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USING ASTER MULTISPECTRAL IMAGERY FOR MAPPING WOODY
INVASIVE SPECIES IN PICO DA VARA NATURAL RESERVE (AZORES

ISLANDS, PORTUGAL)1

Artur Gil², Qian Yu³, Mohamed Abadi4 e  Helena Calado5

ABSTRACT – This paper aims to assess the effectiveness of ASTER imagery to support the mapping of
Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago
of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector
Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic
and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR)
of the ASTER sensor and by digital cartography associated to orography (altitude and “distance to water
streams”) of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed
classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification
accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic
information use. Results improved significantly by including ecology and occurrence information of species
(altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER
sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low
cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation
and distribution within Protected Areas of the Azores Islands.

Keywords:Remote Sensing; Invasive species; Pittosporum undulatum.

USO DE IMAGENS MULTIESPECTRAIS ASTER PARA MAPEAR ESPÉCIES
INVASORAS LENHOSAS NA RESERVA NATURAL DE PICO DA VARA

(AÇORES, PORTUGAL)

RESUMO –  Este artigo teve como objetivo a avaliação das imagens multiespectrais ASTER para o mapeamento
de Pittosporum undulatum, uma espécie lenhosa invasora, na Reserva Natural do Pico da Vara (Ilha de
S. Miguel, Arquipélago dos Açores, Portugal). A avaliação foi efetuada através da aplicação dos métodos
de classificação supervisionada per-pixel "K vizinhos mais próximos" (KNN), "máquinas de vetores de suporte"
(SVM) e "máxima verosimilhança" (MLC) a quatro diferentes conjuntos de dados geográficos e de sensoriamento
remoto constituídos pelas bandas multiespectrais do visível e infravermelho próximo (VNIR) e infravermelho
de onda curta (SWIR) do sensor ASTER e, ainda, por cartografia digital associada à orografia (altitude
e distância a linhas de água), da qual depende diretamente a distribuição espacial do Pittosporum undulatum.
Em nível global, a maioria das classificações obtidas apresentou forte concordância e alta precisão. Em
nível da espécie invasora estudada, as duas classificações mais precisas foram obtidas através da aplicação
de MLC e KNN às bandas VNIR associadas ao uso da informação geográfica auxiliar. Em termos gerais,
a qualidade dos resultados apresentados sofreu incremento significativo sempre que foi introduzida no esquema
de classificação essa informação determinante para a ecologia e ocorrência da espécie (altitude e distância
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a linhas de água). Os resultados indicaram que o uso das bandas espectrais VNIR do sensor ASTER associadas
à informação geográfica relevante para a distribuição espacial da espécie pode constituir uma solução de
baixo custo e boa eficiência para a avaliação e monitoramento contínuos da distribuição e propagação
de Pittosporum undulatum nas Áreas Protegidas dos Açores.

Palavras-chave: Sensoriamento remoto; Espécies invasoras; Pittosporum undulatum.

