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Establishing a link between the optical and biogeochemical properties of near-shore waters continues to be a
challenge for both riverine and estuarine areas worldwide due to terrestrial influences. This study aimed to eval-
uate the effectiveness of an inversion algorithm for the extraction of riverine and estuarine CDOM properties at
global scales. Our CDOM evaluation focused on five aspects: 1) the range of worldwide CDOM levels, 2) spatial
distribution patterns, (3) climatic influences, (4) influences of land cover change, and (5) seasonal effects. The
study locations consisted of the estuarine and coastal regions of 10 major rivers spread across five continents.
Our approach was to examine the QAA-CDOM algorithm by extracting CDOM properties from hundreds of
EO-1 Hyperion images acquired during the last decade (2001–2011). Preliminary results showed that CDOM ab-
sorption coefficients at 440 nm within the 10 selected rivers exhibited a broad range (0.02–7.2 m−1). Spatial
CDOMdistribution patterns showedmanyplumes dispersing from source areas (e.g. adjacent terrestrial vegetat-
ed areas) along the direction of flow. Seasonal variations in CDOM levels are also evident (i.e. 0.5–4.0 m−1) as
illustrated by the January, April, August and October images of the Volga River. CDOM levels also appeared to
trend upward with the increase in forest coverage (i.e. terrestrial influence) within the watersheds studied
over the last decade. Our results strongly suggest that the algorithm is effective in distinguishing riverine and
estuarine CDOM levels affected by factors such as global biogeography, climate conditions and regional land
surface processes.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Colored dissolved organic matter (CDOM) is often used as an effec-
tive tracer for evaluating relative levels and the spatial distribution of
dissolved organic carbon (DOC) in aquatic environments. CDOM is the
photoactive portion of dissolved organic matter (DOM) (Ferrari et al.,
1996; Mannino et al., 2008; Vodacek et al., 1997). CDOM ag(440),
(absorption coefficient at 440 nm) is detectable from above the water
surface remotely (i.e. in-situ, airborne or space-borne), since its
chromophore property displays absorbance of light decreasing
quasi-exponentially with increasing wavelength across the entire UV
and visible spectrum (Kutser et al., 2005). Therefore, the quantification
of relative CDOM levels via remote sensing technologies could be a valu-
able tool for studying ecological/environmental changes as well as
carbon cycling at global scales (Tranvik et al., 2009). Remote estimation
of CDOM is also relevant to aquatic ecological/limnological research in
that it is a significant factor in overall light penetration, which is a crit-
ical factor of chlorophyll photosynthesis carried out by phytoplankton
and other aquatic vegetation (Kirk, 1994).
rights reserved.
Remote sensing of CDOM has been well studied in Case 1, open sea
environments where CDOM concentrations are generally in low con-
centration and spatially homogeneous (Yu et al., 2010). CDOM in
these waters is mainly autochthonous, formed from exudates and
partial decomposition products of phytoplankton (Nelson & Siegel,
2001). Contrarily, relative CDOM levels in coastal waters (e.g. Case 2
waters) are usually much higher than that in open-sea environments
because of influences from terrestrial biological and geochemical
sources (i.e. allochthonous). The humic and fulvic acid released
from the decay of detritus represents the most significant component
of terrestrial/soil CDOM in riverine and near-shore environments
(Coble, 1996; De Souza Sierra et al., 1994). Geochemical source
means the amount of DOC in deep soils deposited thousands years
ago and moved to rivers through weathering processes (Petsch et
al., 2003). In addition, both chlorophyll concentrations and turbidity
are typically much higher in riverine systems, when compared to
open sea environments. The algorithms developed for case 1 waters
may not be accurate for riverine and estuarine environments because
of potential interference from solutes and suspended matter found in
such waters that are not typically found in open oceans.

A remote sensing algorithm for extracting CDOM for estuarine and
coastal regions (QAA-CDOM) recently was developed by Zhu and Yu
(2013) and Zhu et al. (2011). The key innovation of the algorithm is
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the capability of estimating CDOM and sediment absorption coeffi-
cients separately instead of a single combined parameter. Although
the algorithm was based on both field and synthetic data worldwide,
it has only been validated across 12 riverine, estuarine, and coastal
sites that exhibit a limited range of climatic and geographic variation
(Zhu, 2011; Yu et al., 2010; Zhu and Yu, 2013; Zhu et al., 2011). The
relatively limited geographic and climatic areas to which the algo-
rithm was applied may indeed limit its reliability across global scales
that typically exhibit a much wider range of CDOM levels It is also
known that temperature and precipitation are highly correlated to
both riverine DOC and relative CDOM levels due to the influence of
terrestrial gross primary production (GPP) and metabolic processes
within the surrounding watershed (Huang & Chen, 2009; Raymond
& Bauer, 2001; Tian et al., 2013). Land surface characteristics, such
as vegetation types, soil carbon sinks, and hydrologic characteristics
(e.g. surface runoff rates, groundwater discharge) determine CDOM
sources and transport processes (Coble, 1996; De Souza Sierra et al.,
1994; Tian et al., 2013). Therefore, in order to confirm the suitability
of QAA-CDOM at global scales, it is necessary to examine its applica-
bility across more varied scenarios.

