D'Sa & Miller, 2003). The algorithm
introduced by Kutser (Kutser, Pierson, Kallio, Reinart, & Sobek, 2005;
Kutser, Pierson, Tranvik, et al., 2005) was based on data collected from
34 lakes in Finland and Sweden, which likely makes it more applicable
to inland waters in the Great Lakes of the United States.

Most algorithms require as input Rrs at severalwavelengths across the
visible electromagnetic spectrum (e.g., 410, 440, 490, 555, and 667nm).
These wavelength domains are within the band set of many ocean color
satellite-based sensors (e.g. SeaWiFS, MODIS, and MERIS). A small



Table 1
CDOM retrieval algorithms considered in the study.

Algorithm name a Type Input Rrs (nm) Output Data sets/study sites References

Brando MIM Multiple b aCDOM(440) Fitzroy Estuary, Keppel Bay, etc. (Brando & Dekker, 2003; Brando et al., 2012)
Lyon MIM 412, 490, 555 adg(440) IOCCG c, U.S. Middle Atlantic Bight (Hoge & Lyon, 1996; Hoge et al., 2001)
Boss MIM 412, 443, 488, 510, 555 adg(440) IOCCG, U.S. Middle Atlantic Bight (IOCCG 2006; Wang et al., 2005)
GSM OPT 412, 443, 490, 510, 555 adg(440) IOCCG, a quasi-real dataset (Maritorena et al., 2002)
QAA-v4 SA 410, 440, 490, 555, 640 adg(443) IOCCG, Baja California (Lee et al., 2002, 2007)
QAA-v5 SA 410, 440, 490, 555, 667 adg (443) IOCCG, NOMAD d (Lee et al., 2009)
QAA-CDOM SA 440, 490, 555, 640 aCDOM (440) IOCCG, NOMAD, Hudson, Mississippi, Neponset, etc. (Zhu et al., 2011; Zhu & Yu, 2013)
Carder-1 EMP 412, 443, 551 adg (443) W Florida Shelf, Bayboro Harbor (Carder et al., 1999; IOCCG 2006)
Carder-2 EMP 443, 488, 551, 667 adg (443) W Florida Shelf, Bayboro Harbor (Carder et al., 1999; IOCCG 2006)
Mannino EMP 490, 555 aCDOM(443) U.S. Middle Atlantic Bight (Mannino et al., 2008)
D'sa EMP 443, 510 aCDOM(412) Mississippi River (D'Sa & Miller, 2003)
Griffin EMP 450–520, 520–600, 630–690 e aCDOM(400) Kolyma River, East Siberia (Griffin et al., 2011)
Kutser EMP 525–605, 630–690 f aCDOM(420) 34 lakes in Finland and Sweden (Kutser, Pierson, Tranvik, et al., 2005)
Castillo EMP 510, 670 aCDOM(412) Mississippi River (Del Castillo & Miller, 2008)
Ficek EMP 570, 655 aCDOM(440) Pomeranian lakes and the Baltic (Ficek et al., 2011)

a We use the names of their primary developers to refer to algorithms, except QAA and QAA-CDOM.
b The bands required are flexible (at least 3 bands). Here we used 410, 440, 490, 510, 555, 640, and 667.
c Synthetic and in situ data provided by IOCCG (International Ocean Colour Coordinating Group).
d The NASA Bio-optical Marine Algorithm Data set.
e Atmospherically corrected radiance reflection R at Bands 3, 4 and 5 of Landsat TM and ETM+.
f Atmospherically corrected radiance reflection R at Bands 2 and 3 of EO-1 ALI.
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number of algorithms (e.g. Kutser and Griffin) require radiance
reflectance R across broader wavelength domains, such as 525–605 nm
and 630–690nmprovided by Landsat TM, ETM+and EO-1 ALI. Although
some remote sensing scientists have contended that land-oriented
sensors are not suitable for aquatic research, there have been several
successful efforts of using ALI and TM/ETM+ for CDOM estimation
(Griffin, Frey, Rogan, & Holmes, 2011; Kutser, Pierson, Tranvik, et al.,
2005).

Ultimately,most of the tested algorithms generated CDOMabsorption
coefficients aCDOM(λ) at 440 or 443 nm, which are widely accepted as
the proxy of CDOM content. In this study we use aCDOM(440) to describe
the amount of CDOM in the water and also assume that aCDOM(443)≈
aCDOM(440). For a few algorithms that had an output aCDOM(λ) at 400,
412 or 420 nm, we converted them to aCDOM(440) using the below
equation:

aCDOM 440ð Þ ¼ aCDOM 440ð Þes λ−440ð Þ ð3Þ

where λ=400, 412 or 420, and S is the slope describing the exponential
decay of CDOM absorption coefficients with an increase in wavelength.
Generally, S varies from −0.01 to −0.03 (Blough & Vecchio, 2001). For
this investigation, S was set at −0.015 in order to reduce bias as
recommended in previous studies (Blough & Vecchio, 2001). Another
limitation of several algorithms (i.e. QAA-v4/v5) is that they produced
a hybrid absorption coefficient adg rather than the aCDOM. The hybrid
coefficient adg is the absorption coefficient of detritus ad and CDOM
aCDOM combined. The effect of using such a hybrid coefficient is viewed
as negligible when applied to clear seawater where detrital materials
Table 2
Measured optical and biochemical properties of 10 selected samples.

Sample # Date Site aCDOM(440)
(m−1)

Slope DOC
(mg/L)

Chl-a
(mg/m3)

S2 May Saginaw 3.45 0.0165 10.24 11.35
S6 May Huron 0.73 0.0165 5.42 3.85
S7 May Kawkawlin 1.55 0.0172 6.97 3.64
S9 May Kawkawlin 8.46 0.0158 17.86 10.12
S11 Oct. Saginaw 2.06 0.0142 5.90 31.64
S13 Oct. Saginaw 0.99 0.0191 5.96 10.47
S16 Oct. Saginaw 1.75 0.0132 5.59 33.32
S20 Oct. Saginaw 0.53 0.0116 3.51 8.26
S23 Oct. Huron 0.11 0.0253 3.33 7.70
S28 Oct. Kawkawlin 0.18 0.0204 3.44 15.23

Note: The slopes were determined by non-linear fitting through 300–750 nm.
are usually present at very low concentrations. However, it is likely
that a significant error was introduced when using such a hybrid
coefficient for turbid inland waters, where detrital effects cannot be
ignored (Zhu, Yu, Tian, Chen, & Gardner, 2011).

