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The uncertainties involved in remote sensing inversion of CDOM (Colored Dissolved Organic Matter)
were analyzed in estuarine and coastal regions of three North American rivers: Mississippi, Hudson,
and Neponset. Water optical and biogeochemical properties, including CDOM absorption and above-sur-
face spectra, were collected in very high resolution. CDOM'’s concentrations (ag(440), absorption coeffi-
cient at 440 nm) were inverted from EO-1 Hyperion images, using a quasi-analytical algorithm for
CDOM (QAA-CDOM). Uncertainties are classified to five levels, in which the underwater measurement
uncertainty (level 1), image preprocessing uncertainty (level 4) and inverse model uncertainty (level 5)
were evaluated. Results indicate that at level 1, in situ CDOM measurement is significant with 0.1 in
the unit of QSU and 0.01 in the unit of a,(440) (m™'). At level 4, surface wave is a potential uncertainty
source for high-resolution images in estuarine and coastal regions. The remote sensing reflectance of
wavy water is about 10 times of the truth. At level 5, the overall uncertainty of QAA-CDOM inversion
is 0.006 m~", with accuracy R* = 0.77, k = 1.1 and RMSEj¢ = 0.33 m™ . The correlations between uncertain-
ties and other water properties indicate that the large uncertainty in some rivers, such as the Neponset
and Atchafalaya, might be caused by high-concentration chlorophyll or sediments. The relationships
among the three level uncertainties show that the level 1 uncertainty generally does not propagate into
level 4 and 5, but the large uncertainty at level 4 usually introduce large uncertainty at level 5.
Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing,

Inc. (ISPRS).

1. Introduction

Colored dissolved organic matter (CDOM) is the optically mea-
surable component of dissolved organic matter in water. CDOM in
nature mostly come from decaying vegetation detritus and also
sometimes related to anthropogenic releasing (Bukata et al,
1995; Nelson and Siegel, 2002). Knowing CDOM concentration
and distribution in riverine, estuarine and coastal regions has
important implications to both terrestrial and aquatic ecosystems,
such as tracing dissolved organic carbon (DOC) (Chen et al., 2004;
Ferrari et al., 1996; Stedmon et al., 2006; Vodacek et al., 1997),
monitoring water quality and aquatic photosynthesis (Bukata
et al., 1995; Kirk, 1994), and assessing terrestrial carbon transpor-
tation to coastal water (Blough et al., 1993; Del Castillo et al., 1999;
Nelson et al., 2010).

Remote sensing provides a feasible approach to assess CDOM at
large spatial scale. However, compared with the other two major
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ocean-color components, chlorophyll (CHL) and non-algal particles
(NAPs), the remote sensing inversion of CDOM is not fully investi-
gated. Large uncertainties are remained in many aspects of CDOM
inversion, especially for complex waters in estuarine and coastal
regions. (1) The uncertainty of field CDOM measurement. Small
sampling size and narrow CDOM range usually limit algorithm val-
idations and uncertainty assessments. Several recent published
studies have used a few to a dozen in situ discrete samples to val-
idate the inversion results without uncertainty analysis (Brando
and Dekker, 2003; Ortega-Retuerta et al., 2010). In addition, most
of previous estuarine and coastal CDOM studies and their valida-
tions were carried out in the sites where the spatial variation of
CDOM is limited. Therefore the algorithms, parameters, coeffi-
cients, as well as the uncertainty assessment concluded from one
site could be inappropriate and hence produce large uncertainties
when transferring to other sites. (2) The uncertainty of satellite
imagery. High spatial resolution images in estuarine and coastal re-
gions contain more spatial variation and uncertainties than those
coarse images for open sea ocean color studies (e.g., 1km for
SeaWiFS and MODIS) (Carder et al., 1999; Garver and Siegel,
1997; O'Reilly et al., 1998; Siegel et al., 2002). Because of
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complicated freshwater and marine mixing environment, the pos-
sible uncertainty sources include the wind-driven glints, boat-dri-
ven whitecaps, and anthropogenic release, etc., which arise more
often in estuarine and coastal regions than in open sea. These
uncertainties usually vary in relatively small space and hence are
unseen from low resolution images due to mixed pixels, but they
will be revealed by high-resolution images and hence bring inter-
ferences and new challenges for ocean-color remote sensing inver-
sion. (3) The uncertainty of CDOM algorithm. Inversion algorithms
have not been well developed for CDOM, particularly for complex
riverine and coastal waters. Most of previous algorithms are in
empirical or oriented to simple CDOM-poor waters in open sea,
where CDOM is often taken as the by-products of phytoplankton
and sediments are generally in low concentration (O'Reilly et al.,
1998; Sathyendranath et al., 1994). When these simple algorithms
are applied to complex CDOM-rich waters in estuaries and coasts,
where CDOM, CHL and sediments are all independent and likely in
high concentration, they tend to bring considerable uncertainties
(Yu et al,, 2010; Zhu et al.,, 2011). Therefore it is really necessary
to design new algorithms and evaluate their uncertainty for com-
plex waters.

