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Improvement in remote sensing techniques in spatial/spectral resolution strength-

ens their applicability for urban environmental study. Unfortunately, high spatial

resolution imagery also increases internal variability in land cover units and can

cause a ‘salt-and-pepper’ effect, resulting in decreased accuracy using pixel-based

classification results. Region-based classification techniques, using an image

object (IO) rather than a pixel as a classification unit, appear to hold promise as

a method for overcoming this problem. Using IKONOS high spatial resolution

imagery, we examined whether the IO technique could significantly improve

classification accuracy compared to the pixel-based method when applied to

urban land cover mapping in Tampa Bay, FL, USA. We further compared the

performance of an artificial neural network (ANN) and a minimum distance

classifier (MDC) in urban detailed land cover classification and evaluated whether

the classification accuracy was affected by the number of extracted IO features.

Our analysis methods included IKONOS image data calibration, data fusion with

the pansharpening (PS) process, Hue–Intensity–Saturation (HIS) transferred

indices and textural feature extraction, and feature selection using a stepwise

discriminant analysis (SDA). The classification results were evaluated with visually

interpreted data from high-resolution (0.3 m) digital aerial photographs. Our

results indicate a statistically significant difference in classification accuracy

between pixel- and object-based techniques; ANN outperforms MDC as an object-

based classifier; and the use of more features (27 vs. 9 features) increases the IO

classification accuracy, although the increase is statistically significant for the

MDC but not for the ANN.

1. Introduction

Timely and accurate information on the status and trends of urban land cover and

biophysical parameters is crucial when developing strategies for sustainable develop-
ment and improving urban residential environmental and living quality (Yang et al.

2003, Song 2005). Developing techniques that enhance our ability to monitor and

map urban land cover are therefore important for city planning and management.

*Corresponding author. Email: rpu@usf.edu

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2011 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01431161003745657

International Journal of Remote Sensing

Vol. 32, No. 12, 20 June 2011, 3285–3308

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
37

 2
8 

Ju
ne

 2
01

1 

mailto:rpu@usf.edu
http://www.tandf.co.uk/journals


One of the most common applications of remote sensing images is the extraction of

land cover information for digital image base maps. Such information is useful to city

governments seeking better planning and management approaches to deal with the

numerous problems associated with increasing urbanization (e.g. urban heat island

and traffic congestion). During the past decade, advances in satellite remote sensing
have included finer spatial (e.g. IKONOS multispectral (MS) images at 4-m resolution

and panchromatic band at 1-m resolution) and spectral resolution (e.g. Hyperion

hyperspectral sensor at 10-nm spectral resolution). The use of high spatial resolution

commercial satellite imagery (e.g. IKONOS) has been shown to be cost-competitive

with traditional aerial photographic surveys for generating digital image base maps

(Davis and Wang 2003). However, the use of high spatial resolution imagery also

poses challenges for urban land cover classification.

Local variance in different environments within an image scene is a function of the
sizes and spatial relationships of the land cover classes. The relatively high local

variance of urban land cover classes presents challenges for automatic classification

using high spatial resolution satellite sensors (Woodcock and Strahler 1987). Because

of the improvement in spatial resolution, land cover classes tend to be represented by

spatial units of heterogeneous spectral reflectance characteristics and their statistical

separability is limited using traditional pixel-based classification approaches.

Consequently, classification accuracy is reduced and the results usually show a ‘salt-

and-pepper’ effect when individual pixels are classified differently from their neigh-
bours. Studies have shown a decrease in land cover classification accuracy associated

with an improvement in image spatial resolution, when other sensor characteristics

are kept unchanged (Townshend and Justice 1981, Latty et al. 1985, Martin et al.

1988, Gong and Howarth 1990, Treitz and Howarth 2000). Classification accuracy is

particularly problematic in urban environments, which typically consist of mosaics of

small features made up of materials with different physical properties (Mathieu et al.

2007). To overcome this problem, region- or object-based classification can be used.

Object-based techniques first use image segmentation to produce discrete regions or
image objects (IOs) that are more homogeneous in themselves than with nearby

regions, and then use these IOs rather than pixels as the unit for classification

(Carleer and Wolff 2006, Blaschke 2010).

An object-based classification strategy can potentially improve classification accu-

racy compared to pixel-based classification for several reasons: (1) partitioning an

image into IOs is similar to the way humans conceptually organize the landscape to

comprehend it (Hay and Castilla 2008); (2) in addition to spectral features, IOs enable

the use of texture and contextual (relationships with other objects) features and some
shape/geometric features (e.g. form, size and geomorphology) (Yu et al. 2006, Hay

and Castilla 2008); and (3) the objects of interest to be extracted from a certain scene

can be associated with different abstraction levels (i.e. different scales) and these levels

can be represented in an analysis system (Kux and Araújo 2008). Previous researchers

have demonstrated the advantages of object-based classification (Ton et al. 1991,

Johnsson 1994, Hill 1999, Herold et al. 2003, Carleer and Wolff 2006, Kong et al.

2006, Marchesi et al. 2006, Yu et al. 2006, Mathieu et al. 2007, Kux and Araújo 2008).

For example, Kong et al. (2006) adopted an object-based image analysis approach
using multifeature information of the IOs and multiscale image segmentation tech-

nology to classify urban land cover information (urban roads, buildings, woods,

farmland and waters) from high-resolution imagery (2.4-m spatial resolution and

four MS bands) in Wuhan City, China. Their experimental results indicated that the
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object-based analysis approach offered a satisfactory solution for extracting the

required information rapidly and efficiently. Yu et al. (2006) used an object-based

detailed vegetation classification with the Digital Airborne Imaging System (DAIS;

four MS bands with 1-m spatial resolution), an airborne high spatial resolution

remote sensing system, at Point Rayes National Seashore Park in northern
California, USA. They demonstrated that the object-based classification overcame

the problem of the salt-and-pepper effects found in the classification results from

traditional pixel-based approaches and thus improved the classification accuracy.

Mathieu et al. (2007) used an object-based classification to map large-scale vegetation

communities with IKONOS imagery in Dunedin City, New Zealand. Although the

approach did not provide maps as detailed as those produced by manual interpreta-

tion of aerial photographs, they found it was possible using the object-based approach

to extract ecologically significant classes and it was an efficient way to generate
accurate and detailed maps.