2.4. Assessment statistics

We evaluated the performance of algorithms based upon four
statistical metrics: bias, AME (Absolute Mean Error), RMSE (Root Mean
Squared Error, in log space), and R2 (regression, Type II) (IOCCG 2006).

Bias was defined as:

bias ¼
Xn

i¼1
xestimated
i −xmeasured

i

� �
n

ð4Þ

AME was defined as:

AME ¼

Xn
i¼1

xestimated
i −xmeasured

i

xmeasured
i

�����
�����

 !

n
ð5Þ

RMSE was defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

log xestimated
i

� �
−log xmeasured

i

� �h i2
n−2

vuut
ð6Þ

where:

Errorlog ¼ log xestimated
� �

−log xmeasured
� �

: ð7Þ

Log-based error is generally used for variables (e.g., CDOM and other
ocean color components) with logarithmic distributions (IOCCG 2006).

3. Results and discussions

3.1. Measured optical and biological properties

Our results showed that spatial distributions and seasonal differences
of the biological, chemical and optical water properties were quite large
along the river-bay gradient sampled. Table 2 shows the measured DOC
and chlorophyll-a concentrations, CDOM absorption coefficients and
spectral slopes of 10 selected samples. These results demonstrated a



Fig. 2. Correlations between CDOM absorption coefficients and DOC concentrations.

Fig. 3.Measured above-surface spectra (Rrs) of 10 selected samples. Lines are samples (S2,
S6, S7, and S9) from May 10 and symbol dots are samples (S11, S13, S16, S20, S23, and
S28) from October 18.
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strong correlation (R2 = 0.93) between CDOM and DOC (Fig. 2). The
range of sampled CDOM levels aCDOM(440) was wide (0.11 m−1 to
8.46 m−1) with a mean value of 1.69 m−1, and the range of chl-a is
1.62–43.68 mg/m3 with mean value of 14.77 mg/m3. Our results also
showed that the modeled CDOM and DOC variations were strongly
related to terrestrial vegetation sources. For example, theMay10 samples
indicated that aCDOM(440) was 8.5m−1 and DOCwas 14mg/L within the
Kawkawlin River plume area. These values were higher than the similar
May 10 values measured for the Saginaw River; CDOM (~3.5m−1) and
DOC (10.5 mg/L). The October sample values displayed similar trends
(Fig. 2), for the Kawkawlin River plume area values (CDOM 2.07 m−1

and DOC 6.2 mg/L) were also higher than those of the Saginaw River
(CDOM 1.03 m−1 and DOC 4 mg/L). These consistently higher CDOM
and DOC levels were attributed to the dissimilarity of the two
watersheds (Note that many samples near the river plume may be
mixtures of more than one end-member). Recall that the Kawkawlin
River watershed is predominantly forested while the Saginaw River
watershed is predominantly agricultural land.

Seasonal CDOM and DOC differences in the Saginaw River
watershed were indicated by the significant difference between
the May and October sample dates. CDOM sampled in early May
was marked higher (0.73–8.46 m−1, mean 3.39 m−1) due to snow
melt that drives DOC and CDOM from the soil-based carbon pool
to rivers and lakes (Huang & Chen, 2009). Spring time soil DOC
and CDOM levels are often elevated because biological decay and
chemical transformations of the accumulated autumn leaf-fall
that occurred under the thick winter snow cover. As the potential
sources of CDOM, organic litter and debris at soil surface are
lower in early fall before fallen deciduous leaves accumulate. In
addition, photo-oxidation and bacterial activities may also
consume CDOM and hence make its levels lowest during the
summer and early fall. Accordingly, the highest CDOM (8.46 m−1)
and DOC (17.9mg/L) levels were recorded in the Kawkawlin River
plume area on May 10, while the lowest CDOM and DOC (0.1 m−1

and 3.3 mg/L) levels were sampled on Oct. 18. These resulting
CDOM level changes could be caused by some seasonal climate
events such as rainfall or other ecological effects such as defoliation
and algal bloom. More time-series samples are required in order to
analyze environmental and seasonal scenarios.
The variability of above-surface spectra (Rrs) corresponded to
variations of water CDOM levels well (Fig. 3). The magnitudes of Rrs
were generally higher on Oct. 18 (S11–S28) where CDOM levels were
lower than those on May 10 (S2 and S9), particularly within 400–
550nm. The measured Rrs over low-CDOM waters collected on Oct. 18
(S11–S28) fell in a similar range to that collected in May 10 (S6 and S7).
However, the Rrs curve displayed markedly different shapes for low-
CDOM vs. high-CDOM waters (S2 and S9). One noticeable difference is
that the spectra at wavelengths N570 nm of low-CDOM samples (all
but S2 and S9) have a decreasing trend. In contrast, spectra of the
high-CDOM samples (S2 in the Saginaw River and S9 in the Kawkawlin
River) either remained flat or increased between 570nm and b700nm.
All of the spectra displayed a decreasing trend after 700nm. In addition,
the spectral features around 665nmmay also be affected by high chl-a
concentration. These diagnostic spectral features highlight how essential
it is to collect high quality in-situ spectra in order to investigate the
remote sensing of CDOM in freshwater environments.

3.2. Evaluation of algorithm performance

3.2.1. Overall performance
Overall, the performance of the tested CDOM algorithms varied

greatly in the complex freshwaters of the study site. General
evaluation statistics for all algorithms were: RMSE= 0.57, AME=
90%, Bias= −0.71, and R2=0.58 (Table 3 and Fig. 4). These statistics
illustrated that the CDOM estimation errors are generally much larger
than those generated from scenarios of open-sea waters (RMSE
0.2 – 0.3, IOCCG 2006). SA algorithms consistently outperform the
others, displaying lower error (RMSE 0.32) than the empirical (RMSE
0.65) andMIMalgorithms. A common characteristic of these algorithms
is the overestimation for low-CDOM waters and underestimation
for high-CDOM waters (Table 3 and Fig. 5). Three algorithms (QAA-
CDOM, QAA and Carder-2) consistently outperformed the others, with
an overall RMSE b0.35. A second tier of algorithms (i.e. Brando, Ficek,
Kutser and Del Castillo) resulted in acceptable accuracies, with RMSE
values ranging from 0.35 to 0.5. The CDOM estimations from the
remaining eight algorithms displayed relatively large errors (RMSE N0.5).