1. INTRODUCTION

Invasive Alien Species (IAS) is a large, if not the
largest, threat to conservation. It is generally accepted
that IAS management is a significant issue for Protected
Areas management in such ecosystems (MEYERSON;
REASER, 2003; REASER et al., 2007; GUTIERRES et
al., 2011). Biological invasions are one of the most
important problems faced by island ecosystems, due
to the peculiarities of the native island fauna and flora
(OLESEN et al., 2002). Invasive plants are considered
as one of the major threats to biodiversity conservation
in islands, including the Macaronesian Archipelagos
where they invade many protected areas (SILVA et al.,
2008; KUEFFER et al., 2010; CASTRO et al., 2010; CRUZ
et al., 2011). The vascular plant flora in the island of
S. Miguel (Archipelago of the Azores, Portugal) consists
of approximately 1000 taxa and is largely dominated
by non-indigenous taxa (66%). Recent invasion by
several species (Pittosporum undulatum, Clethra
arborea and Hedychium gardneranum) suggests that
the remaining undisturbed native vegetation may be
overrun by non-indigenous species (SILVA; SMITH,
2004, 2006). Pittosporum undulatum is an invader in
tropical and subtropical mountain forests, in warm
temperate regions of the Northern Hemisphere, in many
islands, and in South Africa (GLEADOW; ASHTON,
1981; MANDERS; RICHARDSON, 1992). It has also
invaded plant communities in its native country, Australia
(ROSE, 1997; ROSE; FAIRWEATHER, 1997). Pittosporum
undulatum is already the dominant woody species in
the Azores. According to a recent evaluation of the
Top 100 invasive species in Macaronesia, this species
is also considered invasive in Madeira and the Canary
islands, and ranked 8th in a total of 195 evaluated species
(SILVA et al., 2008). Introduced in the Azores in the
19th century as a hedgerow species for the protection
of orange tree plantations, Pittosporum undulatum
has spread during the last 100 years to a wide range
of habitats throughout the Azores islands, disturbing
plant communities at elevations of 100 to 600 m. It
overgrows native vegetation, forming pure stands
(SJOGREN, 1973). Pittosporum undulatum in S. Miguel

is limited by the most important climatic gradient on
the island:   the steep topography of the island originates
a striking altitudinal gradient, where small increases
in elevation are followed by important decreases in
temperature and increases in precipitation and humidity
(HORTAL et al., 2010). The existence of available habitats
(areas cleared of native forest, abandoned land, bare
soil and landslide areas) is one of the factors which
may explain the success of Pittosporum undulatum
in the Azores (LOURENÇO et al., 2011). Therefore, distance
to water streams, as a specific and relevant disturbance
factor in the vegetation’s spatial distribution at Pico
da Vara Natural Reserve (due mostly to hydrological
regime and slope) (GIL, 2005) shall also be considered
as a relevant landform factor for Pittosporum undulatum
occurrence in this Protected Area.

Invasive species’ mapping is critical to obtain current
states of vegetation cover in order to initiate vegetation
protection and restoration programs (HE et al., 2005).
Once IAS have become established in a region, remote
sensing, in comparison to field based techniques, allows
an entire region to be simultaneously mapped. Image-
derived locations of IAS provide a permanent record
that can be input into spatial databases for control
activities, and repeated acquisitions allow trends in
IAS abundance and distribution patterns to be efficiently
monitored over time. In contrast, in areas where an
IAS does not yet occur, prevention is the most efficient
way of dealing with problematic species (STRAND
et al., 2007). In small islands with very sensitive
ecosystems as the Azores Islands, an accurate land
cover and vegetation mapping and registering of its
evolution (change detection and assessment) is
mandatory for a more reliable and effective land planning
and management (GIL et al., 2012).

Image classification is defined as the process of
extracting differentiated classes or themes from remotely
sensed satellite data. The use of digital multispectral
imagery offers coverage over large spatial areas
(depending on the spatial resolution), objective change
detection through direct analysis of historical image
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archives, and the opportunity for automated image
processing. The supervised image classification process
is generally guided by expert to give the desired land-
cover/vegetation classes. First, training samples which
are representative and typical for that information class
are defined, and secondly all input pixels (or segments)
are labeled according to their class (LENKA; MILAN,
2005; XIE et al., 2008; MELLO et al., 2012). In the k-
nearest-neighbors (KNN) classifier, a test pattern is
classified as belonging to the class that is most frequent
among the k nearest training patterns. The parameter
k is a positive integer (DUDA et al., 2000; BISHOP, 2007).

The support vector machine (SVM) has been used
as a classifier of remotely sensed data. This approach
seeks to find the optimal separating hyperplane between
classes by focusing on the training cases that lie at
the edge of class distributions, support vectors, with
the other training cases effectively discarded. Thus,
yielding high accuracy with small training sets may
be expected, which could be a very advantageous feature
given the costs of training data acquisition in remote
sensing (BROWN et al., 2000; FOODY; MATHUR, 2004).