Accordingly, this study aims to evaluate the feasibility of applying
the QAA-CDOM model to rivers and their associated coastal environ-
ments at global scales. We selected 10 rivers across three different
climate zones and five continents in order to include varied levels of
land surface and biological processes. Hundreds of EO-1 Hyperion
images acquired from 2001 to 2011 were examined for this investiga-
tion. The two main research objectives were to: 1) assess the varia-
tions in relative CDOM levels in coastal and riverine areas from the
ten study sites derived from Hyperion data and the QAA-CDOM
algorithm, and 2) investigate the potential of Hyperion imagery and
the QAA-CDOM algorithm to detect CDOM seasonal variation at the
same 10 locations. The investigation focused on five aspects of
CDOM in riverine and estuarine systems: 1) the range of worldwide
CDOM levels, 2) spatial distribution patterns, (3) climatic influences,
(4) influences of landuse change, and (5) seasonal effects.

Unlike many studies that address global scale phenomena, our use
of Hyperion imagery took advantage of the relatively high spectral
(i.e. 10 nm wide bands) and spatial (i.e. 30 m) resolution of this
platform, while also providing scientific insight of scenarios respon-
sive to global scale climatic and environmental variables. The CDOM
dynamics of the near-shore/river interface are applicable to a variety
of research topics and to the management of coastal environments.
Specifically, CDOM dynamics can help to better understand DOC
export processes from terrestrial inputs/carbon sinks to coastal
waters as part of the carbon cycle.

2. Methods

2.1. Study sites

The 10 major rivers from five continents selected for this study are
the: Mississippi River and Mackenzie River in North America, Amazon
Table 1
Hydrological properties of the ten studied rivers.

River Rank⁎ Outflow Length (km)

Mississippi 1st, N. Am. Gulf of Mexico 5971
Mackenzie 2nd, N. Am. Beaufort Sea 4241
Amazon 1st, S. Am. S. Atlantic Ocean 6400
Plata 2nd, S. Am. Rio de la Plata 4880
Yangtze 1st, Asia East China Sea 6300
Irrawaddy 23rd, Asia Andaman Sea 1992
Nile 1st, Africa Mediterranean Sea 6650
Congo 2nd, Africa S. Atlantic Ocean 4700
Volga 1st, Europe Caspian Sea 3530
Rhine 15th, Europe North Sea 1392

⁎ The rank is by river's length. The data of length, discharge, and drainage area are from
River and Plata River (Rio de la Plata) in South America, Yangtze River
(Changjiang) and Irrawaddy River in Asia, Nile River and Congo River
in Africa, and Rhine River and Volga River in Europe. They are all
well-known major rivers with large drainage areas and significant
discharge, playing a crucial role in the hydrologic systems of each
continent. All are closely linked to the human populations along
their shores, serving functions such as water supply, agricultural irri-
gation and transportation corridors. They drain and traverse varied
and diverse ecosystems, such as arid desert (i.e. lower Nile River),
humid tropical forests (i.e. upper Nile River), tropical evergreen forest
(i.e. Amazon River) and boreal forest (i.e. Mackenzie River). These big
rivers typically deposit large alluvial fans (i.e. deltas) where they flow
into their estuarine and coastal regions. Often, as in the case of the
Nile River and Yangtze River Delta, high human population densities
are supported on these deltaic sediments. Due to the amount of
discharge and sediment load, many of these rivers form huge sedi-
ment plumes at their termination, such as the Amazon River and
Mississippi River. Some of the selected rivers periodically freeze,
such as the Mackenzie River and Volga River. The general characteris-
tics of each river, including the length, watershed area, annual
discharge, outflow, and climate type, are listed in Table 1. The relative
locations of the 10 rivers used in this study are shown on a world map
(Fig. 1).

Data obtained or collected from ten additional estuarine and coast-
al locations along with the Mississippi River and Amazon River study
sites outlined above were used for algorithm validation. The ten addi-
tional sites are; the Atchafalaya River in Louisiana, the Passaic River,
Hackensack River, and Newark Bay in New Jersey, the Hudson River
along the New Jersey/New York border, the Neponset River and Bos-
ton Harbor in Massachusetts, the Saginaw River and Kawkawlin
River in Michigan, and the Brisbane/Logan/Pine/Caboulture Rivers
flowing into Moreton Bay in Australia (Brando & Dekker, 2003). As
outlined in Table 2, the Amazon River and Moreton Bay validation
data were extracted from previous studies (Brando & Dekker, 2003;
Zhu & Yu, 2013), while data collected in the United States were de-
rived from our in-situ measurements. The in-situ data used to derive
relative CDOM levels weremeasured belowwater surface at relatively
high spatial resolution (i.e. 5 m intervals) with concurrent Rrs (re-
motely sensed reflectance) measured just above the water surface.
These in-situ data below and above water surface were collected
through our multiple research cruises in rivers in Louisiana, New
York, and Massachusetts. Recently, we also conducted several re-
search cruises in freshwater environments and validated the algo-
rithm for the Saginaw River, Kawkawlin River, and the Lake Huron in
Michigan. The rivers used for the validation are latitudinally well dis-
tributed across the continental U.S. (Table 2).

2.2. Hyperion imagery

In November of 2000, NASA launched the Earth Observing-1 satel-
lite mission as part of their New Millennium Program, with the Hype-
rion imaging spectrometer being a key component of this mission.
Discharge (103 m3/s) Drainage area (103 km3) Climate categories

17.30 3220 Subtropical
7.93 1805 Frigid

212.38 5778 Tropical
14.89 2305 Subtropical
21.80 1942 Subtropical
13.56 430 Tropical
2.83 2978 Subtropical

39.64 4014 Tropical
8.06 1380 Temperate
2.21 145 Temperate

The Water Encyclopedia, 3rd Ed., by Pedro Fierro, Jr. and Evan K. Nyer.