In addition, several algorithms generated invalid CDOMestimates (i.e.
negative aCDOM(440) values)when existingmodel parameterswere used.
For example, the GSM algorithm returned positive aCDOM(440) values for
only 2 out of 28 samples. Therefore, this algorithm was excluded from
further comparison and discussion (Table 4).

Across allmodel/algorithm types, six algorithms (Brando-2, QAA-v5,
Carder-2, QAA-CDOM, Kutser, and Ficek) produced good estimations
(RMSE b0.45) relative to the others. A common weakness of these six
algorithms is overestimation for low-CDOM cases (Errorlog N 0.4),



Table 3
Algorithm evaluations for different samples groups (CDOM levels, dates, and locations). The three lowest RMSE valueswithin each subcategory are shown underlined. The n indicates the
number of samples with each sub-category.

Algorithms Bias AME RMSE R2 RMSE

All samples aCDOM(440) Date Location

b0.75 0.9–2.1 N3.4 May Oct. Kaw. Sag. Hur.

n=28 n=10 n=11 n=7 n=10 n=18 n=7 n=13 n=8

QAA-CDOM 0.12 0.45 0.29 0.82 0.29 0.37 0.19 0.2 0.34 0.38 0.25 0.37
QAA-v4 −0.81 0.57 0.35 0.5 0.32 0.37 0.46 0.38 0.35 0.51 0.3 0.38
QAA-v5 −0.58 0.52 0.31 0.45 0.34 0.3 0.39 0.32 0.32 0.49 0.23 0.36
Carder-1 −1.64 0.9 1.43 0.01 0.89 1.54 2.25 1.97 1.17 1.59 1.61 1.34
Carder-2 1.32 1.02 0.35 0.86 0.5 0.24 0.35 0.32 0.38 0.5 0.26 0.47
Mannino −1.51 0.72 0.89 0.45 0.4 0.93 1.5 1.29 0.67 1.03 1.01 0.76
D'Sa −1.43 0.7 0.75 0.31 0.34 0.77 1.29 1.08 0.57 0.91 0.85 0.59
Ficek 0.43 1.67 0.45 0.89 0.75 0.28 0.05 0.16 0.56 0.67 0.31 0.61
Del Castillo −0.97 0.86 0.46 0.54 0.5 0.36 0.68 0.64 0.37 0.63 0.39 0.57
Kutser-n −0.16 1.59 0.45 0.84 0.74 0.28 0.18 0.31 0.53 0.68 0.25 0.66
Kutser-w 0.44 1.9 0.48 0.87 0.8 0.31 0.06 0.24 0.59 0.73 0.31 0.66
Griffin-n −1.28 0.84 0.61 0.35 0.38 0.56 1.08 0.91 0.44 0.79 0.65 0.54
Griffin-w −1.25 0.87 0.6 0.21 0.39 0.52 1.08 0.9 0.43 0.8 0.64 0.53
Lyon −1.31 0.65 0.61 0.34 0.32 0.65 1 0.82 0.51 0.79 0.66 0.49
Brando-1 −0.72 0.76 0.36 0.87 0.45 0.26 0.48 0.41 0.35 0.46 0.33 0.43
Brando-2 −0.77 0.76 0.37 0.87 0.44 0.27 0.51 0.44 0.35 0.47 0.35 0.43
Boss-1 −1.26 0.69 0.7 0.64 0.31 0.74 1.43 1.16 0.53 0.7 0.86 0.55
Boss-2 −1.38 0.7 0.76 0.61 0.33 0.8 1.4 1.15 0.57 0.86 0.89 0.66
Mean −0.71 0.9 0.57 0.58 0.47 0.53 0.8 0.71 0.5 0.72 0.56 0.58

Note:
a. The first number 1 or 2 in Brando and Boss denotes the values of g0 and g1 that are set for the Case 1 or the Case 2 water. The criterion C=2 used in the Brando and C=0.5 used in the
Boss.
b. The letter ‘n’ or ‘w’ in Griffin and Kutser denote using ‘narrow’ or ‘wide’ bands.
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especially for those where aCDOM(440) b 0.2 m−1 (Fig. 6). These poor
estimations for low CDOM cases indicate that the 15 algorithms are
insufficient for the weak optical signals generated via CDOM-poor
complex freshwater estuarine environments such as our study site.
The QAA-CDOM algorithm outperformed (overall RMSE 0.29) all other
algorithms for extreme high DOC and CDOM scenarios, such as the
highly varied and stained waters of the Kawkawlin River (RMSE 0.19).

3.2.2. Empirical algorithms
Three of the best performing six algorithms were empirical

algorithms: Carder-2, Kutser, and Ficek. The Ficek andKutser algorithms
Fig. 4.Assessment (R2, RMSE, AME, andBias) of 15CDOMretrieval algorithms for all samples.
were developed specifically for the application to inland freshwater and
did indeed outperform those developed specifically to open-sea, low
CDOM environments (e.g., Carder-1 and Mannino). The algorithm of
Kutser et al was developed based on field data collected from 34
Scandinavian inland freshwater lakes (Kutser, Pierson, Kallio, et al.,
2005; Kutser, Pierson, Tranvik, et al., 2005), and the algorithm of Ficek
et al was developed from 15 freshwater Pomeranian lakes (Ficek,
Zapadka, & Dera, 2011). Both algorithms of Ficek et al and Kutser et al
performed much better when applied to high-CDOM waters where
aCDOM(440) N 3.4 m−1 (RMSE: Ficek 0.05 and Kutser 0.06) than low-
CDOM waters where aCDOM(440) b 0.75 m−1 (RMSE: Ficek 0.75 and
Kutser 0.8). Our resulting R2 values (Kutser 0.83, Ficek 0.89) were also
consistent to that in Kutser's and Ficek's original reports (Kutser 0.84,
Ficek 0.85). In contrast, the Carder-2 algorithm was derived from a
relative large and diverse saltwater dataset (n=319) along the West
Florida Coast and in Bayboro Harbor (IOCCG, 2006). Accordingly,
Fig. 5. Comparison between measured and derived aCDOM(440) for 10 typical samples, in
Box–Whisker plot showing the derived 25%, 75%,median (50%),minimum, andmaximum
from all algorithms.