Our literature review indicates that more work is needed to evaluate object-based

classification approaches with 1–5 m high-resolution imagery, especially the efficiency

of such approaches with regard to urban detailed land cover classification. The follow-

ing problems are addressed in this paper. First, given a relatively high local variance of

urban land cover classes, most existing efforts related to mapping land cover in an

urban environment have focused on mapping several coarse land cover types (e.g. Kong

et al. 2006, Marchesi et al. 2006), and have not adequately used the detailed spatial
information that high spatial resolution imagery can provide for a detailed urban land

cover classification. Second, although some researchers have tested rule-based classi-

fiers (e.g. Santos et al. 2006), most studies have used either the simple classifier (nearest-

neighbour classifier) provided by eCognition software or a traditional parametric

classifier such as the maximum likelihood classifier (MLC) or the minimum distance

classifier (MDC) (e.g. Carleer and Wolff 2006, Marchesi et al. 2006, Yu et al. 2006, Kux

and Araújo 2008). In this study, we evaluate the performance of the non-parametric

artificial neural network (ANN; Gong et al. 1997) classifier in addition to the traditional
MDC for urban detailed land cover classification using high-resolution image data.

The ANN was tested with both pixel- and object-based classification units, while MDC

was tested with object-based data only. The ANN was selected as a classifier because it

is a non-parametric and non-linear algorithm. ANN is expected to make efficient use of

subtle spectral differences in the MS images due to ANN’s multilayer structure, to

handle data at any measurement scale (e.g. some features extracted from IOs) and to use

a relatively small sample size for training purposes for classification. Finally, most

existing studies have not used a method to select a subset of features from a set of
candidate features extracted from and characterizing IOs. Selecting a subset from all

possible features extracted from IOs is necessary because of the information redun-

dancy that exists among the features, including spectral, textual/contextual and shape/

geometric features.

Therefore, the objectives of this study were: (1) to test whether the object-based

technique could significantly improve classification accuracy compared to a pixel-

based method when applied to urban detailed land cover classification using high

spatial resolution imagery; (2) to compare the performance of ANN and MDC for
urban detailed land classification using high-resolution data; and (3) to evaluate

whether urban land cover classification accuracy is affected by the number of

extracted IO features. Some limitations associated with the use of the object-based

classification approach are also discussed.

Object-based classification with IKONOS imagery 3287
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2. Study area and data sets

2.1 Study area

The study area is a 100 km2 area within the City of Tampa. Tampa is the largest city

on the west coast of Florida and consists of approximately 285 km2. During the past
three decades, the city had experienced continuous growth in population and expan-

sion in its extent. The population is currently estimated at approximately 335 000

(www.tampagov.net, accessed on 26 November 2007). The city is located at approxi-

mately 28�N and 82�W (figure 1). Historically, the natural plant communities of the

Tampa Bay region included pine flatwoods, cypress domes, hardwood hammocks,

high pine forests, freshwater marshes and mangrove forests. Based on the City of

Tampa Urban Ecological Analysis (Andreu et al. 2008), tree canopy cover is 28.1%.

Other green vegetation areas are occupied by shrubs, grass/lawns of various sizes, golf
courses and crops. Man-made materials for buildings and roofs in the city include

concrete, metal plate, brick tile, etc. Various impervious road surfaces are covered by

asphalt, concrete and rail track.

2.2 Data sets

Three data sets were used in this study: IKONOS imagery, digital aerial photographs

and ground plot measurements. (1) High-resolution IKONOS satellite imagery
(GeoEye, Inc., Virginia, USA) was acquired for the study area on 6 April 2006.

Georeferenced 1-m resolution panchromatic (Pan, 526–929 nm) and 4-m resolution

MS images (four bands: blue (445–516 nm), green (506–595 nm), red (632–698 nm)

Figure 1. A location map of the study area. The grey box in the image shows the location of
the portion of land cover classification results in figure 3.
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and near-infrared (NIR, 757–853 nm) were acquired. The IKONOS imagery includ-

ing Pan and MS images was the primary data set for this object-based classification

analysis. (2) A set of true colour digital aerial photographs was taken in January 2006

(SWFWMD 2006). The aerial photographs included three visible bands (blue, green

and red) at 0.3-m spatial resolution. They were used as reference to define training,
test and validation areas/samples. (3) Measurements from approximately 60 ground

plots in the study area, including land cover type and percentage, plant species,

diameter at breast height (dbh) and crown width, were provided by the City of

Tampa Ecological Analysis 2006–2007 (Andreu et al. 2008). Ground plot measure-

ments were used as reference for determining training and test areas.

3. Methodology

Figure 2 presents a flowchart of the analysis procedure, which included urban land

cover classification using high-resolution IKONOS imagery with both pixel- and

object-based classification strategies. Preprocessing of IKONOS imagery data

included radiometric correction and calibration and data fusion. Nine basic pixel-

based image layers were prepared, including four pansharpening (PS) bands, three

Hue–Intensity–Saturation (HIS) indices, one soil-adjusted vegetation index (SAVI),

and one texture image (created from PS band 4 with co-occurrence and homogeneity
parameters from ENVI (ITT 2006)). The selection of SAVI was considered to

compress the effect of bare soil and other non-vegetated background on vegetation

spectra; the extraction of three HIS indices was for adequately using spectral infor-

mation contained in the three IKONOS visible bands while the texture image layer

IKONOS, Digital Photo image

Preprocessing: ELC to IKONOS MS / Pan

Image Enhancement / Feature Extraction:
Nine Features: Pan-Sharpening, HIS Indices, SAVI & Texture

Training

Separate Veg / NonVeg Areas

Pixel-based IO-based

Training Areas
Defined via Ground

Survey/ Digital Photo

Image Segmentation:
Image Object (IO)

Veg / NonVeg Areas & Features:
23 Spectral, 9 Texture & 4 Shape / Geometric

Classifier:
ANN ANN & MDC

Classifiers
with 9 F.

ANN & MDC
Classifiers
with 27 F.

STEPDISC Selection

Test Areas Defined
via Ground Survey/

Digital Photo
Testing

Training / Test
IOs via Ground
Survey/Digital

Photo
Classification Results

Classification Results

Validation

Urban Surface Component Maps

Figure 2. A flowchart of the urban land cover mapping analysis procedure, consisting of pixel-
and object-based classification strategies. Veg, vegetated; NonVeg, non-vegetated; STEPDISC,
an SAS procedure that was used to select important features (F).
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was expected to help separate different vegetation types (e.g. grass/lawn and tree

canopy). All of the nine pixel-based image layers were rescaled to [0, 10 000]. They

were then used for the pixel-based classification and for creating IOs to test the object-

based classification. In addition to the IOs generated from the nine image layers

(themselves forming nine features), 27 more features were extracted from the IOs
and used for object-based classification analysis.