In fact, remote sensing inversion of CDOM in estuarine and
coastal regions is extremely complicated. Uncertainties will be
generated, propagated, and accumulated in the processes of
in situ measurement, acquisition and preprocessing of satellite
images, and all steps of inverse algorithms. The former uncertainty
analyses of remote sensing inversion of ocean color components
often focused on one level (Antoine et al., 2008; Lee et al., 2010;
Melin, 2010; Wang et al., 2005). For example, Antoine et al.
(2008) discussed the uncertainties introduced by satellite sensors,
and Lee et al. (2010) discussed the uncertainties induced by QAA
algorithm. In our study, we suggest classifying CDOM inversion
uncertainty to five levels according to their order, including under-
water measurement uncertainty (level 1), above-surface measure-
ment uncertainty (level 2), satellite measurement uncertainty
(level 3), image preprocessing uncertainty (level 4), and inverse
model uncertainty (level 5) (Fig. 1). The level 1 is the uncertainty
of measured CDOM concentration via conventional underwater
optical instruments, such as a fluorometer or spectrophotometer.
Actually any instrumental measurement will introduce uncertain-
ties depending on random noise, instrumental calibration errors,
and instrumental accuracy, etc. As far as we know, there are no
studies on the uncertainty analysis of in situ CDOM measurements.
Both level 2 and 3 uncertainties are related to spectral measure-
ments. Level 2 is the uncertainty of above-surface spectral mea-
surement of water. All in-water components, CDOM, chlorophyll,
non-algal particles, and water conditions, such as surface wave
and white caps, will contribute the above-surface spectrum uncer-
tainties. Level 3 is the uncertainty of satellite spectral response,

similar to the level 2 but adding the atmospheric effect. Level 4
and 5 are model uncertainties. Level 4 is the uncertainty contained
in the input data to inverse models, e.g., remote sensing reflec-
tance. This uncertainty is generated by satellite images preprocess-
ing, such as atmospheric correction and water surface reflectance
removal. The uncertainty in level 5 is generated by the inversion
model itself. Level 4 and 5 uncertainties are often known as the er-
rors between the model-derived estimates and the ground truth.
Moreover, these 5-level uncertainties are not fully independent
of each other - uncertainties at low levels may propagate to high
levels.

The objective of this study is to evaluate the uncertainties in-
volved in the whole process of remote sensing inversion of CDOM
for estuarine and coastal waters, using our best solutions (high-
resolution field measurements, high-resolution images, and high
accuracy algorithm). We focused on the evaluation of uncertainties
on the level 1, 4 and 5. These evaluations were based on recent
data acquired from three rivers: the Mississippi, Hudson and Nep-
onset, as well as their adjacent sites. We will evaluate level 1
uncertainties by analyzing the in situ data, the level 4 uncertainties
by comparing satellite acquired (after atmospheric corrections)
and the field measured spectra, and level 5 uncertainties by com-
paring the model derived and field measured CDOM concentra-
tions. The impacts of low level uncertainties on the high levels
will be discussed in the last section.

2. Data collections and processing
2.1. Study sites

Our study sites locate in estuarine regions of three river systems
in U.S. - the Mississippi site (including Atchafalaya River, Missis-
sippi River and their plumes, and the Northern Gulf of Mexico),
the Hudson site (including the Hackensack River, Passaic River,
Newark Bay, Upper/Lower New York Bay, Raritan River, Raritan
Bay, and Hudson River), and the Neponset Site (including the Nep-
onset River and Dorchester Bay), see Fig. 2. The Mississippi River,
with length 3730 km, is the longest river and has the largest drain-
age basin in the North America, and the length of the Hudson River
and Neponset River are 507 km and 47 km, respectively. Due to the
large discharge and massive sediment transportation, the Missis-
sippi and Atchafalaya estuaries show large sediment plumes. The
estuaries of Hudson and Neponset are adjacent to highly urbanized
areas, New York City and Boston, respectively. In this study we use
the three rivers as the representatives of river systems at different
scale - large, medium, and small. They locate in different climate
zones: the Mississippi and Atchafalaya estuaries are in sub-tropical
region and the Hudson and Neponset are in temperate region with
high seasonal variations.
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Fig. 1. Uncertainties and their levels remote sensing inversion of CDOM. The first 3 levels are related to the field measurements of CDOM, reflectance above water surface and
at the top of atmosphere. Each factor contained in the dashed box contributes the major uncertainties measured by the corresponding instrument.
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Fig. 2. Maps of three study sites, including watersheds, main rivers, cruise tracks (ECOShuttle), discrete sampling locations, above-surface spectrum locations (ASD), and EO-1
Hyperion scenes. (a) Watersheds and Rivers’ main channels; One Hyperion image (11/04/2009) acquired in the Neponset watershed (b) 2006 and 2010 Cruises in Hudson
Site; (c) 2009 Cruise in Neponset Site. Refer to (Zhu et al., 2011) for the 2007 cruise map in Mississippi site and other images. Data between ‘Begin’ and ‘End’ tags were used to
analyze level 5 uncertainties. The end point (not shown) of Hudson River is upper away from the begin point about 55 km.

2.2. Field measurements and image acquisition

We have conducted a number of field measurements in the
three rivers in the past 5 years. Generally there are three types of
in situ measurements: underwater measurements by ECOShuttle
or Mini-Shuttle, discrete sample measurements by conventional
instruments carried out in shipboard or land Labs, and above-sur-
face spectral measurements by spectrometers. The ECOShuttle is a
towed, undulating vehicle based on the Nu-Shuttle manufactured
by Chelsea Instruments. It carries instrumental sensors for measur-
ing a number of water properties — depth, temperature, salinity,
attenuation and absorption coefficients (by AC-9), CDOM, CHL,
OBS (Optical Backscattering), zooplankton, etc. CDOM is measured
by a SeaTech CDOM fluorometer. The Mini-Shuttle, usually used in
small rivers or shallow water in short cruises, is similar to