Table 4
Themeasured vs. estimatedCDOMabsorption coefficients aCDOM(440) for 10 typical samples. The bold values indicate their errorsb25% and theunderlined values are the best three results
or algorithms. Note: Carder-1's results are excluded from statistics.

Sample #
Measured

S23
0.11

S28
0.18

S20
0.53

S6
0.73

S13
0.99

S7
1.55

S16
1.75

S11
2.06

S2
3.45

S9
8.46

QAA-CDOM 0.16 0.20 0.42 0.62 0.78 1.90 0.91 0.70 3.86 8.04
QAA-v4 0.25 0.29 0.52 0.55 0.60 1.25 0.70 0.61 1.69 1.25
QAA-v5 0.27 0.32 0.58 0.57 0.79 1.64 0.86 0.83 2.30 1.34
Carder-1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04
Carder-2 0.60 0.60 0.58 0.55 1.52 1.67 1.35 1.60 5.75 28.1
Mannino 0.16 0.15 0.17 0.19 0.18 0.22 0.19 0.17 0.21 0.20
D'Sa 0.16 0.18 0.25 0.33 0.24 0.37 0.25 0.24 0.32 0.28
Ficek 1.15 1.21 0.85 0.53 2.21 1.63 1.92 2.31 3.76 7.62
Del Castillo 0.55 0.55 0.41 0.17 0.87 0.84 0.83 0.88 1.07 1.19
Kutser-n 1.13 1.37 0.68 0.32 1.72 0.89 1.41 1.52 2.62 5.78
Kutser-w 1.29 1.66 0.86 0.33 2.27 1.36 1.91 2.00 4.00 7.84
Griffin-n 0.37 0.39 0.36 0.37 0.41 0.47 0.41 0.41 0.53 0.40
Griffin-w 0.39 0.41 0.40 0.42 0.43 0.50 0.44 0.44 0.54 0.38
Lyon 0.14 0.18 0.34 0.41 0.29 0.63 0.34 0.29 0.58 0.39
Brando-1 0.45 0.51 0.60 0.57 1.03 1.25 1.06 1.02 1.33 3.70
Brando-2 0.43 0.49 0.58 0.57 0.94 1.20 0.99 0.93 1.26 3.58
Boss-1 0.18 0.20 0.23 0.38 0.30 0.31 0.30 0.29 0.25 0.70
Boss-2 0.15 0.18 0.22 0.35 0.27 0.30 0.27 0.25 0.24 0.65
Min 0.14 0.15 0.17 0.17 0.18 0.22 0.19 0.17 0.21 0.20
Mean 0.46 0.52 0.47 0.43 0.87 0.97 0.83 0.85 1.78 4.20
Max 1.29 1.66 0.86 0.62 2.27 1.90 1.92 2.31 5.75 28.1
Bias 0.35 0.34 −0.06 −0.30 −0.12 −0.58 −0.92 −1.21 −1.67 −4.26
AME 3.19 1.92 0.33 0.42 0.57 0.43 0.55 0.60 0.60 0.78
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Carder-2 performed better for medium to low-CDOM waters (Table 3
and Fig. 6a), wherein conditions emulate those of open ocean
environments. The results of Carder et al (IOCCG, 2006) also show
that using Carder-2 can reduce the RMSE error by 40% when
compared to Carder-1. These results indicate that empirical models
established with large data sets from broad environmental conditions
can indeed work well within complex freshwater environments
where aCDOM(440)b1m−1.

We would like to emphasize that in addition to the sample size
and geographical/environmental characteristics of the data used for
developing empirical CDOM algorithms, there are many other factors,
such as band selections, function forms and coefficients, which may
significantly change the algorithm performance. For example, Carder-1
based the same data used by Carder-2, D'Sa and Griffin algorithms were
both based on inland waters, but their performances were relatively
poor. Therefore empirical algorithms may not necessarily work well in
similar environmental/data context, while they might be good for
different environments if their bands, functions, and parameters were
accurately determined. In this study we mainly focus on band issues
and will discuss them in Section 3.2.5.
3.2.3. Semi-analytical algorithms
The two best performing algorithms out of the 15 tested were the

QAA-CDOMandQAA-v5 algorithms. QAA-CDOMwas themost resilient,
and able to handle extreme CDOM levels better thanQAA v5, although it
is often underestimated when applied to medium-CDOM waters
(Table 3 and Fig. 6a). The unique improvement of QAA-CDOM over
QAA v5 is that (1) it separated adg into aCDOM (CDOM absorption
coefficient) and ad (absorption coefficient of non-algal particles) and
(2) the equations/parameters of QAA-CDOM have been optimized
from both a large synthetic and in situ data set that emulate broad
environment conditions. Furthermore, QAA-CDOM's applicability to
diverse water types has been widely validated (Zhu, 2011; Zhu, Tian,
Yu, & Becker, 2013; Zhu & Yu, 2013; Zhu, Yu, & Tian, 2013; Zhu et al.,
2011). Our results confirmed the advantages of separately quantifying
aCDOM and ad and parameter optimization for low and high-CDOM
waters, particularly for those turbid inlandwaters. For low-CDOM inland
waters, detrital effects on absorptivity are often quite significant. Thus
algorithms that do not separate absorption coefficients into CDOM and
detrital components typically overestimated measured CDOM. For high-
CDOM waters, QAA-v5 largely underestimated the measured CDOM.
The overestimation is due to the fact that its empirical steps (for example,
the step 2 to calculate the total absorption coefficient a(555)) and
parameterization were derived from open-sea water (Zhu & Yu, 2013),
and hence it is not well suited for relatively high-CDOM inland waters.
QAA-CDOM is indeed optimized for a broader range of CDOM
absorptivity, and represents a significant improvement over the QAA-v5
algorithm for high-CDOM waters. Compared to the previous version
QAA-v4, QAA-v5 improved estimations slightly when our in-situ remote
sensing data was used. Contrarily, QAA-v4 could perform better than the
QAA-v5 when using a NOMAD data set (Lee et al., 2009).
3.2.4. Effects of parameterization on MIM algorithms
MIM algorithms were originally developed by Hoge and Lyon