Fig. 1. (a) Study site map of 10 global major rivers and their watersheds and 6 estuarine and coastal regions for validations. (b) The acquisition dates of available EO-1 Hyperion
images of each river.
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Hyperion has the following characteristics: 220 bands, each being
10 nm in width, spectral range from 400 to 2500 nm, swath width
of 7.5 km and typical swath length of 42 km, 30 m GSD and 12 bit
image data.
Table 2
Validations of QAA-CDOM. The Amazon's data were from the products of the Coast Colour Pr
and Dekker (2003), and all others were from our in situ measurements.

River, bay, lake Location RMSE m−1 AME %

Mississippi Louisiana, USA 0.16 27
Amazon Brazil – 11
Atchafalaya Louisiana, USA 0.12 14
Moreton Bay Australia – –

Hudson New York, USA 0.45 63
Hackensack New York, USA 0.21 16
Passaic New York, USA 0.15 17
Newark Bay New York, USA 0.17 43
Neponset Massachusetts, USA 0.43 52
Saginaw Michigan, USA 0.25 19
Kawkawlin Michigan, USA 0.38 3
Lake Huron Michigan, USA 0.37 27
Hundreds of Hyperion images were available in total for the 10
rivers (Fig. 1) included in this study, from a multitude of overpass
dates displaying varied atmospheric conditions. As an example,
Fig. 2a shows the nineteen 7.5 km wide, Hyperion image swaths
oject (http://www.coastcolour.org/site_21.html), Moreton Bay's data were from Brando

Measured ag(440) m−1 Derived ag(440) m−1

Min Mean Max Min Mean Max

0.07 0.11 0.60 0.04 0.08 0.40
– 3.80 – 1.80 4.20 8.60
0.80 1.62 3.60 0.60 1.40 4.00
0.13 – 0.75 0.15 0.45 0.80
0.41 0.75 0.87 0.13 0.28 0.68
0.94 1.16 1.43 0.17 1.35 3.01
1.01 1.28 1.42 0.58 1.06 1.96
0.75 0.80 0.87 0.72 1.14 1.95
0.57 0.98 1.53 0.09 0.47 1.42
0.17 1.94 3.66 0.42 2.31 7.76
0.12 2.07 8.46 0.14 2.00 8.04
0.11 0.84 1.82 0.16 0.61 1.89

http://www.coastcolour.org/site_21.html


Fig. 2. (a) The Irrawaddy River Delta and the locations and dates of EO-1 Hyperion images covering this region (an example raw image was acquired on 02/11/2004). (b), (c), (d) are
similar cases for the Mississippi River, Rhine River, and Plate River, respectively. The images labeled with dates are those used as the examples shown in Table 3.
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available of the Irrawaddy River. Fig. 2a also shows, in more detail, a
single swath capturing a portion of the Irrawaddy River estuary, rang-
ing from the river channel in the northeast to offshore saline water in
the southwest, acquired on 02/11/2004. Fig. 2b, c, and d shows the
similar examples in other three rivers: the Mississippi River, Rhine
River, and Plata River. As expected, the available imagery displayed
varied atmospheric conditions and cloud coverage, which ultimately
led to selecting a subset of high quality Hyperion images for each
river.
2.3. QAA-CDOM algorithm

The QAA-CDOM algorithm is used for the extraction of ag(440),
the CDOM absorption coefficient at 440 nm, from remote sensing
reflectance Rrs. The algorithm was introduced by Zhu & Yu (2013)
and Zhu et al. (2011) for extracting riverine and estuarine CDOM.
The QAA-CDOM was an improvement of the QAA algorithm devel-
oped earlier by Lee et al. (2002, 2007). Unlike the QAA algorithm,
the QAA-CDOM algorithm calculates CDOM absorption in two major



Fig. 3. Comparing the measured and derived CDOM ag(440) from 11 estuarine and
coastal regions.
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steps. The first step is to derive the total adsorption coefficient
at(440) and the backscattering coefficient bbp(555) from suspended
particulate matter at a wavelength of 555 nm by optimizing the
QAA algorithm (Lee et al., 2002; Zhu & Yu, 2013). The QAA algorithm
requires remote sensing reflectance at 4 wavelengths (440, 490, 555,
and 640 nm) as inputs to reduce errors caused by the interference
from chlorophyll and other plant pigments in natural waters. The sec-
ond step is to use an our previously extended QAA algorithm (QAA-E)
to derive the absorption coefficients of phytoplankton and non-algal
particles ap(440) calculated with Eq. (1) below (Zhu et al., 2011). The
value combined with the total adsorption coefficient at(440) was used
to generate ag(440) via Eq. (2).

ap 440ð Þ ¼ j1bbp 555ð Þj2 ð1Þ

ag 440ð Þ ¼ at 440ð Þ–ap 440ð Þ ð2Þ

where j1 and j2, are two parameters that were estimated from all
available synthetic and in-situ data for both open-sea and coastal
waters.