ECOShuttle but with fewer sensors mounted. ECO/Mini-Shuttle is
capable of measuring with very high frequency (~0.3 s) and hence
acquiring a very high resolution dataset for each above water prop-
erty. The discrete samplings during cruises were conducted con-
currently with the ECO/Mini-Shuttle’s measurements at about
10-30 min interval, and then the bottled samples were analyzed
in labs for CDOM calibration and DOC measurement. A spectrora-
diometer (ASD FieldSpec® 3) was used to measure water above-
surface reflectance, upwelling radiance, and sky radiance. Water
spectra (350-2500 nm, 1 nm interval) were measured with high
frequency (~10 s-2 min). To derive the remote sensing reflectance,
the downwelling irradiance was also measured by an Ocean
Optics® Jaz spectrometer module in company with the ASD
measurement. The date, instrumentation, and sampling number
of each cruise used in this study are listed in the Table 1. More
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details of field measurements can be referred to our previous
works (Chen, 1999; Chen and Gardner, 2004; Gardner et al.,
2005; Huang and Chen, 2009; Zhu et al., 2011).

In this study we used satellite images acquired by EO-1 Hype-
rion. Hyperion provides hyperspectral imagery capable of resolving
220 spectral bands (from 0.4 to 2.5 pm) with 10 nm bandwidth at
30 m spatial resolution. Both spatial and spectral resolutions are
suitable for remote sensing inversion in estuarine and coastal re-
gions, where river channels could be as narrow as a few 100 m
wide and waters are fairly complicated and highly varied. The
Hyperion images were requested to cover the three study sites
and best available to match the field measurement time for each
cruise (see Table 1 and an example shown in Fig. 2). Some past
images were also retrieved from USGS archives. Most of these
images are cloud free. A few partly cloudy images were used if
water bodies are cloud free.

2.3. Data calibration and preprocessing

ECO/Mini-Shuttle sensors measure each ocean color component
(CDOM, CHL and NAP) in voltage. Relationships between voltage
(V) and each concentration unit (CDOM: QSU, CHL: mg/m3, and
NAP: FTU) are known as good linear correlations (Chen, 1999; Chen
and Gardner, 2004; Gardner et al., 2005; Huang and Chen, 2009).
For example, in Mississippi site, they can be converted to QSU,
mg/m3, and FTU by QSU=30V.om mg/m3=10V., and
FTU = 500V,ps, respectively. While in ocean color science, the
absorption coefficient of CDOM at 440 nm, a,(440), is often taken
as the indicator of CDOM concentration. The fluorescent intensity
of CDOM needs to be converted to ag(440) for parameter calibra-
tion and result validation. Similarly, the conversion of CHL and
NAP are also necessary if we want to compare them with CDOM
and to know their contributions to water’s total absorption coeffi-
cients (directly measured by AC-9). In this study, we used the
following relationships to make the conversion.

(1) According to all in situ discrete sample data measured in our
three sites, relationship between CDOM QSU and a,(440) is
formulated as:

a,(440) = 0.122 x [QSU|**** (1)

(2) According to Bricaud et al. (1995), relationship between
chlorophyll's concentration mg/m® and a,,(440) is formu-
lated as:

,n(440) = 0.0403 x [mg/m’]

0.668 2)
(3) Given the above two relationships, according to AC-9 and
OBS data continuously measured by ECOShuttle, relation-
ship between sediment concentration (FTU) and ay(440)
(m™1) is set by
a4(440) = 0.018 x [FTU] (3)

Hyperion Level 1G images went through a long and complicated
preprocessing including detector correction (replacing the missing
lines, destriping, denoising), atmospheric correction, water surface
reflectance removal, and required bands calculation for inverse
algorithms. Eventually we obtain the remote sensing reflectance

Table 1

(Rys) as the input data. The details of in situ data conversion and
image preprocessing can be referred to (Zhu et al., 2011) and
(Zhu and Yu, in press).

3. Methods
3.1. Evaluation of uncertainty

In a science and engineering notation, uncertainty means the
difference between a numerical value that we obtained and that
it actually should be. Sometimes it is also called the error between
the measurement and the truth. Physically we are unable to obtain
the actual truth but always obtain the results returned by instru-
ments or techniques used to make the measurements. Therefore
the truth and hence the uncertainty can be evaluated by statistical
analysis of a number of measurements. According to the Joint Com-
mittee for Guides in Metrology of BIMP (Bureau International des
Poids et Mesures), there are two types of uncertainty, type A and
type B. The type A standard uncertainty can be calculated by

n Y

where X is the expectation (arithmetic mean or average) of a quan-
tity x (JCGM, 2008) and n is the sample size, i.e., the number of
observations. Evaluation of Type A uncertainty requires that the
measurements are repeatable, that is, measurement should be con-
ducted in the same conditions and the same object. The Type B eval-
uation of standard uncertainty is based on other knowledge rather
than the statistics. Although there is not always a simple correspon-
dence, Type A and Type B uncertainties can be thought as the
random and systematic errors, respectively. To evaluate the
relationship between the standard uncertainty and x itself, the
normalized uncertainty is calculated by

)

The above uncertainty quantifications for measurement can be
similarly applied to model uncertainty of remote sensing inver-
sions. Comparing the estimated value from inversion with in situ
measure, we can calculate model uncertainty of inversion
algorithms.

Upr =

X\‘E

B Z?:] (X?erived _ x;ﬂeasured)2
= \/ o (6)

With respect to the real measurements that are generally dis-
tributed around the true value within a specific range, there is an-
other type of normalized uncertainty expressed by

Up
B max (xmeasured) —min (Xmeusured)

The expressions of other normal statistical variables for uncer-
tainty related quantification, such as the error, absolute mean
error, absolute mean error percentage, errors, SD (Standard
Deviation), RMSE, RMSE,, can be referred to I0OCCG (2006) and

(7)

Uaz

Cruise date and the amount of raw water samples collected in each cruise, and EO-1 Hyperion images acquired around the cruise date (in the same year of each cruise).