(1996). They retrieve many IOPs, such as aph, adg, and bbp
(particulate backscattering), by solving a group of equations. Each
equation makes a simple connection between Rrs and IOPs at a
given wavelength, namely, Rrs(λ) = f(a(λ), b(λ)), where a(λ) and
b(λ) can be further expressed by the sum of each aquatic optical
component, e.g., a(λ) = aw(λ) + aph(λ) + ad(λ) + aCDOM(λ). In
order to solve the equation group, MIM algorithms also use some
new formulae, such as Eq. (3), to link IOPs at different wavelengths.
If the equation number is greater than the IOPs number, then the
unknown IOPs can be derived from the best optimized solutions,
which minimize the difference between the measured Rrs and
calculated Rrs by equations.

As with many algorithms, changing operation parameters can
fundamentally change estimation performance. It is imperative to have
sufficient in situ measurements so that MIM algorithm parameters can
be effectively calibrated in order to enhance overall estimation
performance. The Brando-2 algorithm is representative of the MIM
algorithms. It returned its most accurate results for medium CDOM
waters ranging from 0.5 to 2 m−1. However, it both overestimated for
low-CDOM water and underestimated for high-CDOM waters. Upon
comparison to the empirical and SA algorithms, the MIM algorithms
required a higher degree of local observations (in situ measurements)



Fig. 6. Assessment of the best six algorithms. (a) Measured vs. derived aCDOM(440). The
lines are the trend lines in polynomial fitting the derived data. (b) Errors vs. measured
CDOM, where errors were calculated by Eq. (7) and the derived concentration were
from the mean of the six algorithms.

Fig. 7. The effects of SIOPs and criterion C on the Brando algorithm. (a) The minimum,
median, maximum derived aCDOM(440) by setting 0.01 b S b 0.02 and 0.1 b Y b 0.2. (b)
The min–max ratio vs. the measured aCDOM(440). (c) The derived aCDOM(440) by
using different criteria C from 0.1 to 0.7. (d) The number of valid output n and RMSE at
each given C.
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in order to effectively set operation parameters. Our results indicate that
four parameters influenced MIM output the most: SIOPs (specific
inherent optical properties), constant criterion C, g0 and g1.

3.2.4.1. Effects of SIOPs. SIOPs usually include the specific absorption
coefficients of Chl (aph*), CDOM slope S, and the decay backscattering
index Y. These optical properties are determined by the physical,
chemical and biological properties of the water column, including
chlorophyll, CDOM and particles. Two approaches are typically used
when implementing MIM algorithms, fixed SIOPs (i.e. Lyon's) or the
use of flexible SIOPs (Boss's and Brando's1–2). When flexible slopes
are used, MIM algorithms will return a range of aCDOM(440) estimations
rather than a single aCDOM(440) as with fixed SIOPs. When a range of
aCDOM(440) estimations were generated, we used the median of this
range as the value used in evaluation.

In this investigation, we set the flexible SIOPs across a range of
0.01 b S b 0.02 and the decay backscattering index across a range of
0.1 b Y b 0.2 as suggested by Boss. The results (Table 3) show that
MIM's performances have not been necessarily improved by using
flexible instead of fixed SIOPs. The Lyon's results (RMSE 0.61) are even
better than the Boss's (RMSE 0.70), but using the same flexible SIOPs,
the Brando's results are the best (RMSE 0.36) of the three MIM. Our
results also indicated that the use of the median value when flexible
SIOPs generated a range of CDOM estimates was only best for medium
CDOMwaters (2.0m−1NaCDOM(440)N0.5m−1). For low CDOMwaters
(aCDOM(440) b 0.3 m−1), the minimum of the range instead of the
median resulted in the best calibration (Fig. 7a). For high CDOMwaters
(aCDOM(440)N2.0m−1), the maximum of the range resulted in the best
calibration (Fig. 7a). In addition, when CDOM levels were increased, the
min–max ratios tended to approach 1 (Fig. 7b), indicating that setting
SIOP ranges wasmore sensitive on low-CDOM than high-CDOMwaters.

3.2.4.2. Effects of criterion C. MIM algorithms define a parameter C as a
means bywhich the relationship betweenmeasured rrs (remote sensing
reflectance just below the water surface) and reconstructed rrs (refer to
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Chapter 8 in IOCCG, 2006 for how to reconstruct rrs) is constrained
(Eq. (8)).

rreconstructedrs −rmeasured
rs

rmeasured
rs

bC: ð8Þ

When a rigid criterion was chosen (e.g. C = 0.1), MIM algorithm
output was invalid approximately 50% of the time. This invalid output
indicates that no solution could be determined for a given measured
rrs. Our results also showed that when C was increased from 0.1 to 0.7,
a valid output was achieved for all 28 samples (Fig. 7d). Our
investigation indicates that a larger C is more appropriate for complex,
CDOM-rich inland waters rather than the small C as reported by Boss
as being most effective for clear, CDOM-poor seawater. For example,
for CDOM-low water (aCDOM(440) b 0.3 m−1), setting C at a value of
0.6 or 0.7 resulted in the lowest error while C = 0.1 resulted in the
highest CDOM estimation error (Fig. 7c). Boss and Roesler also
suggested that use of wavelengths 410 nm and 670 nm enabled their
algorithm to further improve MIM (IOCCG, 2006).