Maximum-Likelihood Classifier (MLC) is usually
regarded as the classic and most widely used supervised
classification for satellite images resting on the statistical
distribution pattern (SOHN; REBELLO, 2002; XU et
al., 2005). At a medium spatial and spectral resolution,
Landsat TM and SPOT imagery have been successfully
used to map target weed species that are spectrally
or temporally unique (ANDERSON; EVERITT, 1993;
THENKABAIL, 1999; PETERSON, 2003; STRAND et
al., 2007; MITCHELL; GLENN, 2009).

ASTER imagery has been used to obtain detailed
maps of land surface, reflectance and elevation in the
study of habitat patterns. Nevertheless, some applications
on invasive vegetation mapping have been developed,
most of them with little success (TUTTLE et al., 2006;
GILLESPIE et al., 2008; XIE et al., 2008; HUANG;  ASNER,
2009; VIANA;  ARANHA, 2010). Two attempts of
vegetation mapping (including Pittosporum woodland
patches) at Pico da Vara Natural Reserve were performed
by Gil et al. (2011, 2013) using very high spatial resolution
remote sensing data (IKONOS images). Despite the
poor separability of some relevant vegetation classes,
these studies concluded that this type of satellite imagery
could constitute a cost-effective solution to study and
assess vegetation dynamics within Protected Areas
of the Azores Islands.

This paper aims to assess the effectiveness of
ASTER imagery to support the mapping of Pittosporum
woodland in Pico da Vara Natural Reserve (S. Miguel
Island, Archipelago of the Azores, Portugal). This
assessment was done by applying K-Nearest Neighbor
(KNN), Support Vector Machine (SVM) and Maximum
Likelihood (MLC) pixel-based supervised classifications
to 4 different datasets constituted by the 9 ASTER
multispectral bands coupled to GIS terrain data strongly
related to Pittosporum woodland ecological distribution.

2. MATERIAL AND METHODS

2.1 Study area

The Special Protected Area (SPA) Pico da Vara/
Ribeira do Guilherme is located in the largest island in
the Azores Archipelago, São Miguel. The SPA currently
covers an area of 6,067 hectares. SPA was classified
in 1999 and comprises one of the last main areas of “Native
Scrubland” in S. Miguel, whose core is located in the
Natural Reserve of Pico da Vara (815 hectares) in the
mountain complex of “Serra da Tronqueira” (Fig. 1).

2.2. Data

Four different datasets were used in our study:

1) An ASTER-1A standard geometrically corrected
image with nine multispectral bands (Visible, Near Infrared
and Shortwave Infrared) acquired on April 24th, 2002
with 10% Cloud Cover. The Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) is a sensor
launched on NASA’s Earth Observing System, on board
of the TERRA satellite, in December 1999. ASTER is
characterized by a medium spatial resolution (15–90 m)
with 14 spectral bands (visible to near-infrared bands
have a spatial resolution of 15 m; 30 m for short wave
infrared bands and 90 m for thermal infrared bands).

2) The Digital Terrain Model (DTM) of S. Miguel
Island with an equidistance of 10m between contour
isolines, produced in GIS format by the Military
Geographic Institute of Portugal (IGEOE) at a 1/25000
scale, used for the orthorectification of the ASTER-
1A image and as  ancillary GIS data (reclassification
to hypsometry map);

3) The Hydrographic Network of S. Miguel Island
produced in GIS format by the Military Geographic
Institute of Portugal (IGEOE) at a 1/25000 scale, used
as ancillary GIS data for derivation of a “distance to
water streams” layer;
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4) A main GIS dataset of 561 test-sites (polygons)
representing 4 main cover classes covering the Pico
da Vara Natural Reserve’s whole area. All those are
the result of a simultaneous photo-interpretation and
cross-validation between available orthophotomaps
(2 mosaics, the older one from 1997, the more recent
produced in 2005), the Regional Forest Inventory (DRRF,
2007) and the vegetation monitoring program survey
SPEA/LIFE Priolo Project, continuously developed
between 2004 and 2008 (TEODOSIO et al., 2009).