3.1 Data preprocessing and fusion

The four MS IKONOS bands and one Pan band were radiometrically corrected to

ground reflectance using the Empirical Line Calibration (ELC) outlined by Jensen

(2005) and the calibration parameters provided by Space Imaging in the imagery

metadata. The four MS IKONOS image bands were calibrated using the ELC method

to convert the radiance to ground surface reflectance using ENVI software. The ground

spectral measurements were taken using an ASD spectrometer (FieldSpec�3,

Analytical Spectral Devices, Inc., Colorado, USA) from river (deep/clear water) and
sand targets located within the IKONOS image area. To calibrate the Pan image, the

IKONOS Pan relative spectral response was first resampled to a 50-nm wavelength

interval and then the average reflectance for the Pan bandwidth was calculated from the

ASD spectral measurements. Consequently, the four MS bands and one Pan band were

calibrated to ground reflectance prior to data fusion processing.

Pansharpened 1-m resolution images were created by fusing the 4-m MS

IKONOS image with the 1-m Pan IKONOS imagery using the method of

Principal Component Spectral Sharpening (ITT 2006). Although PS altered the
spectral values of the images and may have created spectral artefacts that impacted

accuracy measures, the use of PS imagery has been shown to improve the classifica-

tion of forests (Kosaka et al. 2005) and has been used successfully in urban areas

(Jain and Jain 2006, Nichol and Wong 2007) because the pansharpened image

reflects the synergic effectiveness of MS and Pan images. A visual comparison of

the original colour composite image (4-m resolution) with the pansharpened colour

composite image (nominal 1-m resolution) revealed that urban land cover bound-

aries on the latter image were clearer and smoother than those on the former image,
especially for some tree crown boundaries and relatively small IOs. Therefore, all

further image analysis including image segmentation and feature extraction used the

four PS band imagery.

3.2 Image segmentation

The object-based image analysis software used in this research was Definiens

eCognition 5.0. eCognition uses a multiresolution segmentation approach that is a

bottom-up region-merging technique starting with one-pixel objects. In numerous

iterative steps, smaller IOs are merged into larger ones (Baatz et al. 2004). The

merging criterion minimizes the average heterogeneity of IOs weighted by their size
in pixels (Baatz and Schape 2000, Benz et al. 2004). Quantitatively, the definition of

heterogeneity takes into account both the spectral variance and geometry of the

objects (Yu et al. 2006). The outcome of the segmentation algorithm is controlled

by a scale factor and a heterogeneity criterion. The heterogeneity criterion controls

the merging decision process and is computed using spectral layers (e.g. MS images)

or non-spectral layers (e.g. thematic data such as elevation) (Mathieu et al. 2007). The

heterogeneity criterion includes two mutually exclusive properties: colour and shape.

3290 R. Pu et al.
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Colour refers to the spectral homogeneity whereas shape considers the geometric/

geomorphologic characteristics of the objects. Shape is further divided into two

equally exclusive properties: smoothness and compactness (Baatz et al. 2004).

The optimum segmentation parameters depend on the scale and nature of the

features to be detected. Previous researchers (Mathieu et al. 2007) have used a
systematic trial-and-error approach validated by the visual inspection of the quality

of the output IOs (i.e. how well the IOs matched feature boundaries in the image for a

particular application). Once an appropriate scale factor was identified, the colour

and shape criteria were modified to refine the shape of the IOs. Most previous studies

had found that more meaningful objects were extracted with a higher weight for the

colour criterion (e.g. Laliberte et al. 2004, Mathieu et al. 2007). Using the input of nine

data layers (four PS bands, three HIS indices, one SAVI and one texture image) for

urban detailed land cover mapping, the colour criterion was assigned a weight of 0.7,
whereas the shape received the remaining weight of 0.3. Furthermore, the compact-

ness was assigned a weight of 0.3 and the smoothness was assigned the remaining

weight of 0.7. Three different scales (70, 100 and 150) of image segmentation were

tested. After visually inspecting the degree to which IOs matched the feature bound-

aries of the land cover types in the study area, we used the IOs created with a scale of

70 in the remainder of the object-based classification analysis.

3.3 Feature extraction and selection

In addition to the nine features (eight spectral features and one texture feature) used

for creating the IOs, 27 more feature variables were generated from each IO. Table 1

lists all 36 features (23 spectral features, nine texture features and four shape/

geometric features) used for the object-based classification analysis. The inclusion

of these features was based on previous studies (e.g. Haralick et al. 1973, Carleer and

Wolff 2006, Kong et al. 2006, Yu et al. 2006).

Table 1 shows 23 spectral features consisting of means and standard deviations of
four PS bands, three HIS transfer indices, one SAVI and one textural (as input pixel-

based data layers) and four ratios of four PS band features and one brightness feature

calculated by averaging means of the four PS bands. The four ratio features were

calculated by the band i mean value of an IO divided by the sum of all four PS bands.

The nine texture features include five grey-level co-occurrence matrix (GLCM) textures

and four grey-level difference vector (GLDV) textures calculated from PS band 4

(similar to the NIR band). The GLCM indicates the frequency at which different

combinations of grey levels of two pixels at a fixed relative position occur in an IO.
A different co-occurrence matrix exists for each spatial relationship. The GLDV is the

sum of the diagonals of the GLCM and counts the occurrence of references to the

neighbouring pixels’ absolute differences. Compared to pixel-based texture, which is

generally calculated using a specific window size, the GLCM and GLDV calculate the

texture for all pixels of an IO (Haralick et al. 1973, Yu et al. 2006). The remaining four

shape/spatial features are described by two compactness and two shape/geometric

indices.

To reduce redundancy, it was necessary to select a subset of features from the 36
feature variables prior to the object-based classification. In this analysis we used

stepwise discriminant analysis (SDA) to select features based on minimizing within-

class variance while maximizing the between-class variance for a given significance

level. This was a relatively effective method to select a subset of the quantitative

Object-based classification with IKONOS imagery 3291
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Table 1. Image-object (IO) features used in this analysis.