2.4. Field measurements and image preprocessing

Field measurements for validating the QAA-CDOM algorithm were
acquired from August 24–30, 2007, of the Mississippi River plume. We
measured continuous underwater attenuation and absorption coeffi-
cients, salinity, CDOM fluorescence, chlorophyll fluorescence, and
optical backscattering for suspended sediments by using a towed undu-
lating vehicle (ECOShuttle). At the same time of underwater measure-
ments, above-surface hyperspectral measurements were completed
via a portable spectroradiometer (ASD FieldSpec®). Discrete water
samples were also collected every half hour and analyzed in order to
calibrate field instrumentation. The speed at which the ECOshuttle
was towed resulted in a sampling interval that equated to a measure-
ment being taken approximately every 1 m, which ultimately created
an extremely large dataset containing approximately 1,000,000 under-
water measurements. In addition, approximately 20,000 above-surface
spectra and 150 discrete water samples were collected. Similar mea-
surement campaigns were also carried out in Hudson River regions on
October 23–25, 2006 and July 28–August 7, 2010, in Neponset River
regions on September 25 and November 04, 2009, and in Saginaw
River regions on May 10 and October 18, 2012.

The EO-1 Hyperion satellite images were retrieved from the Unit-
ed States Geological Service (USGS, http://earthexplorer.usgs.gov/).
For each study site, we selected 4–10 higher quality images by con-
sidering relative location of the study site within the larger image,
capture date and cloud conditions. Each image was pre-processed
by replacing missing lines, de-striping, and de-noising. The atmo-
spheric correction was carried out by the FLAASH module provided
by ENVI 4.8. Rrs was obtained by removing the surface reflectance
(Zhu & Yu, 2013). The positional, atmospheric, and weather parame-
ters (i.e. satellite looking angle, sun elevation, wind speed, humidity,
and visibility) required by atmospheric correction and surface correc-
tion were retrieved from image metadata and the National Climatic
Data Center (NCDC) weather database.

2.5. Determining CDOM concentration for the 10 rivers and validation
methods

Relative CDOM concentrations, ag(440), derived from the
QAA-CDOM algorithm can vary greatly within an image scene.
This should be expected considering the spatial variability of the imag-
ery, with a single scene that could vary from an inland river corridor to
Case 1water in open seas.We assumed that four different CDOMoutput
parameters gleaned from the QAA-CDOM algorithm were pertinent to
this investigation: CDOMmedian, CDOMmax, CDOMmin and relative fresh-
water relative CDOM level (CDOMfresh). The minimum and maximum
CDOM values were computed by averaging the lowest 5% and highest
5% CDOM levels found across all of the water pixels, respectively. To
determine CDOMfresh, we extracted output values from randomly
selected pixels falling near themidstreamof the freshwater headwaters
as far from the river mouth as possible. The annual mean concentration
(CDOMa-fresh) of each river was determined by averaging CDOMfresh for
all applicable images and collection dates.

The reliability of the output parameters derived from the
QAA-CDOM algorithm were then compared to their paired field
measurements outlined in Section 2.4 in order to evaluate the validity
of the algorithm. Fig. 3 shows the relationship between the derived
and measured CDOM levels across all 10 locations (R2 = 0.81). Both
a RMSE (Root Mean Squared Error) and AME (Absolute Mean Error)
were calculated by comparing the measured and derived ag(440)
values for all applicable sampling locations using Eqs. (3) and (4),
respectively.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 log ag 440ð Þderivedi

� �
− log ag 440ð Þmeasured

i

� �zh i
n−2

vuut ð3Þ

And

AME ¼
∑n

1¼1
ag 440ð Þderivedi −ag 440ð Þmeasured

i

ag 440ð Þmeasured
i

�����
�����

 !

n
ð4Þ

3. Results and discussion

3.1. Field validation

The validations were made by comparing the measured CDOM
against the algorithm derived CDOM for the 10 validation sites in
the U.S.A. We validated the algorithm derived CDOM for the Amazon
River andMoreton Bay against the information in published reference

http://earthexplorer.usgs.gov/
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to see if they are in the same order of magnitude (Zhu & Yu, 2013).
The overall RMSE and AME for the measured versus derived ag(440)
values across all twelve validation sites are 0.269 m−1 and 26.5% re-
spectively. Currently, the accuracy of relative CDOM level estimations
via remote sensing based algorithms utilizing CDOM absorption coef-
ficients in open-sea water displays an overall RMSE range of = 0.2–
0.3 m−1 (IOCCG, 2006). As Table 2 illustrates, our validation results
of the QAA-CDOM algorithm for complex estuarine and coastal wa-
ters displayed RMSE values similar to those generated from
open-sea environments. Our RMSE values indicate a marked im-
provement over other popular CDOM algorithmswhen applied to com-
plex estuarine and coastalwaters. For example, theQAA-CDOMalgorithm
performed exceedinglywell in complex freshwater environments like the
Saginaw and Kawkawlin River plume regions (Zhu et al., 2012). CDOM
levels estimated from in situ measurements ranged from 0.11 to
8.46 m−1, while QAA-CDOM's estimation of relative CDOM levels in
these two regions was 0.14–8.04 m−1, with an RMSE of 0.29 m−1. Over-
all, the similarity between in-situ and remotely derived CDOMconcentra-
tions illustrates that the QAA-CDOM algorithm has advantages in
detecting broad range of CDOM concentrations in land–water interface
areas as well as open-seas.