Four representative land cover and vegetation
classes are identified in this dataset: (1) CC - Cryptomeria
japonica (L. fil.) D. Don (“Japanese cedar”) man-planted
production forest stands; (2) DD – Bare Soil and
Landslide Areas; (3) LL – Native scrubland patches;
(4) NN – Pittosporum Woodland (Pittosporum
undulatum’s pure or largely dominated patches). “Native
scrubland” (LL) in the study region corresponds to
areas dominated by native shrubs and trees alternating
with small patches of herbaceous vegetation, including
natural meadows and bogs. However, despite the name
of this class, both herbaceous and woody invasive
species are also present, mixed with the native elements,
sometimes dominating the vegetation cover. Thus,

despite its name, this formation is clearly not a pristine
community, revealing the impact of anthropogenic
disturbance (GIL et al., 2013).

2.3. Methods

Our methodological proposal can be divided into
5 inter-dependent phases (Fig. 2). The first phase
consisted of pre-processing ASTER-1A Visible, Near
and Shortwave Infrared’s (VNIR-SWIR) spectral bands.
In this phase, the orthorectification of the 9 ASTER-
1A VNIR-SWIR spectral bands was performed using
the Digital Terrain Model (DTM) of S. Miguel Island
(HALE; ROCK, 2003), followed by the atmospheric
correction of these same bands using the QUick
Atmospheric Correction (QUAC) algorithm for VNIR-
SWIR multispectral imagery (HADJIMITSIS et al., 2004;
BERNSTEIN et al., 2005).

The second phase had, as main goal, the
geoprocessing of GIS terrain data for classification-
scheme integration (SENOO et al., 1990; MASELLI
et al., 2000). First, the Digital Terrain Model (DTM)
was reclassified into a 6 class’s hypsometry raster
dataset according to “Sweet Pittosporum” spatial
distribution range in Pico da Vara Nature Reserve

Figure 1 – Location of Pico da Vara Natural Reserve (S. Miguel Island, Portugal).
Figura 1 – Localização da Reserva Natural do Pico da Vara (Ilha de S. Miguel, Portugal).
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(meters): 330-450; 450-600; 600-750; 750-900; 900-1050;
1050-1103. Second, a multiple buffer using the
Hydrographic Network GIS layer was created (6 classes
of distance from water stream margins, in meters):
< 5; 5-25; 25-55; 55-105; 105-155; >155. This vector
layer was converted into a raster dataset with a spatial
resolution of 15 meters (same as ASTER VNIR spectral
bands). Finally, the training datasets were randomly
divided into two subsets, 2/3 for training, and 1/3
for test.

During the third phase, the separability between
land-cover classes was assessed before classification,
using both the 3 VNIR band and the 9 VNIR-SWIR
band images. Transformed Divergence (TD) values
were calculated with training data. As a general rule,
if the TD value is greater than 1900, then classes have
good separability; between 1700 and 1900, the classes
are separable; below 1700, the separability is poor
(LILLESAND; KIEFER, 2000).

The fourth phase consisted of performing three
different pixel-based supervised classifications by
applying KNN, SVM and MLC algorithms to each of
our four datasets:

1) Dataset 3A: ASTER’s 3 VNIR ortho-rectified and
atmospherically corrected bands (3 features in total);

2) Dataset 3B: ASTER’s 3 VNIR ortho-rectified
and atmospherically corrected bands + Hypsometry
raster layer + “Distance to water streams” raster layer
(5 features in total);

3) Dataset 9A: ASTER’s 9 VNIR-SWIR ortho-
rectified and atmospherically corrected bands (9 features
in total);

4) Dataset 9B: ASTER’s 9 VNIR-SWIR ortho-
rectified and atmospherically corrected bands +
Hypsometry raster layer + “Distance to water streams”
raster layer (11 features in total).