Cruise, year Instruments Date Shuttle Discrete Spectral Hyperion date
Hudson, 2006 ASD, ECOShuttle 10/23-10/25 230,000 ~40 2900 09/07/2004, 12/3
Mississippi, 2007 ASD, ECOShuttle 08/24-08/31 1,000,000 150 20,000 08/27, 09/04
Neponset, 2009 ASD, MiniShuttle 09/25, 11/04 45,000 25 1500 11/04

Hudson, 2010 ASD, JAZ, ECOShuttle 07/28-08/07 1,000,000 ~150 19,000 07/31, 09/02, 10/06
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Zhu et al. (2011). It is worth to mention that the Egs. 4 and 6 can be
expressed by SD/n®> and RMSE/n®>, indicating that the uncertainty
is highly related to sampling size.

3.2. Qaa-cdom

In this study, the QAA-CDOM algorithm (Zhu and Yu, in press)
was employed to estimate CDOM concentration ag(440). QAA-
CDOM was developed based on Lee’s QAA algorithm (Lee et al.,
2002, 2007) and its extension, QAA-E by our earlier research
(Zhu et al., 2011). QAA is a quasi-analytical level-by-level algo-
rithm combining a series of empirical, semi-analytical, and analyt-
ical algorithms. In QAA, only R, at several wavelengths (410, 440,
490, 555, and 640 nm) is required as input data, and at multiple
levels, the algorithm outputs r,s, absorption and backscattering
coefficients of water (a, bpp) (total), chlorophyll (apn, bpr) and
CDM (agg, bg) (CDOM and NAP together) for the four wavelengths.
QAA has been tested and applied in many studies (Chang and Gou-
1d, 2006; Le et al., 2009; Lee and Carder, 2004; Zhan et al., 2005).
QAA’s output age(440), however, has been proven to be too rough
to represent ag(440) in estuarine and coastal turbid waters (Zhu
et al,, 2011). Therefore, QAA’s extension, QAA-E, was developed,
in which ay(440) is exactly derived using either ag-based or
ag-based methods. Recently, QAA-E has been further improved to
QAA-CDOM (Zhu and Yu, in press) in which a QAA’s original func-
tion and a few parameters have been optimized by integrating syn-
thetic data, high spatial resolution in situ data from our Mississippi
cruise, and NASA bio-Optical Marine Algorithm Dataset (NOMAD)
collected globally during the last decades. QAA-CDOM was vali-
dated for excellent inversion accuracy (<25%) and being suitable
for a wide range of CDOM variation (0.01-13.3 m™!). Recently it
also has been successfully applied to estimate CDOM distributions
and dynamics in estuarine and coastal regions of 10 global major
rivers by using EO-1 Hyperion imagery (Zhu et al., 2013).

4. Results and discussion

The following will evaluate the uncertainty contained in field
CDOM measurements (level 1), satellite images preprocessing
(level 4) and remote sensing inversion models (level 5) respectively.
We will also discuss the possible reasons of uncertainty at level 5
and show if uncertainties are propagated between different levels.

4.1. Uncertainty of in situ measurements

The best way to assess the measurement uncertainty is to sta-
tistically evaluate repetitive measurement. Because it is difficult
to use moving ECO/Mini-Shuttles to implement a rigorous repeti-
tive measurement, we used multiple measurements, which were
taken in adjacent space and consecutive time along the cruise, to
represent the repetitive samples for uncertainty assessment. We
assume within a very small extent, water is well mixed and the
water properties are generally unchanged. This assumption is valid
because ECO/Mini-Shuttles can take near-continuous measure-
ments in very short sampling interval (~0.2-0.3 s).

We first need to determine in what extent water can be re-
garded as the ‘same’. Due to stratification, vertical variations of
ocean color components along water depth z are more significant
compared with the horizontal variations, namely, in the x and y
directions. Therefore when we set the extent of the ‘same’ water,
the range of z is much smaller than x and y, making the water vol-
ume as a very thin layer. Here we use the distance d along cruise
tracks to represent horizontal dimension as a substitute for the x
and y pair. For instance, d=10m and z=1.35-1.45 m represent
the water samples within a 10 m distance along the track and

water depth from 1.35 to 1.45 m. Fig. 3 shows the sampling profile
along the Neponset cruise track. In a very small space
(10 m x 0.1 m), MiniShuttle measured 11 samples, illustrated in
the zoom-in window.

We then selected 10 datasets from three study sites for assess-
ing measurement uncertainty. Each dataset contains sufficient
water samples (no less than 10) in a spatial extent as small as pos-
sible, particularly constrained in a thin water layer to minimize the
stratification effect. These selected datasets all passed a normal
distribution test, the widely-used Shapiro-Wilk test, to guarantee
they contain random uncertainty only. As the suggestion given
by the Shapiro-Wilk test, if p >0.05, we cannot reject the null
hypothesis that the tested samples are normally distributed. The
results (Table 2) indicate that each dataset is likely from a normal
distribution. These guaranteed observations in each dataset did not
cross thin layer and stratification effect was little. We also tested
the correlations between the sampling depth and CDOM concen-
tration to confirm the water is well-mixed. The results show that
except the Neponset and Boston Bay datasets, others do not show
strong correlations. Nevertheless, we still keep the two Neponset
datasets for comparison with other sites.