The validation results also show that the QAA-CDOM algorithm
works well for different climate zones, including tropical (Amazon),
subtropical (Atchafalaya, Mississippi and Moreton Bay), and temperate
zones (others 8 sites in the Great Lakes, and Middle Atlantic coastal
regions). For example, the AME for the Atchafalaya River and Amazon
River is less than 20%. Similarly, Moreton Bay CDOM values ranged
from 0.15 m−1 to 0.8 m−1,which matched well with the observed
range (0.13 m−1–0.75 m−1). In addition, overall RMSE related to the
urban regions/study sites (i.e. Boston in the Neponset River and New
York City in the Hudson River region) is also satisfactory at 0.28 m−1.
Our extensive validation efforts indicate that the QAA-CDOM algorithm
is very effective for studying CDOM levels and their spatial variation in
estuaries and coastal water environments worldwide. The details
about field observations have been reported in our early studies (Zhu,
2011; Zhu et al., 2012; Zhu and Yu, 2013; Zhu et al., 2011).

3.2. Minimum and maximum CDOM estimates

Table 3 lists the range of relative CDOM levels calculated for each
study location. The overall minimum CDOM (0.02 m−1) was observed
in the Nile River in August of 2003, while the maximum (7.2 m−1)
was observed in the Mackenzie River in June of 2004. As expected,
CDOM concentration in riverine and estuarine waters is much higher
than CDOM in off-shore and open-sea waters (typically b 1 m−1).
Many previous in-situ measurements have confirmed that riverine
and inland-water CDOM concentrations can be as high as 19.4 m−1

(Brezonik et al., 2005; Kowalczuk et al., 2003). Our CDOM field mea-
surements from related investigations of several U.S. rivers (Mississippi,
Table 3
CDOM concentrations derived from Hyperion images of the ten rivers (corresponding
images are shown in Figs. 2, 4, 5, 9, and 11).

River Date Location CDOM ag(440) m−1

Min Mean Max

Mississippi 05/05/2010 Coastal regions adjacent to
channel

0.08 0.30 0.58

Mackenzie 06/23/2004 Coastal regions adjacent to
channel

1.79 4.35 7.20

Amazon 10/12/2004 Channel very closing to mouth 2.50 3.51 6.04
Plata 11/24/2002 River mouth 1.93 3.36 4.78
Yangtze 02/09/2004 Channel very closing to mouth 0.45 0.75 0.97
Irrawaddy 02/11/2004 Channel and plume regions 0.11 1.86 3.77
Nile 08/16/2003 Channel and plume regions 0.02 0.65 2.52
Congo 04/13/2004 Channel very closing to mouth 0.20 0.56 0.88
Volga 09/18/2004 Channel very closing to mouth 0.63 1.32 2.35
Rhine 04/15/2007 Channel closing to mouth 0.49 0.83 1.48
Atchafalaya, Hudson, Neponset, and Saginaw Rivers) ranged from as
low as 0.02 m−1 to as high as 8.46 m−1.

3.3. Spatial distribution patterns

The spatial patterns visible when relative CDOM concentrations
were displayed across each image demonstrated that CDOM loading
plumes and degradation processes are likely being well captured by
the QAA-CDOM output (Fig. 4). Plumes with relatively high CDOM
concentrations (e.g. R1-R6, R8, R11-R13) are directly adjacent to
riverbanks where they are likely receiving CDOM originating from ter-
restrial sources (i.e. allochthonous). The locations of these QAA-CDOM
generated plumes are valuable information for ecological studies
because bio-optical properties of inland waters are usually complicated
by the preponderance of organicmatter and suspended sediment in the
discharge emanating from the surrounding watersheds. The high
CDOM concentrations can significantly alter water color by affecting
light absorption and scattering.

The algorithm is also effective for identifying CDOM plumes that
originated from areas with high concentrations of aquatic algae and
plankton. For example, R7 delineates a CDOM plume near the center
of the channel of the Mississippi River (Fig. 4d). The modest but de-
tectable elevated CDOM concentrations indicated by this plume are
higher than adjacent waters by approximately 0.1 m−1 as illustrated
in its concentration profile (Fig. 6c). Because there are no significant
terrestrial CDOM sources in the immediate vicinity, and flow from
the outlet of a smaller tributary (see image subset in Fig. 2b for its lo-
cation) is relatively low, it is assumed that the small spike in CDOM
level in this mid-channel plume is due to autochthonous sources
such as phytoplankton/algal blooms. The ability of remote sensing
based algorithms to detect off-shore/mid-channel CDOM plumes
generated from non-terrestrial sources was also observed in studies
of the Gulf of Mexico (Tomlinson et al., 2004; Wynne et al., 2005).

The mapped CDOM consistently displays an inverse relationship
along the salinity gradient from inland freshwater to saline ocean
waters. An example that best illustrates this inverse relationship is
the Irrawaddy River (Fig. 5b). Consistent with this inverse relation-
ship, CDOM levels decrease from within the upper river tributaries
to the river mouth area (Fig. 6a).

The QAA-CDOM algorithm is also sensitive to fluctuations in rela-
tive CDOM levels due to anthropogenic sources. In Fig. 5, human
influences on relative CDOM levels are clearly illustrated along a
particular stretch of the Nile River. In this portion of the Nile River,
the profile (Fig. 6b) shows two spikes in CDOM levels, one directly
downstream of the City of Damietta (R13) and one downstream of
the City of Ras El Bar (R14). Such sudden CDOM increases must be
attributed to urban nutrient loading. This CDOM increase (R14), was
very unique across the hundreds of Hyperion images analyzed, and
indeed hard to explain. It is likely that is was the result of an
unknown autochthonous source, such as a CDOM bloom generated
by phytoplankton or algae.