Feature name Description

Band1 Mean of pansharpened IKONOS band1 (blue), input pixel layer

Band2 Mean of pansharpened IKONOS band2 (green), input pixel layer

Band3 Mean of pansharpened IKONOS band3 (red), input pixel layer

Band4 Mean of pansharpened IKONOS band4 (NIR), input pixel layer

Hue Mean of Hue image processed from pansharpened IKONOS bands 3, 2, 1, input layer

Sat Mean of Saturation image processed from pansharpening IKONOS bands 3, 2, 1, input

layer

Val Mean of Value (Intensity) image processed from pansharpened IKONOS bands 3, 2, 1,

input layer

SAVI Mean of soil-adjusted vegetation index (SAVI): 1.5 (band4 - band3)/(band4 þ band3 þ
0.5), input layer

Tex Mean of texture information of co-occurrence homogeneity extracted from band4,

input layer

SDB1 Standard deviation of band1

SDB2 Standard deviation of band2

SDB3 Standard deviation of band3

SDB4 Standard deviation of band4

SDH Standard deviation of Hue

SDS Standard deviation of Sat

SDV Standard deviation of Val

SDVI Standard deviation of SAVI

SDTX Standard deviation of Tex

Ratio1 Band1 mean divided by sum of band1 to band4 means

Ratio2 Band2 mean divided by sum of band1 to band4 means

Ratio3 Band3 mean divided by sum of band1 to band4 means

Ratio4 Band4 mean divided by sum of band1 to band4 means

Bright Brightness, average of means of bands 1 through 4

GLCMH GLCM homogeneity from band4,
PN�1

i;j¼0
pi;j

1þði�jÞ2

GLCMCON GLCM contrast from band4,
PN�1

i;j¼0 pi;jði � jÞ2

GLCMD GLCM dissimilarity from band4,
PN�1

i;j¼0 pi;j ji � jj
GLCME GLCM entropy from band4,

PN�1
i;j¼0 pi;jð�ln pi;jÞ

GLCMSD GLCM standard deviation from band4,

s2
i;j �

PN�1
k¼0 pi;jði; j � mi;jÞ where mi;j ¼

PN�1
k¼0 pi;j=N2

GLCMCOR GLCM correlation from band4,
PN�1

i;j¼0 pi;j
ði�miÞðj�mj Þffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

i
Þðs2

j
Þ

p
" #

GLDVA GLDV angular second moment from band4,
PN�1

k¼0 V2
k

GLDVE GLDV entropy from band4,
PN�1

k¼0 Vkð�lnVkÞ
GLDVC GLDV contrast from band4,

PN�1
k¼0 VkK2

Compact Compactness, the product of the length and the width of the corresponding object and

divided by the number of its inner pixels

CompactP Compactness, the ratio of the area of a polygon to the area of a circle with the same

perimeter

Shapel Shape index, the border length of the IO divided four times the square root of its area, i.e.

smoothness.

NumP Number of edges, the number of edge that from the polygon.

i, row number; j, column number; Vi, j, the value in the cell i, j of the matrix; pi, j, the normalized value in the

cell i, j; N, the number of rows or columns.
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variables for use in discriminating among the classes and has been applied by many

researchers for reduction of data dimensionality (e.g. Clark et al. 2005, van Aardt and

Wynne 2007). In this study, we used the SAS STEPDISC Procedure (SAS 1991) with

training samples to select a subset of features from the 36 feature variables with a

p-value ,0.001.

3.4 Classification strategies

To improve the urban land cover classification accuracy, a hierarchical classification

system constructed using three levels was adopted for the study, which matched the

logical structure of most land cover classification schemes used by previous research-

ers (e.g. Townsend and Walsh 2001, Pu et al. 2008). The hierarchical classification

scheme, including land cover classes and descriptions, is presented in table 2. At level I,
vegetated and non-vegetated areas were separated using an SAVI threshold of 0.19,

where values greater than 0.19 were assigned as vegetation. The threshold of 0.19 was

determined by first checking the histogram of the SAVI image to find an approximate

threshold (e.g. 0.2), then adjusting the threshold slightly based on visual inspection to

separate vegetated and non-vegetated areas. At level II, the vegetated and non-

vegetated areas were further subdivided into five vegetated and four non-vegetated

classes. The five vegetated types included broadleaf trees (BT), needleleaf trees (NT),

palm trees (PT), shrub (Sh) and grass/lawn (GL). The four non-vegetated classes
included building/roof (BR), impervious area (IA), sand/soil (SS) and water (Wa).

At level III, one vegetated class, BT, was further subdivided into high NIR reflectance

(BT1) and low NIR reflectance (BT2). This separation of BT was chosen in consid-

eration of the significant difference of the NIR reflectance between sand live oak

and most other BT species, presumably a result of biological characteristics

(e.g. deciduous vs. even green). The two non-vegetated classes, BR and IA, were

further subdivided into high, medium and low albedo (BR1, BR2 and BR3; IA1, IA2

and IA3), respectively. Classification operations were carried out at level III sepa-
rately for each level I area (vegetated/non-vegetated) using pixel- or object-based

features with ANN and MDC algorithms (figure 2). The final classification results

at level II were obtained by merging BT1 and BT2 into BT, BR1 to BR3 into BR, and

IA1 to IA3 into IA. All the accuracy indices were calculated at level II.

Two supervised classification algorithms were used for the urban land cover

classification: the non-parametric ANN and the parametric MDC. In this analysis,

a feedforward ANN algorithm was used for classifying the 14 level III classes. The

network training mechanism was an error-propagation algorithm (Rumelhart et al.
1986, Pao 1989). A neural network program developed by Pao (1989) was adapted for

use in this study. In a layered structure, the input to each node is the sum of the

weighted outputs of the nodes in the prior layer, except for the nodes in the input

layer, which are connected to the feature variables (as discussed in section 4). The

nodes in the last layer output a vector corresponding to the 14 level III classes. Layers

between input and output layers are called hidden layers. One hidden layer (h1) has

been shown to be sufficient for most learning purposes (Gong et al. 1997). The

learning procedure is controlled by three variables: a learning rate (�, defined as the
network’s learning speed of reducing system error, usually taking any value from a

range [0, 1]); a momentum coefficient (a, a new weight change is modified by including

some (i.e. a) of the weight change in the previous iteration of network learning in order

to weaken system oscillations, and usually it also takes any value from a range [0, 1]);
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and a number of nodes in one hidden layer (h1). All the three variables need to be

specified empirically based on the results of a limited number of tests. The network

training is done by repeatedly presenting training samples (pixel or IO samples) with a

known class and terminates when the output meets a minimum error criterion or

optimal test accuracy is achieved. In this study, we used an optimal test accuracy
calculated from test samples to control the network training processing. The trained

network was then used to classify the 14 level III classes separately using the nine or 27

selected feature variables.