The average uncertainty for all 10 datasets, calculated by the
Eq. (4), is 0.00288 volts. If we convert it to QSU by multiplying
30, we get 0.086 QSU. This value, closing to 0.1 QSU, implies that
in the unit of QSU, underwater CDOM measurement is accurate to
the tenths place. If we further convert it to absorption coefficient
using Eq. (1), we obtained that the uncertainty of a,(440) is
0.039 m~'. Similarly, it indicates that absorption coefficient is
accurate to the hundredths place. If we use normalized uncer-
tainty given by Eq. (5), then this uncertainty will be independent
of unit. In this study, the average normalized uncertainty of 10
datasets is 0.26%, indicating that the measures of CDOM in situ
concentration are subject to 0.26% uncertainty. If we exclude
the Neponset data, then the uncertainties measured in volts,
QSU, and absorption coefficient are 0.00067, 0.02 and 0.019,
respectively, and their normalized uncertainty is 0.11%. The above
uncertainties are sourced from in situ CDOM measurements in
volts using fluorometer. Other instruments and different measur-
ing conditions, such as using conventional spectrophotometers in
labs, may result in different uncertainty magnitude. For example,
photometric accuracies of Cary-60 and DU-800 spectrophotome-
ters are both +0.005 Abs, which equals absorption coefficient
+1.15m! if using 10 mm cuvette. This instrument uncertainty
may lead to large normalized uncertainty if measuring very
low-CDOM waters. Nevertheless, we do think above resultant
uncertainties are representative for real-time in situ CDOM mea-
surement using fluorescent property.
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Fig. 3. The ECOShuttle (MiniShuttle) track profile underwater, in the Neponset site.
The zoom-in window shows an example that when the shuttle was moved up (the
left column) and down (the right column), about 11 samples were measured, within
a 10 m = 10 cm space.
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17

CDOM measurement uncertainties (level 1) of 10 datasets over three study sites. Data were measured from a space d x Az, where d and z are sampling distance and depth,
respectively, see Fig. 3. For distances in Hudson regions (set 1-5), distance is so short that GPS cannot measure. n is sample size, p is the probability of normality given by Shapiro-

Wilk test, R is the correlation coefficient between depth and CDOM.

Set# Location d (m) z (m) n p CDOM (V) R Uy [/%}
Max Min Max Min Mean

1 Hudson <0.1 4.84 4.82 18 0.11 0.7399 0.7277 0.7350 -0.33 7.93E-4 1.08E-3
2 Passaic <0.1 0.73 0.62 39 0.09 2.0855 2.0708 2.0801 0.20 5.61E-4 2.70E-4
3 Hackensack <0.1 0.98 0.79 38 0.05 1.7680 1.7534 1.7608 0.55 6.27E—4 3.56E—-4
4 Raritan <0.1 1.00 0.91 38 0.06 1.0586 1.0073 1.0486 -0.32 1.27E-3 1.21E-3
5 Newark Bay <0.1 0.87 0.68 28 0.07 1.0622 1.0537 1.0584 0.40 4.20E-4 3.97E-4
6 Neponset 29 24.52 20.15 27 0.12 1.6654 1.2894 1.4690 -0.84 2.27E-2 1.55E-2
7 Boston Bay 76 412 3.14 11 0.31 0.3594 0.3455 0.3531 -0.94 1.53E-3 4.33E-3
8 Mississippi 51 0.21 0.17 11 0.07 1.1856 1.1815 1.1841 0.39 4.52E-4 3.82E-4
9 Atchafalaya 100 1.64 1.34 25 0.73 0.1893 0.1864 0.1878 0.14 1.53E-4 8.13E-4
10 Gulf of Mexico 142 26.5 22.7 20 0.10 0.1449 0.1383 0.1368 0.15 2.61E-4 1.91E-3

‘»-. ’4.'. I
-

’ Newark Bay

Fig. 4. EO-1 Hyperion images acquired in Hudson site. (a) Hackensack River, Passaic River, and Newark Bay, 07/31/2010, with wind speed 6.8 MPH, sun azimuth 134, sun
zenith 61, viewing angle 19. (b) The same area as in (a) but acquired in 10/06/2010, with wind speed 7.9 MPH, sun azimuth 155, sun zenith 41, viewing angle 11. (c) Raritan
Bay, 07/31/2010. (d) Raritan Bay, 12/03/2006, wind speed 6.6 MPH, sun azimuth 158.4, sun zenith 24.2, viewing angle —8.8. Most of water surface in the image 07/31/2010
illustrates not only much higher reflectance but also a more chaotic pattern than those in other two images.
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Fig. 5. (a) Mean absolute error (MAE) and (b) uncertainty in level 4, calculated by comparisons between the ASD measured and Hyperion measured spectra (after
atmospheric correction). The curves plotted in lines (river names marked by =) correspond to those pixels with very high reflectance (surface waves).

4.2. Uncertainties of satellite images

In ocean color remote sensing, water’s remote sensing reflec-
tance R, is the primary information serving for algorithm inver-
sion. When it is fed into algorithms, uncertainties contained in
R,s will propagate into all intermediate variables as well as the final
results. In this study, R;s is the only input data required by QAA-
CDOM, so firstly we need to examine the uncertainties carried by
R:s, which is defined by:

L
Rrs :F:

8)

where L, is water-leaving radiance and E, is the downwelling
spectral plane irradiance incident onto the water surface. E; is able
to be directly measured (in this study, E; was derived by using
either ASD FieldSpec over a reference panel or directly measured
by OceanOptics Jaz with a cosine receptor) or simulated by some
models like MODTRAN. However, the difficulty of directly measur-
ing L,, impedes calculating R,s from these two measures. We have
to estimate L,, from the sensor-received signal by removing the im-
pact of other non-water-leaving factors, such as the radiances con-
tributed by atmosphere, sun glint, sky glint, and whitecaps. The
atmospheric path radiance can be removed by atmospheric correc-
tion. Based on simulating atmospheric states, a number of atmo-
spheric correction schemes have been developed for retrieving R,.
Here R; is the total water reflectance which consists of the portion
contributed by water surface and the portion contributed by water
column. Comparisons and evaluations of these schemes also have