Finally, the fifth phase of our methodological approach
consisted of assessing the accuracy of the 12 outputted
classification maps by computing overall and “class
by class” user accuracy, producer accuracy and overall
Kappa coefficient, using the validation set, which was
previously randomly extracted from the main GIS dataset
(with 1/3 of its training sites) representing the 4 main
cover classes covering the Pico da Vara Natural Reserve’s
whole area (CONGALTON; GREEN, 1999; FOODY, 2002;
PONZONI;  REZENDE, 2002).

Figure 2 – Methodological flowchart.
Figura 2 – Esquema metodológico.
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3. RESULTS

Table 1 summarizes the results of the separability
assessment.

Regarding the four land cover/vegetation categories
described above (CC, DD, LL, NN), the separability
was fairly good or very good in all pairwise combinations,
except for the case of Cryptomeria japonica (CC) vs.
Pittosporum woodland (NN) when using just the 3
VNIR band dataset, with a Transformed Divergence
value slightly lower than 1700 (TD = 1653). The  lower
separation between these two classes using just 3 VNIR
bands can be explained by the fact that Pittosporum
woodland is usually dense, homogeneous (as
Cryptomeria japonica) and mostly composed of
evergreen trees and large shrubs.

Three supervised classification techniques (SVM,
MLC and KNN) were applied to the 3A, 3B, 9A and
9B’s ASTER datasets. In order to effectively assess

the accuracy of these 12 classifications maps, User
Accuracy (0-1) and Producer Accuracy (0-1) were
calculated for each map category. Overall KIA (Kappa
Index of Agreement) and Overall Accuracy (0-1) were
also calculated for each classifier applied to each dataset
(Table 2).

Overall, almost all performed classifications showed
a strong agreement and good accuracy (Overall KIA
> 0.8) except for the 3A dataset’s MLC classification,
which was slightly less accurate (Overall KIA = 0.78).
The best overall classifications were obtained applying
MLC (Overall KIA = 0.92) and KNN (Overall KIA =
0.91) to the 3B dataset (VNIR bands + 2 GIS raster
layers); and by applying both classifiers KNN and SVM
(Overall KIA = 0.90) to the 9B dataset (VNIR-SWIR
bands + 2 GIS raster layers). SVM showed the same
accuracy when applied to the 9A dataset (Overall KIA
= 0.90). KNN was the most accurate classifier when
applied to the 3A dataset, while SVM was the best

Table 2 – Accuracy assessment of performed classification.
Tabela 2 – Avaliação da precisão das classificações efetuadas.

Note: P - Producer accuracy (0-1); U - User accuracy (0-1); CC - Cryptomeria japonica; DD – Bare soil and Landslide areas; LL – Native
scrubland patches; and NN – Pittosporum Woodland.
Nota:  P: Precisão do produtor (0-1); U - Precisão do utilizador (0-1); CC - Cryptomeria japonica; DD – Áreas de solo nu ou sujeitas
a movimentos de terra ; LL – Matos nativos; e NN – Bosque de Pittosporum undulatum.

Se t 3A 3B 9A 9B

MLC KNN SVM MLC KNN SVM MLC KNN SVM MLC KNN SVM

C C 0,72 0,72 0,65 0,95 0,93 0,65 0,81 0,84 0,87 0,90 0,94 0,87
(P|U) 0,47 0,86 0,85 0,87 0,90 0,86 0,82 0,82 0,84 0,88 0,92 0,85

DD 0,94 0,99 1,0 0,92 0,96 1,00 0,92 0,94 0,96 0,94 0,95 0,96
(P|U) 0,99 0,91 0,98 0,93 0,84 0,98 0,82 0,78 0,97 0,74 0,75 0,96

LL 0,99 0,96 0,99 0,96 0,95 0,99 0,90 0,92 0,98 0,88 0,92 0,98
(P|U) 0,96 0,99 0,98 0,96 0,97 0,98 0,97 0,98 0,97 0,98 0,98 0,97