For comparison with the result from the ANN algorithm, we conducted additional

object-based classifications of the 14 level III classes using the MDC with input of nine

or 27 selected feature variables. The SAS DISCRIM procedure with Mahalanobis

distance to determine proximity (SAS 1991) was used for the MDC classification. This

method was chosen because the parametric algorithm was expected to yield good
results even when the assumed class distribution (normal distribution) was invalid for

some features of IOs (Schowengerdt 2007). For the object-based classification, nine

features (corresponding to the nine input data layers) and 27 features (selected from a

total of 36 features by using the SDA procedure) were used with the ANN and MDC

algorithms.

3.5 Training, test and evaluation samples

Training and test samples used for the classification algorithms and comparative

accuracy assessments were determined from pixel- and object-based image data

by referencing 0.3-m resolution digital aerial photographs and measurements from

approximately 60 ground plots. Table 2 summarizes the number of training and

test samples corresponding to each of the 14 level III classes for the object- and

pixel-based classifications. The total number of IO samples used for training and

testing for the object-based classification was 1738, extracted from the segmented

image at scale¼ 70. The total number of pixels used for training and testing for the
pixel-based classification was 127 550 with a minimum of 2000 pixels for each

class.

Pixel-based training/test samples were defined as regions of interest (ROIs) using

the ENVI function of defining training areas (ITT 2006) on an IKONOS image by

referring to 0.3-m aerial photograph and available ground plot data. When locating

the training and test samples, we considered the ROIs’ representativeness and ran-

domness corresponding to the 14 level III classes in the study area (i.e. each ROI

contained multiple patches representing each class). Three separate ROIs were cre-
ated for each class and used to develop three different sets of pixel-based training and

test datasets, where each set contained two regions for training and one region for

testing. The object-based training and test samples were determined from the seg-

mented image (IO image) overlaid with the ground plot location layer (i.e. the dataset

from Andreu et al. 2008) and were selected by referencing the 0.3-m resolution aerial

photographs and ground plot data (i.e. land cover type/percentage and plant species).

Only IOs that had coincident boundaries with real ground objects as seen in the aerial

photograph were selected as training/test samples. With a systematic sampling
approach, about two-thirds of the selected IO samples were used for training and

about one-third for testing. This procedure was repeated three times (runs) to obtain

three different sets of test samples (but training sets with a part overlaid between any

two training sets). Although this sampling strategy has been shown to overestimate
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accuracy due to spatial autocorrelation of neighbouring pixel or IO samples

(Muchoney and Strahler 2002), the technique was considered acceptable for a com-

parative accuracy assessment. Comparative accuracy assessments were calculated

from ANN and MDC level II classification results using a confusion matrix con-

structed with the test samples. Comparative accuracy measures included average
accuracy (AA, defined as the average producer’s accuracy), overall accuracy (OAA,

defined as the ratio of correct classified samples to total samples) and the kappa index

(Congalton and Mead 1983, Congalton and Green 1999).

In addition to the comparative accuracy assessment described above, we used a

system sampling approach with a 500-m grid to validate the land cover classification

results. A total of 441 points (cross-points of the 500-m grids, labelled evaluation

points in table 2) each representing about 4 m2 were visually identified and interpreted

from both the digital aerial photographs and resultant urban land cover classification
maps. As individual NT and PT and their spatial distribution were too small in the

study area, neither NT nor PT points were available for evaluating classification

accuracy. As a result of this limitation in evaluation points, we used test samples to

verify the performance of different classifiers and effectiveness of classification units.

It was expected that both test/evaluation samples would produce reasonably similar

results for the purpose of evaluating performance. An OAA value and a kappa index

were calculated from the 441 paired-points and used for a general assessment of

accuracy of the land cover classification maps produced using either pixel- or object-
based IKONOS image data with the ANN and MDC algorithms.

4. Results and analysis

4.1 Feature selection

An SDA procedure was first performed to select a subset of important feature
variables to use with the object-based classification. Table 3 shows the 27 features

selected using the stepwise procedure. Features with a p-value ,0.001 were selected,

while those features after step 27 had a p-value .0.001 and thus were eliminated from

this analysis. Among the 27 selected feature variables, 19 were spectral features.

Selection of all spectral features in the first eight steps indicated that those spectral

features made a substantial contribution to separating most of the 14 level III classes.

The nine removed feature variables (i.e. p-value .0.001) included four spectral

features, three textural features and two shape/geometric features. Two of the nine
removed features were shape/geometric features related to compactness, from which it

could be interpreted that ‘compactness’ of IOs had a relatively low separability among

the 14 level III classes. Five of the removed features were related to ‘contrast and

standard deviation’ of spectral and textural features (SDB1, SDV, GLCMCON,

GLCMD and GLDVC; see table 1 for definitions), which indicated that the ‘contrast

and standard deviation’ information of the five features within an IO was not

significantly variable across the 14 classes. The remaining two features removed,

Band2 and Ratio4, may have been removed simply because the information they
provided was redundant compared with the information provided by the selected

variables. From the selected spectral features, it was obvious that the ability to

separate the 14 classes relied mainly on the variation of pixel spectral information

that was extracted from and characterized the IOs.
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4.2 Pixel-based classification

The pixel-based classification results were produced using the ANN algorithm with
the 14 ROIs delineated as training areas from PS bands 4, 3 and 2 and using the 0.3-m

digital aerial photographs and available ground plot measurements as reference.

As stated previously, six vegetated classes and eight non-vegetated classes (i.e. level III

classes) were first separately classified and then merged to nine level II classes. Based

on the high AA and kappa value calculated from the test samples, a final set of ideal

structure parameters of ANN for pixel-based classification with nine features was

adopted (learning rate (�)¼ 0.2, momentum coefficient (a)¼ 0.8 and number of nodes

in a hidden layer (h1) ¼ 12 or 10). The results of the pixel-based classification using
ANN are presented in figure 3(a) and reveal the ‘salt-and-pepper’ phenomenon

usually caused by using high spatial resolution and pixel-based image data. Table 4

lists the corresponding classification accuracy indices: AA, OAA and kappa values.

All the results shown in table 4 were calculated by averaging the three sets of results

produced from the three sets of test samples.

4.3 Object-based classification

The better ANN structure parameters for the object-based classification with inputs

of either nine or 27 features were found by testing various combinations of �, a and h1

Table 3. Summary of 27 features selected using the stepwise discriminant analysis (SDA)
procedure.