Table 3

been reported by former studies (Anderson et al., 2002; Bulgarelli
and Zibordi, 2003; Cairns et al.,, 2003; Gao et al., 2000). Some
schemes aiming to correct surface interference have also been pro-
posed and reviewed (Kay et al., 2009; Mobley, 1999), but they may
not be suitable for estuarine regions or efficient for high resolution
images. This section we will show some new scenarios of surface
states of complex water seen from Hyperion images. And these
scenarios may bring large uncertainties into inverse model
(level 5).

In this study, the uncertainties and errors of R; were calculated
by comparing the derived R, from Hyperion (after atmospheric cor-
rection using ENVI's FLAASH) and the measured R, by ASD, which
are taken as the true values of R,. Because ASD is with a narrow
field-of-view and its measurement is very close to water surface,
the impacts of atmospheric and some surface factors (e.g., sun glint
and whitecaps) are basically negligible. In addition, we excluded
those ASD data measured over the waters with obvious waves or
whitecaps. Note that both ASD and satellite sensor are unable to
avoid the surface radiance (L,) caused by the sky radiance, the
uncertainty of L, is not included in this study. More discussion of
L, can be referred to (Kay et al., 2009; Mobley, 1999).

The Fig. 4 shows that high resolution satellite images may con-
tain some uncertainties. Fig. 4(a) (Hackensack, Passaic and Newark
Bay) and (c¢) (Raritan Bay) are both from the Hyperion image
acquired on July 31, 2010. In this image, water shows a very com-
plex and chaotic pattern, and a very high reflectance. This is differ-
ent from the general experience observed from remote sensing
images that water should be slowly varied and dark. The abnormal

Image preprocessing uncertainty (level 4) using FLAASH. The values marked by star symbols are the results calculated from strong wave areas. The values in the ‘Err’ columns
multiple 100 are the error percentages. The Erry and Errgg are the mean value of 4 bands (440, 490, 555, 640 nm) and 49 bands (426-915 nm) of Hyperion sensor.

Location Errag Erry Err (440) Err (490) Err (555) Err (640) Upgo Upg U, (440) U, (490) U, (555) U, (640)
Neponset 0.128 0.654 1.121 0.655 0.482 0.356 0.009 0.014 0.021 0.013 0.014 0.009
Hackensack 0.119 0.303 -0.112 0.149 0.464 0.711 0.024 0.024 0.022 0.021 0.026 0.027
Hackensack* 2.235 3.430 5.550 3.412 2.501 2.528 0.089 0.095 0.093 0.085 0.103 0.098
Passaic -0.433 -0.418 -0.801 -0.618 —0.286 0.034 0.025 0.024 0.025 0.024 0.024 0.022
Passaic* 3.370 3.760 5.126 3.193 2.982 3.740 0.136 0.135 0.128 0.119 0.144 0.147
Newark* 9.566 8.551 10.237 7.938 7.461 8.568 0.161 0.168 0.163 0.153 0.188 0.170
Hudson 1.579 3.485 5.606 3.212 2.899 2222 0.011 0.019 0.026 0.018 0.021 0.011
Atchafalaya -0.219 —0.080 —-0.057 —-0.153 —0.058 —-0.053 0.018 0.012 0.013 0.014 0.011 0.011
Average 0.235 0.789 1.151 0.649 0.700 0.654 0.017 0.019 0.021 0.018 0.019 0.016
Average* 5.057 5.247 6.971 4.848 4315 4.945 0.128 0.109 0.128 0.119 0.144 0.138
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Table 4

Inverse model uncertainty (level 5) using QAA-CDOM and EO-1 Hyperion images at 6 sites.
Location n Measured Derived Ua Uag Uaz R? k Err Err Ertiog RMSE  RMSEjog

Min Avg Max Min Avg Max Mean Abs mean Mean

Neponset 1143 057 098 153 009 047 142 0.0179 0.0183 0.0189 -0395 0447 -0.488 0.494 —-0.346 0.607 0.426
Hackensack 1849 094 1.16 143 017 135 3.01 0.0126 0.0109 0.0256 0.049 1.162 0.171 0.382 0.027 0.540 0.217
Hudson 3857 041 075 0.87 0.13 0.28 0.68 0.0077 0.0103 0.0167 0.098 0374 -0.624 0.625 —-0.439 0479 0453
Passaic 547 1.01 128 142 058 1.06 196 0.0156 0.0121 0.0403 -0.086 0.824 -0.168 0.268 —-0.096 0386 0.152
Atchafalaya 2550 2.60 267 270 217 329 498 0.0177 0.0066 0.1733 0.013 1.231 0.230 0.255 0.082 0.896 0.117
Newark 592 0.75 080 087 072 114 195 0.0172 0.0215 0.1424 0.054 1432 0.430 0435 0.146 0419 0.171
All 10,538 041 134 270 0.09 131 498 0.0061 0.0046 0.0026 0.77 1.102 -0.180 0.450 -0.171 0.622 0.330
Average 1756 1.05 127 147 064 127 233 0.0148 0.0133 0.0695 -0.045 0911 -0.075 0410 -0.104 0.555 0.256

reflectance can be seen by comparing them with the images which
cover the same regions but were acquired at different dates. In
Fig. 4(b) (10/06/2010) and (d) (12/03/2006), water reflectance is
relatively low and there are no any abnormal patterns. The sun glint
reflected by surface waves caused these high-value pixels. The local
and irregular wind probably is the major factor that makes these
waves. In addition, the river’s depth, shape, and topography around
are all related factors that modulate the waves. Here we do not in-
tend to explore the exact reasons of these waves; instead, we would
like to evaluate the reflectance uncertainties made by them.