The Rhine River also illustrates the sensitivity of the QAA-CDOM
algorithm to the inherent nature of the surrounding watershed
(Fig. 4c). The concentration profile shown in Fig. 6d is relatively low
in concentration and shows little relative variation. The landscape
adjacent to this section of the Rhine River is relatively homogeneous
and thus lacks significant variation in the biological and chemical
processes. These data illustrate that the QAA-CDOM algorithm may
be an effective tool for investigating the role local biogeography and
associated land surface processes play in affecting water quality
using CDOM as a surrogate measure.

3.4. Identifying climatic influence on CDOM variation

Another one component of this study was to investigate whether
remote sensing is capable of identifying the climatic influence on



Fig. 4. CDOM levels (ag(440), m−1) in estuarine and coastal regions of six rivers: (a) Yangtze, (b) Plata, (c) Rhine, (d) Mississippi, (e) Mackenzie, and (f) Amazon. The red arrows
indicate the directions of river flow. The dash-circled areas are regions of interest (R#) discussed in Section 4 and the black dash lines are profile tracks shown in Fig. 6. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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CDOM variation. Since a large river watershed could span across mul-
tiple climate zones, we indicate climate effects by using a very broad
categories: Tropical, Sub-tropical, Temperate and Frigid climates for
the estuarine and coastal regions of the ten river watersheds (see
Table 1). The primary focus is on two linked climate variables:
temperature and precipitation. Fig. 7a shows that CDOMa concentra-
tions generally decrease across each of four climates from the Tropical
(Amazon, 3.55 m−1) to Temperate (Rhine, 0.86 m−1). The trend is
more pronounced when we calculated CDOM levels to averages for
each climatic category as illustrated in Fig. 7b. These results illustrate
that the QAA-CDOM algorithm may have the potential to identify
CDOM variations influenced by climate, although it may be difficult
to systematically isolate this variation from other influencing vari-
ables. It should be noted that the analysis of impacts of climate on
riverine CDOM levels presented here were derived from only a few
representative images acquired across varied calendar dates and



Fig. 5. Spatial distributions of CDOM levels (ag(440), m−1) in estuarine and coastal regions of (a) Nile River and (b) Irrawaddy River, collected on 08/16/2003 and 02/11/2004,
respectively.
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years. The inherent variability of river CDOM concentrations, which is
as largely determined by the annual and seasonal variations in the
biological and chemical processes of the surrounding watershed,
may be greater than the differences attributable to climate alone as
illustrated by the Mackenzie River.

The Mackenzie River, the only studied river in frigid climate,
displayed the highest CDOM level (4.51 m−1; Fig. 7a). It has been
reported that the Mackenzie River typically has a relatively high
biochemical load (e.g. CDOM), especially during the compressed
summer season (a year in Frigid Zone can be divided into two
seasons: long winter and a short and active summer) at these lati-
tudes (Retamal et al., 2008). The CDOM levels calculated by the
QAA-CDOM algorithm for the Mackenzie River were extracted from
a summer image, and one would expect the annual mean CDOM
concentration, that would include the less productive winter months,
to be significantly lower. However, it is also possible that the maxi-
mum CDOM concentration could occur during early summer/late
spring. Some previous research (Kutser, 2012; Retamal et al., 2007)
explained that the high CDOM concentrations in rivers and lakes in
the frigid climate might be attributable to a prolonged period of
snow melt resulting in a short term increase in soil carbon. During
winter periods, ice breaks down cells of peat and other organic mate-
rial in permafrost and water from precipitation and snow melt
washes the carbon into rivers, thaw ponds and lakes during the
warm period. Preliminary results reported (Tian et al., 2012) that
overall climate zone and linked precipitation amounts (rain, snow,
ice melting, and glacial runoff) do indeed affect riverine CDOM. A
large number of ice/snow areas (white regions) are visible in the
Mackenzie River Hyperion scene as shown in Fig. 4e, and the CDOM
concentration in waters adjacent to these ice/snow margins were
elevated and ranged from1.6 m−1 (R8) to 2.73 m−1(R9). This sce-
nario indicates that ice/snowmelt does indeed tend to affect ambient
CDOM, which is also consistent with previous reports in the arctic and
boreal regions (Dyson et al., 2011).

3.5. Influence of biogeography on CDOM variations at a global scale

Many studies have outlined that the most significant source of
riverine CDOM comes from surrounding terrestrial sources, largely
decaying plant material/detritus in inland tributaries/streams or soil