Step Feature* Partial R2 F-value Pr . F

1 SAVI 0.8411 701.74 ,0.0001
2 Band3 0.7318 361.71 ,0.0001
3 Bright 0.5514 162.79 ,0.0001
4 Ratio2 0.5257 146.72 ,0.0001
5 Band4 0.4411 104.43 ,0.0001
6 Ratio3 0.2818 51.88 ,0.0001
7 SDB3 0.2367 40.98 ,0.0001
8 Band1 0.1497 23.25 ,0.0001
9 GLCME 0.1457 22.52 ,0.0001
10 Sat 0.1153 17.20 ,0.0001
11 SDVI 0.0984 14.39 ,0.0001
12 GLCMH 0.0901 13.06 ,0.0001
13 Ratio1 0.1272 19.20 ,0.0001
14 Hue 0.0711 10.07 ,0.0001
15 Val 0.0628 8.81 ,0.0001
16 Shapel 0.0635 8.91 ,0.0001
17 SDH 0.0585 8.17 ,0.0001
18 Tex 0.0537 7.45 ,0.0001
19 SDB2 0.0494 6.82 ,0.0001
20 SDTX 0.0375 5.11 ,0.0001
21 NumP 0.0350 4.76 ,0.0001
22 GLCMCOR 0.0291 3.93 ,0.0001
23 GLCMSD 0.0296 3.99 ,0.0001
24 GLDVA 0.0293 3.95 ,0.0001
25 GLDVE 0.0302 4.08 ,0.0001
26 SDB4 0.0280 3.77 ,0.0001
27 SDS 0.0239 3.19 ,0.0001

*See table 1 for full names of the features.
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using the first training/test data set. For the input of nine features, the better ANN

structure parameters were � ¼ 0.8 or 0.7, a ¼ 0.2 or 0.1 and h1 ¼ 15 or 12. For the

input of 27 features, the better ANN structure parameters were: �¼ 0.6 or 0.8, a¼ 0.2

or 0.3 and h1¼ 20 or 25. Figure 3(b) shows the object-based classification result using

the ANN algorithm and the 27 input features. Figure 3(c) shows the results using the

(c) (b) (a) 

(d) (e) 

Broad-leaf trees (BT)
Needle-leaf trees (NT)
Palm trees (PT)
Shrub (Sh)
Grass/lawn (GL)
Building/roof (BR)
Impervious areas (IA)
Sand/soil (SS)
Water (Wa)

N

E

S

W

0 50 10025
Meters

Figure 3. Classification results of urban land cover classes, showing a small portion (figure 1)
of the study area at 1:1 scale: (a) using nine features of the pixel-based IKONOS imagery with
the ANN algorithm; (b) using 27 and (c) nine features of the object-based IKONOS imagery
with the ANN algorithm; and (d) using 27 and (e) nine features of the object-based IKONOS
imagery with the MDC algorithm.

Table 4. Accuracy of urban detailed land cover classification using different classification units
(pixel- and object-based) and different algorithms (ANN and MDC) with nine or 27 features
(bands). The accuracy in a cell is the average of accuracies calculated from the three sets of test

samples.

Accuracy (%) Kappa value

Pixel-based IO-based Pixel-based IO-based

Algorithm
No. of

features AA OAA AA OAA
Kappa
value Variance

Kappa
value Variance

ANN 9 73.58 73.82 76.69 78.48 0.6956 0.000030 0.7371 0.000454
27 n/a n/a 80.75 81.53 n/a n/a 0.7736 0.000410

MDC 9 n/a n/a 68.16 71.12 n/a n/a 0.6474 0.000561
27 n/a n/a 75.34 78.02 n/a n/a 0.7296 0.000476

AA, average accuracy; OAA, overall average.

3298 R. Pu et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 1

2:
37

 2
8 

Ju
ne

 2
01

1 



nine input features. Visual inspection of the 1:1 scale maps reveals that the classifica-

tion result created with the 27-feature input was better than that with the nine-feature,

especially for the BT and NT vegetation classes. Table 5 presents the two confusion

matrices and three accuracy indices (i.e. AA, OAA and kappa) created with (A) 27

features and (B) nine features. Both matrices were produced with the second set of test
samples, which resulted in median accuracy (because both the 27- and nine-input

features had three sets of test samples). A comparison of the two sets of results in

table 5 shows that AA, OAA and kappa accuracy indices using the 27-feature input

are higher (i.e. more accurate) than those using the nine-feature input, although the

producer’s accuracy is higher for some individual classes of the nine-feature input.

The results in table 4 also indicate that using more feature variables produced better

results than using fewer feature variables.

We also compared the object-based classification results produced using the ANN
algorithm with those produced using MDC, a traditional classifier. Figures 3(d) and

3(e) show the classification results with inputs of 27 or nine features using the MDC

algorithm, respectively. Comparison of the MDC (figures 3(d) and 3(e)) with the

ANN (figures 3(b) and 3(c)) results using 1:1 scale maps reveals too much PT area on

figure 3(d) (MDC) compared with that in figure 3(b) (ANN) using the 27 input

features, and too much BR area in figure 3(e) (MDC) compared with that in figure

3(c) (ANN) using the nine input features. The results in table 4 indicate that the

accuracy indices are much lower for the object-based classification using the MDC
algorithm compared to the ANN algorithm with either nine or 27 input features.

These results demonstrate that the ANN algorithm outperforms the MDC when

using the same number of input features.

4.4 Evaluation

The accuracy of the land cover classification maps was evaluated using the 441

evaluation points. An OAA value, the kappa value and the producer’s and user’s

accuracies (Story and Congalton 1986) were calculated for all of the classification

maps (table 6). Because of the lack of NT identified at the grid points (possibly

caused by the low frequency of NT in the study area), AA could not be calculated for
the evaluation. Table 6 presents the evaluation results (OAA and kappa values)

produced by the ANN algorithm with nine pixel-based features and by ANN and

MDC with nine and 27 object-based features. The accuracy indices indicate that the

ANN algorithm produced better results using object-based (OAA ¼ 76.64%, kappa

¼ 0.7071) than pixel-based classification (72.79%, 0.6687). When we compare the

effectiveness of different numbers of feature variables on the object-based classifica-

tion accuracy by ANN or MDC, mapping urban land cover using more input

features (27) was better than that using fewer features (nine). The evaluation results
in table 6 also show that ANN outperformed MDC using the same number of

object-based input features. These evaluation results are basically consistent with

those analysed with accuracy indices derived from test samples from the previous

sections (table 4).