The results (Fig. 5 and Table 3) show that surface waves signif-
icantly magnified the errors and uncertainties of R,. For each site,
about 10 samples were used and samples were obtained with
some spatial intervals. For non-wave waters, the average error over
49 visible bands is around 23.5%, and for the 4 bands used by QAA-
CDOM, the error is about 78.9%. Among the 4 bands, the error in

440 nm is relatively larger than the others. In general, the errors
are significant even for non-wave measurements. Comparatively,
the errors and uncertainties produced by waves are always about
5-10times of the non-waves (7-8 times of the ASD truth). The
quality of R, with so large uncertainty prohibited the image being
used for remote sensing inversion.

Although the effects of wind-driven waves can be partly cor-
rected or avoided if we know the wind speed and solar-viewing
geometry, for a specific satellite image, it needs to assume that
wind speed is a constant through the image scene. This assumption
is valid for open seas. However, for riverine and estuarine waters,
local irregular winds are difficult to monitor or simulate. An alter-
native way of glint correction is assuming signal from near-infra-
red bands should be zero if no glint effect, but unfortunately this
assumption is not applicable to shallow and turbid riverine and
estuarine water. Whitecap from waves and boats is another factor
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Fig. 6. a,(440) derived from Hyperion images vs. the measured water properties and depth: (a) Passaic, (b) Atchafalaya, (c) Hackensack, (d) Hudson, (e) Neponset, and (f)
Newark. CDOM), in legends means QAA-CDOM derived ag(440). The x axis refers to a distance from start point to sampling location along the cruise track (image). Refer to
Fig. 2 for start and end points for each site.
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contributing to high surface reflectance. They often present in high
resolutions images, especially the areas with busy sailing activities,
such as the Hudson estuary, Newark Bay, and Boston Bay.

Therefore, based on the results, satellite images with high
waves contain large uncertainties if surface reflectance is not prop-
erly removed from water-leaving reflectance. The improvement of
atmospheric correction and surface reflectance removal schemes
may decrease the uncertainty generated by water surface, but can-
not solve this problem completely due to the lack of detailed mete-
orological data at high resolution images level. This large
uncertainty suggests avoiding using the Hyperion images with
strong sun glint.

4.3. Uncertainties of inversion model

Four Hyperion images with 6 sites, where the Atchafalaya, Hud-
son, Neponset are from their respective images, and Hackensack,
Passaic and Newark Bay are from the same image in 10/06/2010
for minimum glint, were used for uncertainty analysis of inversion
model. Statistical and uncertainty variables were calculated and
listed in Table 4. Derived and measured CDOM absorption, as well
as the measured CHL, NAP, depth, and salinity, along cruise tracks
at the 6 sites were plotted in the Fig. 6. For comparison, we only
display the data that are both available for in situ ASD and satellite
measurements. Due to the high-resolution field measurements,
each site contains a large amount (~500-3800) of in situ data.
Among the six sites, Uy is around 0.0126-0.0179 with mean
0.0148, but it in the Hudson river is relatively lower (0.0066) due
to the large sample size (3857); the U,; in the Atchafalaya river
is relatively lower due to the large mean value (2.67), but its Uy,
is relatively higher due to the narrower range (2.60-2.70). These
results indicate that the sample sizes, mean values and ranges all
have potential impacts on the evaluations of level-5 uncertainty
in different aspects.

The inverted results show that QAA-CDOM performances well
with accuracy (Errieg = —0.171). The average of derived ag(440) is
1.31, as a comparison to the average of measured a,(440)=1.34,
giving an error percentage of 2.24%. The errors from QAA-CDOM
algorithm are positive in Hackensack, Atchafalaya and Newark
(Ermieg are 0.027, 0.082 and 0.146), and negative in Neponset, Hud-
son and Passaic (Errg are —0.346, —0.439 and —0.096). Overall,
The RMSEq = 0.33 is close to the result of inversion using ASD data
in early research (RMSEog ~ 0.3, (Zhu et al., 2011)). For each site,
the correlations between the derived and the measured ag(440)
were calculated and indicated by R? (regression, Type II) and slope
k (the intercept b was set 0). The results show that for each site, the
correlations are not significant but slopes are generally good. In
Hudson, Neponset and Passaic, k < 1 indicates a4(440) were under-
estimated and in the other three sites, a,(440) were overestimated.
For the whole six sites, R =0.77 and k = 1.1, with b = 0, indicating
QAA-CDOM performs very well (Fig. 7).

Table 5
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Fig. 7. QAA-CDOM derived vs. the Shuttle measured ay(440) in six study sites. The
number of data point used is 10,538, but they are displayed by randomly
resampled. For all data, R?=0.77 and k= 1.1 with b=0.