3.2.4.3. Effects of g0 and g1. Brando recently reported thatMIM algorithms
are also sensitive to the a priori parameters g0 and g1 used for
determining an intermediate variable u, where,

u ¼
−g0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20 þ 4g1rrs

q
2g1

: ð9Þ

Three different sets of g0 and g1 values have been suggested: (1) gGor:
g0=0.0949, g1=0.0794, suggested by Gordon for Case 1 simple water,
Fig. 8. Maps of relative errors between derived and measured aCDOM(440) calculated f
bands. (a) S1: S=Median,C=5,V=599, E=(−0.33,−0.64,−0.79),where S, C, andV denote
errors. (b) S6: S=Median,C=5,V=600, E=(−0.38, −0.21,−0.15) (c) S9: S=Median, C=5
−0.23,−0.13) (e) S9: S=Median, C=0.1, V=536, E=(−0.79, −0.44,−0.11) (f) S9: S=
values for three suggestions: GOR, g0= 0.0949, g1= 0.0794, QAA, g0=0.0895, g1= 0.1247, a
(2) gLee: g0 = 0.084, g1 = 0.17, suggested by Lee for Case 2 complex
water, and (3) gQAA: g0 = 0.0895, g1 = 0.1247, for intermediate water
used by QAA (Lee et al., 2002). Our results indicate that the substitution
of one set for another had no significant effect on MIM algorithm
performance. Changing g0 and g1 from those suggested by gLee to gGor
only slightly improved the CDOM estimations in Boss's algorithm
(RMSE_gLee=0.76 and RMSE_gGor=0.70) and had virtually no influence
on theBrando algorithmestimation performance (RMSE_gLee=0.37 and
RMSE_gGor=0.36) as shown in Table 3.

While it was indeed true that the g0 and g1 values reported in the
literature were interchangeable with respect to algorithm output, it
was unclear to us if these values were indeed optimal or appropriate
for our study area. Thus, we performed a series of algorithm runs in
order to conduct a sensitivity analysis of the influence of a wider
range of g0 and g1 values on algorithm performance. We tested g values
across a range of 0.1bg0b0.2 and 0.1bg1b0.3with an interval of 0.01 (a
total of 600 combinations) for three representative samples (S1, S6, and
S9). As one might assume based on the highly varied range of CDOM
levels sampled for this study, the best algorithm performance was
achieved across a range of g0 and g1 pairings, each specific to sample
characteristics and SIOPs (Fig. 8).

As the highly varied color patterns in Fig. 8 illustrate, setting
optimal g0 and g1 values is very data dependent, and they should
not be viewed as static analytical parameters. Figs. 8a through 9e
illustrate underestimation errors, where the warmer colors represent
zones of g0 and g1 pairings that resulted in the lowest relative
underestimation error. Fig. 8f is unique in that it actually illustrates a
zone of little or no error (yellow), while relatively high underestimation
and overestimation are represented by the extremes of the color range
rom 600 combinations of g0 and g1, for three samples (S1, S6 and S9), using MIM, 7
SIOPs, criteria, and valid outputs, and E denotes theminimal,median, andmaximal relative
, V=600, E=(−0.75, −0.56,−0.32) (d) S6: S=Median, C=0.1, V=599, E=(−0.61,
Max, C=0.1, V=536, E=(−0.50,−0.25, 0.35). The three symbolsmark the g0 and g1
nd LEE, g0=0.084, g1= 0.17.
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shown. For example, given a large criterion C=5, the best g0 and g1 for
S1 and S9 clusters in a very small region of Fig. 8 where g0≈ g1≈0.01
(see red regions in Fig. 8a and c). In contrast, the same region returned
the worst results for sample S6 (Fig. 8b), which highlights how it is not
Fig. 9. (a) Correlations between different band ratios and aCDOM(440) (H, M, L are CDOM
for high, medium, and low levels, respectively). (b) Estimation error (RMSE) resulting
from band ratio optimization for the Fieck, Kutser, and D'Sa models (c) The best 4 bands
for the Carder-2 algorithm.
possible to select a viable range of g0 and g1 values for all applications.
The results also indicated that it is best to use a relatively large g0
(~0.2) in combination with a relatively small g1 (~0.01) value in MIM
algorithms for complex inland water of the study site. It is worth for a
further investigation for different freshwater environments. Recently,
Brando et al reported that using gLee is much better than gGor and gQAA
for retrieval adg(440) for CDOM-rich turbid waters in Fitzroy Estuary
and Keppel Bay in Australia.

3.2.5. Band effects on algorithm performance
An issue relevant to all remote sensing based CDOM inversion

algorithms is the need for quality spectra to be recorded across several
wavelengths or bands. This spectral information has the potential to
substantially impact the overall performance of the algorithms, some
more than others. Three spectral characteristics determine the degree
to which the collected spectra influence algorithm output: band/
wavelength selection, band ratios and bandwidth (FWHM).

3.2.5.1. Band selection. Our results illustrate that the performance of
CDOM algorithms in complex inland waters can be significantly
improved by selecting bands with wavelengths longer than those
typically selected for ocean environments. For example, the accuracy
was improvedwhen 640nmused in QAA-v4 (RMSE 0.35) was replaced
with 667nm in QAA-v5 algorithm (RMSE 0.31). The Carder-2 algorithm
performed far better (RMSE 0.35) than its predecessor Carder-1(RMSE
1.43) when it incorporated a second band at 667 nm. Brando et al
(Brando et al., 2012) used two additional bands, 640 and 667 nm, in a
MIM algorithm, which yielded a much lower error (RMSE 0.36 vs.
0.75) than the algorithms of D'Sa and Mannino that did not include
any bands N600nm. Our results also indicate that these relatively longer
wavelengths (N600 nm) are more appropriate for inland CDOM-rich
waters for which the optical properties are heavily influenced by
constituents originating from terrestrial vegetation. The utility of these
longer wavelength bands is consistent with the results of our previous
studies of the Hackensack River, Passaic River, and Newark Bay regions
(Yu et al., 2010).