4.5 Comparison

Based on the accuracy indices derived from the test samples (averaged from the three

sets of test samples) and the evaluation results derived from the 441 evaluation points,

a comparison analysis was conducted from the following three aspects. First, to
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consider the two types of classification units (pixel-based and object-based), we
compared the accuracy indices produced from the test samples and evaluation points

for the pixel-based classification with that from the object-based classification using

the ANN algorithm with nine input features. The test sample results presented in

table 4 show that all of the accuracy indices (AA, OAA and kappa) produced with the

object-based data were consistently higher than those with the pixel-based image data.

The evaluation results presented in table 6 (nine selected IO-based (9&IO)-ANN vs.

nine pixel-based (9&PIX)-ANN) indicate that the resultant map created with the

object-based data is better than that with the pixel-based data. Second, in considering
the performance of the two algorithms (ANN vs. MDC) with object-based features

(table 4), ANN significantly outperformed the MDC algorithm when using the same

object-based features as inputs. The OAA and kappa values listed in table 6 also

clearly show that ANN outperformed MDC. Third, comparing the effects of different

numbers of features on the urban land cover classification reveals that all of the

accuracy indices (AA, OAA and kappa) with 27 object-based features were higher

than those with nine object-based features (tables 4–6).

To test whether these differences (between the two classification units, the two
algorithms, and the two numbers of features) were statistically significant, Z-statistics

were calculated from the Kappa value and corresponding variance derived from the

test samples and are presented in table 7 (Z-statistics were not calculated from the 441

evaluation results because evaluation points are not available or are not reliable for

land cover classes NT and PT). From table 7, Z-statistics were calculated to compare

the two classification units using the ANN algorithm (9fIO-ANN vs. 9fPIX-ANN),

between the two numbers of selected features (27fIO-ANN vs. 9fIO-ANN and 27fIO-

MDC vs. 9fIO-MDC), and between the ANN and MDC with the same numbers of
object-based features (27fIO-ANN vs. 27fIO-MDC and 9fIO-ANN vs. 9fIO-MDC).

Table 6. Evaluation results obtained by comparing mapped results with high-resolution photo-
interpreted results at 441 grid points. The mapped results are from two classification units
(pixel- and object-based) and two algorithms (ANN and MDC) with nine or 27 features

(bands).

27flO-ANN 9flO-ANN 27flO-MDC 9flO-MDC 9fPIX-ANN

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

BT 89.31 95.95 89.94 97.95 86.16 90.13 77.99 89.21 62.26 97.06
NT Inf. 0.00 Inf. 0.00 Inf. 0.00 Inf. 0.00 Inf. 0.00
PT 50.00 10.00 50.00 10.00 50.00 6.67 0.00 0.00 100.00 5.26
Sh 65.00 56.52 35.00 77.78 45.00 75.00 45.00 60.00 45.00 36.00
GL 71.74 94.29 73.91 91.89 65.22 100.00 54.35 92.59 73.91 82.93
BR 91.67 70.51 66.13 54.67 80.00 56.47 68.33 46.59 58.33 76.09
IA 76.00 92.68 60.20 77.63 64.00 81.01 51.00 71.83 92.00 79.31
SS 100.00 82.22 97.37 74.00 94.59 94.59 86.49 84.21 89.19 86.84
Wa 94.12 100.00 100.00 94.12 94.12 100.00 94.12 100.00 100.00 89.47
OAA (%) 84.58 76.64 77.10 67.57 72.79
Kappa 0.8053 0.7071 0.7108 0.5977 0.6687

PA, producer’s accuracy; UA, user’s accuracy; 27flO or 9flO, with 27 or nine selected IO-based
features (bands); 9fPIX, with nine pixel-based features (bands); ANN, artificial neural network;
MDC, minimum distance classifier.
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The Z-statistics indicate a significant difference (p , 0.1) of ANN results produced

with different classification units (pixel-based and object-based). Although the abso-

lute accuracy indices derived using ANN with 27 input features are all higher than

those with nine input features, the difference of results created using ANN with

different numbers of features (9 vs. 27) was not significant even at the 0.90 confidence

level. However, the difference of results created using the MDC algorithm with
different numbers of features (9 vs. 27) was significant (p , 0.05). The difference of

results between ANN and MDC with the nine features was statistically significant at

the 0.99 confidence level, but the difference between ANN and MDC with 27 features

was not significant even at the 0.90 confidence level. Despite the improved perfor-

mance using the 27 input features with MDC, the results related to ANN with

different numbers of features imply that there is still a lot of redundant information

among the 27 feature variables that did not proportionally improve the classification

results compared to using the nine input features.

5. Discussion

Our experimental results have demonstrated that the object-based urban land cover

classification outperformed the pixel-based classification. When we used the same

input feature variables (i.e. nine features) and classifier (i.e. ANN) but different

classification units (i.e. pixel-based and object-based data), the improvement in the

classification result with the object-based classification unit was statistically signifi-

cant at the 0.90 confidence level compared to the pixel-based unit (AA increasing by

3.1%, OAA increasing by 4.7% and kappa increasing by 0.04; from the evaluation

results, OAA increasing by 3.8% and kappa increasing by 0.04). Unlike the pixel-
based techniques, which use pixel values and kernel-based texture/contexture infor-

mation, the object-based techniques can also use geometric/shape and contextual

information calculated from individual IOs of a scene covering the study area.

Therefore, by including more features (27) and some textural and shape/geometric

features only available to IOs, we achieved an improvement in the classification

results compared to the pixel-based technique and fewer input features (AA increas-

ing by 7.2%, OAA increasing by 7.7% and kappa increasing by 0.08; from the

Table 7. Z-statistic tests calculated from kappa-variance of classification results of test sam-
ples, generated with different classification units (pixel- and object-based) and different algo-

rithms (ANN and MDC) with nine or 27 features.

27flO-ANN 9flO-ANN 27flO-MDC 9flO-MDC 9fPIX-ANN

27flO-ANN n/a
9flO-ANN 1.242 n/a
27flO-MDC 1.478 n/a n/a
9flO-MDC n/a 2.819*** 2.556** n/a
9fPIX-ANN n/a 1.886* n/a n/a n/a

*Difference between classification accuracies is significant at the 0.90 confidence level.
**Difference between classification accuracies is significant at the 0.95 confidence level.
***Difference between classification accuracies is significant at the 0.99 confidence level.