NN 0,69 0,88 0,87 0,93 0,94 0,87 0,91 0,90 0,90 0,97 0,97 0,91
(P|U) 0,85 0,74 0,66 0,96 0,96 0,66 0,81 0,86 0,91 0,89 0,94 0,91

Overall 0,78 0,84 0,82 0,92 0,91 0,83 0,83 0,85 0,90 0,86 0,90 0,90
KIA

Overall 0,85 0,89 0,88 0,94 0,94 0,88 0,88 0,90 0,93 0,91 0,93 0,93
Accuracy

Table 1 – Separability assessment of VNIR and VNIR-SWIR sets.
Tabela 1 – Avaliação da separabilidade nos conjuntos de bandas VNIR e VNIR-SWIR.

Note: P - Producer accuracy (0-1); U - User accuracy (0-1); CC - Cryptomeria japonica; DD – Bare soil and Landslide areas; LL – Native
scrubland patches; and NN – Pittosporum Woodland.
Nota: P - Precisão do produtor (0-1); U - Precisão do utilizador (0-1); CC - Cryptomeria japonica; DD – Áreas de solo nu ou sujeitas
a movimentos de terra; LL – Matos nativos; e NN – Bosque de Pittosporum undulatum.

Based on 3 VNIR features Based on 9 VNIR-SWIR features

CC DD LL NN CC DD LL NN

C C - 2000 1995 1653 - 2000 1950 1767
DD 2000 - 1711 2000 2000 - 1729 2000
LL 1995 1711 - 1989 1950 1729 - 1936
NN 1653 2000 1989 - 1767 2000 1936 -
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to classify both 9A and 9B datasets (this last one with
the same results of KNN). MLC only performed better
when classifying the 3B dataset. Although none of
these classifiers can be unquestionably assumed as
the best one, KNN (K=3) showed more constancy overall.

4. DISCUSSION

The integration of ancillary GIS terrain data (variables
that are strongly related to the spatial distribution of
Pittosporum undulatum, including altitude and distance
to water streams) as additional features has improved
the accuracy of classifications. Both tests (using ASTER’s
VNIR and VNIR-SWIR datasets) were successful, as
shown especially by the important increase in accuracy
from 3A to 3B (difference between 9A and 9B datasets
is quite lower). Thus, the VNIR dataset (3 multispectral
bands) benefitted more than the VNIR-SWIR dataset
(9 multispectral bands) from the use of this technique,
especially when using the MLC classifier. SVM seemed
to be the only classifier that didn’t improve by adding
those ancillary GIS layers into the classification scheme.

At the land cover/vegetation class level, mapping
Cryptomeria japonica forest stands (CC) was more
accurate when applying KNN to datasets that include
the ancillary GIS terrain data (3B’s user accuracy =
0.90 and 9B’s user accuracy = 0.92). Almost all CC’s
user accuracy (UA) values were high (>0.80) except
the one performed by applying MLC to the 3A dataset
(UA=0.47). Due to logistical issues (accessibility for
plantation, management, harvesting and transportation)
and a suitability concern during plantation, the location
of these forest stands was strongly dependent on
topographical factors like altitude and distance to water
streams.

Mapping Landslide and Bare Soil areas (DD) proved
to be highly accurate by using each of the 4 datasets
(0.96<UA<0.98). Therefore, the addition of GIS raster
bands (datasets 3B and 9B) in the classification scheme
didn’t have much room to improve the accuracy of
mapping this land cover category and it rather degraded
the accuracy by introducing, in the classification,
information irrelevant to the distribution of DD. SVM
classifier was particularly and constantly effective
regarding this category, reaching UA’s higher than
0.96 in all cases. The use of the VNIR-SWIR’s ASTER
datasets (9A and 9B) proved to be less effective to
map DD than just using the VNIR’s ASTER datasets
(3A and 3B). In the same circumstance as DD, mapping

native scrubland patches (LL) was highly accurate when
applying each of the classifiers to each of the 4 datasets
(0.96<UA<0.99). The integration of ancillary GIS data
to the classification schema didn’t positively affect
the accuracy.