Although reflectance at long-wavelength is typically not sensitive to
CDOM levels, evidence shows that the algorithm performance can be
improved by using additional longer wavelengths. The additional
spectral bands in the red or near infrared are helpful in better
accounting for detritus particles. The need for red bands to better
quantify CDOM in (rich or not) waters might be explained by the
presence of significant amounts of particulate matter. Good CDOM
estimation resulted from using longer wavelength is not necessarily
conflicting to the theory that spectra in shorter wavelengths are more
sensitive to CDOM. UV and short wavelengths are still useful for
CDOM estimation in CDOM-rich aquatic environment.

3.2.5.2. Band ratio. Simple band ratios, the division of a single band by
another, are commonplace throughout the remote sensing community.
One or more simple band ratios serve as the foundation for nonlinear
and linear regressions against measured CDOM values to generate
coefficients as parameters for empirical algorithms. For example,
Carder-1, Carder-2, D'Sa, Kutser and Ficek are all empirical CDOM
algorithms that incorporate simple band ratios (See Appendix A).

In order to better understand how the bands selected for a band
ratio influenced algorithm performance, we analyzed the influence of
band ratio membership on eight common CDOM algorithms. Fig. 9a
illustrates that overall CDOM estimation accuracy was low when the
simple band ratios were constructed with both bands set at values
b550 nm (R2 = 0.24 – 0.39). In contrast, similar models that
incorporated one or more bands that were N560 nm achieved much
better predictions (R2 = 0.861–0.933) for CDOM-rich waters. When
including bands of only b560 nm, the resulting band ratios displayed
relatively narrow ranges along the x-axis of Fig. 9a (Rrs(412/551):
0.15–0.45; Rrs(443/551): 0.29–0.57; Rrs(488/551): 0.5–0.75; Rrs(443/
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510): 0.44–0.71). When the range created via a band ratio was
compressed, it became increasingly difficult for the model to
delineate differences between low, medium and high measured
CDOM values, and a poor overall performance is the result. This
concept can be visualized by drawing a single vertical line within
any band ratio range in Fig. 9a. If one vertical line intercepts low,
medium and high measured CDOM values, then this band ratio is
not well suited for the optical nature of the sample being evaluated.
For example, although CDOM absorption coefficients for the
samples in high-CDOM group (H), medium-CDOM (M), and Low-
CDOM (L) as shown in Fig. 9a are 8.46, 3.45, and 0.95 m−1,
respectively, their band ratios are all approximately 0.39.
Therefore it is difficult to distinguish between the varied CDOM
levels using the band ratio Rrs(443/551). Comparatively, when
the models included bands N550 nm, (e.g. 640 nm and 667 nm),
the band ratio values were spread across a wider (Rrs(570/640):
0.6–2.4; Rrs(510/667): 0.3–2.2; Rrs(551/667): 0.5–3.0; Rrs(443/
667): 0.2–1.3). The corresponding CDOM absorption coefficients for
the low, medium and high sample groups can be clearly distinguished
using the Rrs(551/667) band-ratio (low 0.51, medium 0.82, and high
1.39). The inset figure of Fig. 9a also demonstrated that the band-ratio
performance by setting at least the second band within 640–670 nm
(R2 ≈ 0.9) was much better than setting the two bands both at
b550 nm (R2 ≈ 0.3). These band ratio optimization results strongly
suggest that a one or more bands within the red wavelength domain
(600–700 nm) is critical for estimation of CDOM via empirical models
for CDOM-rich inland waters. Our results were also supported by a
recent finding that the best CDOM estimations resulted when both
bands were set at N600 nm (Attila et al., 2013). Kallio et al. (2001)
also introduced similar results that using green and red/NIR bands
improved performance over only using blue and red bands.

The low RMSE region in the lower right corner of Fig. 9b
illustrates an area with optimal band ratio selection for the Ficek,
Kutser and D'Sa 2-band ratio models. Relative CDOM estimation
performance increased (error was reduced) when one band was
selected within the range of 400–450 nm and the other band was
selected within the range of 630–650 nm. Some CDOM algorithms
utilize more than 2 bands within their band ratios. For example,
Carder–2 incorporates 4 bands combined to form three band ratios
(443/551, 488/551, and 667/551 nm). Note that all of the ratios
have the same denominator. We used a band-tuning method
(Dall'Olmo & Gitelson, 2006; Gitelson et al., 2008) to determine the
best 4 bands in Carder-2. We first evaluated algorithm performance
by conducting Carder-2 runs where the denominator was varied from
400 to 700nm (Fig. 9c) while the numerators were left as their default
values (443nm, 488nmand 667nm). The results (Fig. 9c) indicated that
the best wavelength domain to be used as the denominator (i.e. lowest
RMSE) should be centered at 630 nm. We then used this newly
optimized denominator (630 nm) and conducted additional tests in
which each of the default numerator values was optimized. Results
demonstrated that all three default values are already in their optimized
bands.

3.2.5.3. Bandwidth. We also tested whether or not bandwidth had an
impact on CDOMestimation accuracy. The Griffin andKutser algorithms
both incorporate wide bands (i.e. Landsat ETM+) rather than the
narrow bands used by other CDOM algorithms. Our results (Table 3)
show that using narrower bands within these algorithms had no
significant influence of algorithm performance. As shown in Table 3,
Kutser's algorithm resulted in an overall RMSE_n of 0.45 (n for narrow
band) vs. an overall RMSE_w of 0.48 (w for wide band). Similarly, the
Griffin's algorithm resulted in an overall RMSE_n of 0.61 vs. an
RMSE_w of 0.60. Both display little improvement when narrow bands
were used.

Interestingly, Kuster's algorithm did show a significant increase in
RMSE (from 0.06 to 0.18) when narrow bands were used for high-
CDOM waters. Recall that Kutser's algorithm was developed to
incorporate the use of wide bands and was calibrated from high-
CDOMwaters. Since this algorithmwas specifically designed to perform
best with wide bands and within CDOM-rich waters, it seems logical
that including narrower bands would cause its RMSE specific to high-
CDOM waters to increase.