Z ¼ jk1 � k2j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1 þ v2

p
where k1 and k2 are the kappa values of the input features 1 and 2,

respectively, and v1 and v2 are the corresponding variances.
For different classification units and names of the algorithms, see table 6.
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evaluation results, OAA increasing by 11.8% and kappa increasing by 0.14). Some

features derived from IOs were efficient in distinguishing grass/lawn from tree cano-

pies (figure 4) and separating BR and IA surface areas (figure 5). The textural feature

shown in figure 4 was effective in separating the relatively coarse tree canopies from

the relatively smooth grass/lawn. Among the five features shown in the table in
figure 5, three features are related to ‘spectral variation’ and two are related to ‘colour’

Image in greyscale One texture image IO classification

0 25 5012.5
Meters

Figure 4. Illustrating the utility of image texture information to separate tree canopy from
grass/lawn area.

Mean* (standard deviation) of some features

Features Sat SDB4 SDH SDVI GLCMH
Roof 1844.07 (777.59) 244.21 (111.33) 482.14 (222.61) 482.14 (25.11) 0.057 (0.031)
Ground Impervious 3000.00 (675.81) 359.44 (136.23) 297.59 (148.77 ) 237.19 (136.62) 0.030 (0.012)
*All feature mean differences between two components are significant at α = 0.05, except p = 0.053 for SDB4. 

0 25 5012.5
Meters

Figure 5. Some features help to identify ground impervious surface from building roof. The
embedded table shows means and standard deviations of five features: Sat, SDB4, SDH, SDVI
and GLCMH (definitions given in table 1). Ten samples (IOs) were used for calculating the
means and corresponding standard deviations.
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saturation and texture information, which may be important when identifying BR

and IA classes. Considering the integrative effectiveness of spectral, textural and

geometric/shape information extracted from IOs for classifying urban detailed land

cover, our results suggest that classification with object-based data should have

advantages over that of pixel-based data. Such a conclusion is not surprising if we
also consider previous studies conducted by other researchers. For example,

Shackelford and Davis (2003), Yu et al. (2006) and Guo et al. (2007) used object-

based high spatial resolution imagery (airborne or satellite image data) to obtain

similar conclusions, including: improved identification of urban surface components;

increased accuracy of vegetation community classification; and more accurately

mapped oak tree mortality. In addition, when some researchers compared object-

based techniques with pixel-based techniques for change detection analysis (i.e.

deforestation analysis and other land cover change analysis), analysis accuracies
were improved significantly (Al-Khudhairy et al. 2005, Desclée et al. 2006, Zhou

et al. 2008). Our experimental results as well as these previous studies demonstrate the

efficiency of using object-based classification techniques over that of using pixel-

based approaches.

Our object-based classification results indicate that ANN outperformed MDC

using the same number of input features. We suggest that the reason for this improved

performance was that ANN made use of subtle spectral differences in the four PS

band images more efficiently because of the ANN’s multilayer structure and its non-
parametric properties. Previous research has also reported that ANN produced better

classification results with remote sensing data when compared with traditional

methods, such as the MDC (e.g. Gong et al. 1997, Erbek et al. 2004).

Using the ANN algorithm, the difference in results created with different numbers

of input features (9 vs. 27) was not significant at the 0.90 confidence level even though

all accuracy indices derived from the 27-feature input were higher than those from the

nine-feature input. This may be explained in two ways: first, the large (accuracy index)

variances with both nine and 27 features, relative to those with pixel-based
(e.g. 0.000030 vs. 0.000454 for the nine features), tend to decrease the significant

level of difference of the classification accuracy. Such high variances might have

resulted because some class accuracies were much higher than others, as shown in

table 5 (e.g. 100% producer’s accuracies of SS and Wa vs. less than 55% of PT and Sh

with the nine-feature, and more than 92% producer’s accuracies of GL and Wa vs.

lower than 71% of NT and Sh with the 27-feature). Second, although we used an SDA

to select a subset from all candidate feature variables, there was likely to be redundant

information remaining among the selected 27 feature variables such that some fea-
tures made a relatively low contribution to separability among classes (e.g. those

features with an F-value ,10 in table 3), and did not proportionally improve the

classification results with an increased number of feature variables. In this study, the

use of SAVI and three ratio features (i.e. Ratio1 to Ratio3 selected into the subset of

27 features), based on their definitions, should have weakened the effect of the shadow

on the classification results. However, the effect of the shadow on the mapped results

was evident. Considering both the SDA method and MDC use a linear discriminant

property, unlike ANN, which is non-linear, it should be reasonable that the 27
selected features resulted in a significant accuracy improvement compared to the

results created with nine features by MDC.
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6. Summary and conclusions

In this study, we tested whether the IO technique could significantly improve classi-

fication accuracy compared to the pixel-based method when applied to urban detailed

land cover mapping with high spatial resolution IKONOS imagery in Tampa Bay,

FL, USA. For this case study, we first carried out IKONOS image data calibration

and data fusion with the PS process, then extracted and used nine features (four PS

bands, three HIS transferred indices, one SAVI and one textural image) as basic input

data layers to conduct pixel-based urban land cover classification directly and to

perform image segmentation to create IOs for an object-based classification. An SDA
was used to select 27 important IO features, and then two algorithms (ANN and

MDC) were used to map urban land cover types with either pixel- or object-based

data. Finally, the urban land cover mapping results were evaluated with visually

interpreted results from high-resolution (0.3-m) digital aerial photographs.

Our results indicate a statistically significant difference in accuracy between the

pixel- and object-based classification of urban detailed land surface components using

high spatial resolution IKONOS data. This is because object-based input features

eliminate the ‘salt-and-pepper’ effect on classification through image segmentation to
create IOs, using spectral, textural/contextual and shape/geometric features extracted

from the IOs. We evaluated the performance of the two algorithms with different

numbers of object-based features and showed that ANN outperformed MDC in the

urban land cover classification. This is possible because ANN can handle non-perfect

parametric image features such as SAVI and textural features and efficiently utilize

some texture and shape/geometric features extracted from the IOs. According to the

experimental results, a non-parametric and non-linear classifier such as ANN should

be used extensively when conducting an object-based classification with inputs of
spectral, textural/contextual and geometric features extracted from IOs. This study

also proved that using more input features (27 vs. 9 features) could improve the IO

classification accuracy by both ANN and MDC, and especially by MDC, but was

not statistically significant at the 0.90 confidence level for ANN. This might be

attributed to redundant information still existing among the selected features and

possibly to the impact of shadow. Some issues related to image segmentation worthy

of greater attention for future research include: how to select the appropriate

criteria to create ideal IOs to achieve accuracy for a particular application; how to
evaluate whether edge and shape of IOs overlap (coincide with) the landscape bound-

aries (land cover type/patch) through justifying scales; and operationally, what

relationship exists between IOs and ecological units. These issues should be con-

sidered in developing object-based techniques with high spatial resolution imagery

in the future.
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