Fig. 6. CDOM level profiles of four rivers: (a) Irrawaddy, (b) Nile, (c) Mississippi, and (d) Rhine. Their tracks are shown in Figs. 4 and 5. The distance is calculated from the start point
(the circle end of track line) in each image.
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leachates transferred into rivers by surface or ground water runoff
(Gardner et al., 2005). Thus, land-cover/bio-geophysical variables,
such as gross biomass, vegetation density, soil type, and land-cover,
play a documented and important role in determining CDOM
Fig. 7. (a) Riverine and estuarine CDOMa for the rivers falling within the four climate zo
concentrations (Tian et al., 2012). In order to investigate how sensitive
the QAA-CDOM algorithm is to the influence of select biophysical vari-
ables, overall percent forest cover of each watershed was obtained
from the Global Land Cover Classification database created by the
nes, (b) average CDOMa among the rivers falling within the four climate categories.
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University of Maryland. Using these landcover data, we categorized the
10 study rivers into three groups based on their percent forest coverage
as follows: 0%–30% (i.e. Nile, Yangtze, Plata, Rhine, and Mississippi),
30%–60% (i.e. Volga, Irrawaddy, Mackenzie, and Congo), and 60%–90%
(i.e. Amazon). Average CDOM concentrations were plotted against
these forest cover percentages in Fig. 8, As expected, the average
CDOM levels throughout the entire watershed steadily increased as
the percent forest coverage increased; 0%–30% (1.77 m−1), 30%–60%
(2.24 m−1) and 60%–90% (3.55 m−1). The QAA-CDOM algorithm
seems capable of detecting relative CDOM levels attributable to gross
watershed forest cover.

It is important to note that the relative locations of the forested
areas within the overall watershed will significantly influence the
variation of riverine CDOM levels. For example, if the majority of
the forest cover is concentrated in the most downstream portions of
the watershed, one would expect the terrestrial input of these forests
to have a more significant effect on river mouth CDOM levels due to
their relative proximity. This investigation does not present enough
data or did not include an analysis that attempted to identify how
the spatial distribution of the forested areas within the overall water-
shed influences CDOM levels. However, this represents a promising
topic for future research.

Further trends were identified when the relationship between
relative CDOM levels and the percentage of different land cover
types within the watershed were compared. The percentage of decid-
uous broadleaf forest coverage within an individual watershed,
among rivers grouped according to their climate zone, may become
the dominant determinant of relative CDOM levels. For example,
Fig. 7a shows that subtropical CDOMa values in the Plata and Missis-
sippi Rivers mouths were much higher than that of the Yangtze and
Nile Rivers. This marked difference in average CDOM levels across
these four rivers was attributed to the relative percentage of decidu-
ous broadleaf forest cover within each watershed (i.e. Mississippi
9.4%, ranks 1st of the 10 rivers; Plata, 4.4%, 3rd, Yangtze 1.6%, 7th;
Nile 0.1%, 10th). It seems likely that the higher CDOMa levels were
attributable to the relatively high levels of deciduous broadleaf forest
cover, which in turn result in higher carbon loads via the decay of fall-
en leaves. Soil type, which is clearly correlated with the percentage of
overall forest cover as well as percentage of deciduous broadleaf
forest, is also a plausible factor which may significantly affect relative
CDOM levels and its distribution. CDOM released from soil is also a
function of soil moisture and hence precipitation and thaw events.

The clear relationship between relative CDOM levels determined
via the QAA-CDOM algorithm and overall forest cover within the
Fig. 8. Relationship between estuarine CDOMa ranges and watershed forest coverage (%). T
watershed as well as relative deciduous broadleaf forest percentage
speaks to the utility of this algorithm. Further research is needed that
couples detailed field observations of physical variables (e.g. soil prop-
erties, hydrological characteristics and land cover) and their influence
on CDOM pathways into river systems.
3.6. Seasonal CDOM variations

The CDOM levels derived from the QAA-CDOM algorithm for the
Volga River showed a clear seasonal variation. This result supports re-
centwork conducted in theMichiganwaters of LakeHuron (i.e. Saginaw
Bay) and the lower Saginaw River, where it was demonstrated that
QAA-CDOM is able to assess seasonal CDOM variations (Zhu et al.,
2012). The five images shown in Fig. 9 of the river mouth area of the
Volga Riverwere acquired inAugust 2004, September 2004 (2), Decem-
ber 2004 andMarch 2005. The five images clearly showed seasonal var-
iation as illustrated by the presence of a large vegetated area as seen in
the August and September scenes. The same area in the image acquired
in December (winter) is displayed as bare soil (e.g. tilled agricultural
fields) or senesced vegetation (e.g. agricultural residue, defoliated
woody vegetation). As typical with a CIR false color composite, areas
of photosynthetically active vegetation are displayed as reddish areas
(i.e. Fig. 9a, b, c) while the same areas appear brown in Fig. 9d. In the
March image, much of the land was snow covered (Fig. 9e).
Correspondingly, the predicted CDOM levels were higher during the
vegetated summer and fall (0.5–2 m−1) and lower during the senesced
winter and spring (0.05–0.5 m−1).

The QAA-CDOM algorithmwas also able to detect the influence of a
significant individual rainfall event within a river. Volga River CDOM
levels were calculated to be 1.3 m−1 on September 18, 2004, which
dropped dramatically to 0.4 m−1 by September 27, 2004 (Fig. 10).
The sharp reduction in CDOM levelswas associatedwith the dilution ef-
fect of a moderate rainfall event (3.1 mm) on day 24 according to pre-
cipitation data recorded at three surrounding locations. It is likely that
it had an increased riverine CDOM levels immediately after this modest
rainfall event. Riverine CDOM levels should decrease to a lower level a
few days after a rainfall event due to a reduction in soil leachates. The
CDOM should increase to a higher level through respiration processes
before next rainfall event. The timing of occurrences of CDOM increases
and decreases are the function of rainfall intensity, rainfall duration, and
drainage area affected (Tian et al., 2012). Our results suggest that the
QAA-CDOM algorithm is indeed capable of monitoring relative CDOM
differences resulting from within season precipitation events.
he land cover data are provided by the UMD AVHRR Global Land Cover Classification.