4. Conclusions

CDOM levels in complex freshwaters often display a very broad
range influenced by terrestrial characteristics (e.g. vegetation type
or quantity) and seasonal differences (i.e. elevated spring soil
carbon leachates). CDOM levels in our site vary from 0.11 to
8.46 m−1 and have demonstrated a strong correlation with DOC
(R2 = 0.93). The complexity of these freshwater environments
presents a challenge to current remote sensing algorithms used to
estimate biological and chemical water properties. Through
evaluating some representative CDOM algorithms via comparisons
against in-situ CDOM measurements, this study identified several
key observations with respect to the use of current algorithms for
estimating the often highly varied CDOM levels in freshwater
ecosystems. In general, the algorithms consistently overestimated for
low-CDOM waters (Errorlog N0.4). The consistent underestimation
indicated that the tested algorithms need to be improved for the
CDOM-poor aquatic environments, e.g., the complex estuarine and
lakeshore regions of Lake Huron.

The best six algorithms were QAA-CDOM, QAA-v5, Carder-2, Brando-
2, Kutser, and Ficek. Overall estimation performance statistics for all
algorithms combined were: RMSE = 0.57, AME = 90%, Bias = −0.71,
andR2=0.58. These statistics illustrated that the CDOMestimation errors
in freshwaters are generally much larger than those generated from
scenarios of open-sea waters.

The semi-analytical inversion algorithms (QAA-v4, QAA-v5 and QAA-
CDOM) consistently outperformed the others across all water scenarios
(low, medium and especially high CDOM level waters). Our results
show that QAA-CDOM is indeed optimized for a broader range of
CDOM absorptivity, and represents a significant improvement over its
predecessors. Comparative analysis confirmed that using separate
absorption coefficients for complex freshwater as with the QAA-CDOM
algorithm is advantageous because it reduces the interference from
high concentrations of sediments and chl-a in freshwater environments.

The empirical algorithms (Carder-1, Carder-2, Mannino, D'Sa,
Griffin, Del Castillo Kutser and Ficek) when developed with large
data sets spanning broad environmental conditions performed
well where aCDOM(440)b1m−1. Empirical algorithms often include
reflectance from two or more bands structured in one or more band
ratios as evident in Appendix A. Our results illustrate that the
performance of empirical algorithms in complex inland waters
can be significantly improved by selecting at least one band with
a relatively longer wavelength (N600 nm), especially when the
water optical properties are heavily influenced by constituents
originating from terrestrial vegetation. Since chlorophyll and non-
algal particles are usually in high concentrations and also present
high back-scattering within the longer wavelengths, the results
suggest usefulness of using these longer wavelengths for CDOM
estimation by reducing the possible effects of particulate matter.
Our outcome might spawn further research into the botanical basis of
this link between terrestrial (vs. aquatic) vegetation and these longer
wavelengths with CDOM models. Carder-2 is representative of
empirical models that incorporate 4 or more bands structured in
predefined band ratios with static numerators and denominators. We
found that substituting a second band with a longer wavelength
N600 nm as the denominator substantially improved the performance
of band-ratio-based algorithms. The default numerator wavelengths of
443, 448 and 667 nm were determined to be applicable to complex
freshwater environments.
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Fixed or flexible SIOPs can be used with little effect on MIM (Lyon,
Boss and Brando) algorithm performance. In those instances where
flexible SIOPs are used, the median value is most appropriate for
medium-CDOM waters, the minimum for low-CDOM waters and the
maximum for high-CDOM waters. In addition, our analysis indicates
that a larger C is more appropriate for MIM algorithms when applied
to complex, CDOM-rich inland waters as opposed to the small C that
has proven effective for clear, CDOM-poor seawater. Well established
g0 and g1 MIM algorithm parameters can be substituted with little or
no effect on estimation performance. It should be noted that these
values were found to be less than optimal within our study site due to
its highly varied CDOM levels. Ultimately, the best MIM algorithm
performance was achieved across a varied range of g0 and g1 pairings,
each specific to sample characteristics and SIOPs. Generally, our results
indicate that it is best to utilize a relatively large g0 (~0.2) in
combination with a relatively small g1 (~0.01) value for the MIM
algorithms when applied to complex freshwater environments.

We also would like to emphasize that our algorithm assessment
was based on just above-surface measurements using HyperSAS.
Algorithmperformancewill be generallyworsenedwhen using satellite
sensors because of many uncertainty factors, such as the atmospheric
effects, sensor signal-to-noise ratio and viewing geometry. The
evaluation results from using satellite images are not included in this
manuscript which is to focus on algorithm evaluation instead of sensor
evaluation.
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Appendix A

Formulas of empirical CDOM retrieval algorithms,

Carder-1

adg 443ð Þ ¼ 10 −1:144−0:738p15−1:386p215−0:644p25þ2:451p225ð Þ ðA1Þ

where p15=Rrs(412) /Rrs(551), p25=Rrs(443) /Rrs(551).
Carder-2

adg 443ð Þ ¼ 10 0:043−0:185p25−1:081p35þ1:234p65ð Þ ðA2Þ

where p25 = Rrs(443) / Rrs(551), p35 = Rrs(488) / Rrs(551), p65 =
Rrs(667) /Rrs(551).
Ficek:

aCDOM 440ð Þ ¼ 3:65
Rrs 570ð Þ
Rrs 655ð Þ
� �−1:93

: ðA3Þ

Mannino

aCDOM 443ð Þ ¼ −0:0736ln
0:408Rrs 490ð Þ

Rrs 555ð Þ −0:173
� �

: ðA4Þ

Griffin

aCDOM 400ð Þ ¼ exp −1:145þ 26:529TM3 þ 0:603
TM2

TM1

� �
ðA5Þ
where TM1–TM3 are atmospherically corrected reflectance of
Landsat TM or ETM + band 1 (450–520 nm), band 2 (520–
600 nm) and band 3 (630–690 nm).
Del Castillo

aCDOM 412ð Þ ¼ −0:90
Rrs 510ð Þ
Rrs 670ð Þ
� �

þ 2:34: ðA6Þ

D'Sa

aCDOM 412ð Þ ¼ 0:134
Rrs 443ð Þ
Rrs 510ð Þ
� �−2:025

: ðA7Þ

Kutser

aCDOM 420ð Þ ¼ 5:13
B2
B3

� �−2:67
ðA8Þ

where B2 and B3 are from atmospherically corrected ALI images,
that is, irradiance reflectance R(525–605) and R(630–690).
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