The main goal of this study, mapping the spatial
distribution of Pittosporum woodland across Pico da
Vara Natural Reserve, was achieved with satisfactory
accuracy. Mapping Pittosporum woodland’s distribution
was more accurate (Figure 3) when applying MLC to
the 3B dataset (UA=0.96) and KNN to both datasets
that include the ancillary GIS data (3B’s user accuracy
= 0.96 and 9B’s user accuracy = 0.94). The application
of SVM to the 9A dataset (UA=0.91) was very accurate
as well. Applying SVM to both VNIR datasets (3A and
3B) produced the least accurate classifications (UA=0.66).

These results reinforced two facts about the
classification accuracy of Pittosporum woodland: (1)
it can be significantly improved by including, in the
classification scheme, ancillary GIS data directly related
to its ecology and spatial distribution (like altitude
and distance to water streams, in this case-study);
(2) the integration of GIS ancillary data was more effective
than the use of additional SWIR multispectral bands.

Figure 3 – ASTER classification map obtained by applying
MLC to dataset 3B (Caption: CC - Cryptomeria
japonica; DD – Bare soil and landslide areas; LL
– Native scrubland patches; and NN – Pittosporum
Woodland).

Figura 3 – Mapa da classificação ASTER obtida pela aplicação
do método MLC ao conjunto de dados 3B (Legenda:
CC - Cryptomeria japonica; DD – Áreas de solo
nu ou sujeitas a movimentos de terra; LL – Matos
nativos; e NN – Bosque de Pittosporum undulatum).
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Actually, the two highly accurate classifications (UA
= 0.96) were obtained when using the 3B dataset (without
SWIR multispectral bands). Therefore, a more accurate
knowledge about Pittosporum undulatum location and
extension in Pico da Vara Natural Reserve will allow
policy-makers and site manager to perform a more adequate
and realistic Pittosporum undulatum control and
management in this Protected Area.

5. CONCLUSIONS

The results have shown that using ASTER
multispectral imagery for Pittosporum woodland mapping
in Pico da Vara Natural Reserve can constitute an effective
and low-cost solution for continuous monitoring of
the species’ spread in this protected area. The
separability issue (TD slightly lower than 1700) between
Pittosporum undulatum patches (NN) and Cryptomeria
japonica (CC) forest stands could be improved by
increasing the quantity and quality of training sites
for both categories, by using, as part of the training
dataset, for instance  the Regional Forest Inventory,
which is focused on CC mapping and characterization.
A high accuracy in supervised classification maps has
been reached (especially when using MLC and KNN
classifiers) by developing a classification scheme which
includes the use of both VNIR and VNIR-SWIR ASTER
datasets coupled to relevant ancillary GIS data (converted
to raster bands) representing variables that are dictating
and conditioning Pittosporum undulatum spatial
distribution, like altitude and “distance to water streams”.
ASTER VNIR bands at a spatial resolution of 15 meters
(225 m² as minimal spatial unit), are appropriate for
decision-support on IAS site-specific management,
as the minimum unit defined for IAS management in
Azorean Protected Areas is one hectare. Therefore,
these results will support regional authorities to perform
a more cost-effective Pittosporum woodland management
in Pico da Vara Natural Reserve. As the ASTER SWIR
detectors no longer function since April 2008, these
results (as datasets 3A and 3B tested) also show that
the use of currently available VNIR spectral bands,
when coupled to relevant ancillary GIS data, can be
sufficiently effective for the mapping purpose in the
IAS regional monitoring and management programs
(addressing protected areas, basins and lakes, coastal
areas). Finally, this new and more detailed data on the
spatial distribution of Pittosporum undulatum will allow
more accurate ecological modeling studies of this IAS
in the Azores.
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