Fig. 9. CDOM levels near the Volga River mouth from various dates: (a) 08/17/2004, (b) 09/18/2004, (c) 09/27/2004, (d) 12/16/2004, and (e) 03/06/2005.
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Multiple images of the Congo River were also available across dif-
ferent seasons at a single location. This scenario allowed us to evalu-
ate the QAA-CDOM for rivers without clear seasonal changes. Due to
its tropical climate, the Congo River does not experience significant
seasonal change and most of its watershed vegetation is evergreen
rain forest. The Congo River climate is characterized by frequent but
localized rainfall events spawned from transient thunderstorms. The
CDOM variations in the Congo River are mainly associated with
these localized but heavy rainfall events (Fig. 11). For example,
CDOM concentrations in January (3.5 m−1) were 7–10 time higher,
than that in the other months of the same season. Typically, January
in this region has the highest number of transient rainfall events,
which is clearly reflected in the CDOM values. Since the distribution
of thunderstorms is relatively random, CDOM spatial distribution
patterns in the Congo River are highly varied (Fig. 11).

3.7. Potential sensors working with the QAA-CDOM algorithm

QAA-CDOM has the potential to perform well using imagery cap-
tured from other sensors, such as the MODIS, MERIS, and SeaWiFS,
since they acquire reflectance across or near the 4 required wave-
lengths (440, 490, 555, and 640 nm). However, the broader band-
width and more coarse spatial resolutions captured by these sensors,
it remains uncertain if the QAA-CDOM algorithm is directly applicable
to various sensors. For example, SeaWiFS has an average bandwidth of
Fig. 10. Precipitation (mm) recorded and CDOM variations (ag(44
approximately 20 nm,which is twice aswide as the 10 nm bandwidth
of the Hyperion sensor Although it is true that the MODIS and MERIS
sensors do indeed have identical bandwidths across the 4 required
wavelengths, their spatial resolutions are ranged from 260 to 1000 m
as compared to the 30 m resolution of Hyperion. The larger spatial res-
olution would result in a reduction in pixel homogeneity with these
often spatially complex estuarine and coastal waters, and introduce
significant error.

In the future, the QAA algorithm may be applicable to newly
developed sensors and/or platforms (Worldview2, LDCM Landsat 8
and HyspIRI). Worldview2 and Landsat 8 are proposed to be multi-
spectral sensors with the required 4 bands for QAA-CDOM as well
as having a nominal spatial resolution of 30 m. The HyspIRI has all
the spectral and spatial characteristics as that of Hyperion.
4. Conclusions

This study allows us to make four conclusions. First, our results in-
dicate that the QAA-CDOM algorithm in combination with Hyperion
imagery has the potential to assess a broad range of relative CDOM
levels/variations (0.02–7.2 m−1) as demonstrated across 10 major
global rivers. This is significant because only through remote sensing
applications will we be able to routinely monitor changes to rivers
and their estuaries across a broad range of scales.
0), m−1) derived in the estuarine regions of the Volga River.



Fig. 11. CDOM levels in Congo River's channel. The four images were acquired at the same location (center: −6.027726, 12.606468) but different dates (a) 05/13/2003, (b) 01/24/
2004, (c) 10/21/2007, and (d) 04/13/2004. The gray pixels were lands, clouds, or shadows.
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Second, the QAA-CDOM algorithm is able to effectively delineate
CDOM spatial distribution patterns within rivers at global scales.
This remote sensing technology can not only be applied to the detec-
tion of riverine and estuarine CDOM plumes, but also the identifica-
tion of allochthonous and autochthonous CDOM sources, which will
ultimately increase our understanding of riverine carbon cycle
phenomena at global/regional scales.

Third, our results suggest that the QAA-CDOM algorithm can con-
tribute to our growing understanding of how climatic factors influ-
ence CDOM variations. This is made evident by the general trend
that annual CDOM yield decreases as the climate shifts from equato-
rial regions to higher latitudes. Generally, seasonal CDOM variations
are more significant in temperate rivers than in tropical rivers, but
tropical rivers are subject to short-term temporal CDOM changes
largely due to transient, episodic rainfall events.

Last, our results suggest that the QAA-CDOM algorithm is sensitive
to CDOM variation resulting from watershed spatial characteristics
and land cover differences, as made evident by the relationship
between the model outputs with the percentage of forest coverage.
More work clearly needs to be done to test the performance of the
model across a wider range of watershed characteristics and land
cover types.

In summary, our research confirms that it is indeed possible and
likely more accurate to estimate relative CDOM levels via an algo-
rithm that separates CDOM and sediment absorption coefficients.
Overall, we are encouraged by the ability of the QAA-CDOM algorithm
to extract a broad range of CDOM concentrations in rivers and estuar-
ies worldwide, which ultimately will lead to better monitoring of
land–water dynamics and environmental change at global/regional
scales. The reliability and applicability of the QAA-CDOM and similar
algorithms will only increase as data extracted from more detailed
field measurements of biophysical parameters are verified against
model output worldwide. The outcome of this research marks yet
another step toward our ultimate goal to gain a better understanding
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of land–water dynamics through coupling both terrestrial and
water-based carbon cycling models via remote sensing methodologies.
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