The inverse uncertainty is subject to the effect of other water
color components, including chlorophyll and non-algal particles;
meanwhile, it is associated with other water properties or mea-
surement variables. The correlations between the errors (including
AEP) and five variables (CHL, OBS, CDOM, depth, and salinity) were
calculated in Table 5. The results show that there is no single var-
iable that is always highly correlated to inverse errors for all sites.
The CHL are better correlated in the Neponset and Atchafalaya, but
least significant in the Hudson site. The OBS are better correlated in
the Hudson, Passaic, and Atchafalaya, but less in the others. The
CDOM itself also shows some correlations with the inverse uncer-
tainty. For example, the correlation coefficient 0.82 in the Nepon-
set indicates that the higher CDOM concentrations tend to induce
larger errors. The sampling depths have not been seen significantly
correlated with inverse uncertainties. This implies that different
estuarine systems maintain a unique relationship between CDOM
and depth. This leads to the difficulty to infer CDOM at certain
depth from the cumulative CDOM absorption captured by remote
sensing image. The correlations between salinity and errors are
similar to those of between CDOM and errors, since it is known
that CDOM correlates to salinity in estuarine and coastal regions
due to the dilution of seawater. All above results imply that in
some cases chlorophyll is probably the most important and OBS
is the second important factor which brings the uncertainties into
the CDOM remote sensing inversion because they are both ocean
color components that affects underwater light field.

The Type A uncertainties at level 1, 4, and 5 were compared in
the Fig. 8. So far there are no evidences indicating that larger
uncertainties in low levels will positively propagate to higher lev-
els for certain. For example, in the Neponset, Hudson and Atchafa-
laya River, the uncertainties of in situ CDOM (level 1) are relatively
larger, but compared with other sites, the uncertainties of their

Correlation coefficients between five factors (CHL, OBS, CDOM, depth, Salinity) and two errors (error and absolute error percentage).

Error vs. Absolute error percentage vs.

CHL OBS CDOM Depth Salinity CHL OBS CDOM Depth Salinity
Neponset 0.650 0.148 0.817 0.523 0.802 0.423 0.207 0.587 0.370 0.571
Hackensack 0.055 0.089 0.020 0.017 0.032 0.045 0.055 0.032 0.118 0.045
Hudson 0.032 0.505 0.574 0.084 0.536 0.126 0.138 0.095 0.138 0.063
Passaic 0.000 0.465 0.330 0.095 0310 0.032 0.000 0.155 0.077 0.182
Atchafalaya 0.609 0.538 0.179 0.281 0.346 0.636 0.559 0.197 0.288 0.327
Newark 0.395 0.292 0.164 0.467 0.190 0.354 0.270 0.110 0.459 0.138
Average 0.399 0.382 0.440 0313 0.444 0.348 0.274 0.268 0.279 0.286
All 0.089 0.427 0.610 0316 0.430 0.155 0.401 0.499 0.071 0.307
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Fig. 8. Uncertainty comparisons in level 1, 4, and 5 in 6 study sites.

remote sensing observations (level 4) are not correspondingly in-
creased. This is because CDOM only contributes a small fraction
to the remote sensed signals, and the whole information received
by satellite sensors are prone to be affected by other factors, such
as sediments, surface waves, and atmosphere. The results show
that, except in the Atchafalaya River, there are some correlations
between level 4 and level 5 uncertainties in the other 5 sites. This
indicates that for a remote sensing inverse model like QAA-CDOM,
the input data of high uncertainty will produce a highly uncertain
output. The inverted results in the Atchafalaya River indicates that
even the input data is with low uncertainty, the output uncertainty
is still possible to be high. This implies that the complexity of water
itself, for example, the high concentrations of chlorophyll and sed-
iments, as well as the uncertainty of inverse model, will be the ma-
jor sources of uncertainties of the final results. For water in these
cases, we need to further explore the characteristics of its inherent
properties and optimize inverse models.

5. Conclusions

In this study the uncertainties involved in the progress of CDOM
remote sensing inversion were analyzed. We classified them to 5
levels and focused on the level 1, 4, and 5. Our study sites locate
on three estuarine and coastal regions (Mississippi, Hudson, and
Neponset) in the North America. The level 1 uncertainty is the
uncertainty of in situ CDOM measurement. Based on high resolu-
tion in situ data, the uncertainty of field CDOM actually can be rep-
resented as the significant digits of a specific measurement, that is,
if in the unit of fluorescence (QSU), the uncertainty is around 0.1,
and if in the unit of absorption coefficient (m~1), the uncertainty
is around 0.01. The normalized CDOM measurement uncertainty
is 0.26%. There are no significant differences in level 1 uncertainty
for different study sites.

The level 4 uncertainty is related to the satellite remote sensing
and image preprocessing (atmospheric correction). We mainly fo-
cused on the uncertainty caused by surface waves, which has never
been fully investigated before in CDOM remote sensing inversion.
The results show that uncertainty of non-wave reflectance is about
0.8 times of the ground truth, while the surface wave reflectance is
much larger than the non-wave (about 10 times of the truth).
There are no significant differences in level 4 uncertainty for differ-
ent study sites.

As the level 5 uncertainty, the QAA-CDOM output in the six
study sites show that although it may over- or underestimate
a4(440) in each individual site, overall, its accuracy is very excellent
(the error for all average value is 2.24% and RMSE,q is 0.33). The
correlations between uncertainties and other water properties
were analyzed. The results indicate that for some rivers, such as
the Neponset and Atchafalaya, their relatively large uncertainties

are possibly caused by the high concentrations of chlorophyll or
sediments. The relationship among the three level uncertainties
shows that level 1 uncertainties generally do not propagate into
level 4 and 5, but the large uncertainties in level 4 often introduce
the corresponding large uncertainties in level 5. In the other side,
smaller level 4 uncertainties (e.g. Atchafalaya River) do not always
consequently cause smaller uncertainties in level 5. The complex-
ity of water itself and uncertainty of inverse model also have some
impacts on the final derived results.
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