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A novel spatial tessellation scheme, spatial chromatic tessellation (SCT), is proposed for representing and exploring space—
entity relationship. The objective of this article is briefly introducing the basic concepts, structure, and properties of SCT. Our
study mainly focuses on the arranged chromatic diagram (ACD), which is the most typical type of SCT. A few examples show
that ACD can be used to analyze spatial topology, statistics, computations, database, and Voronoi diagrams. ACD also contains
many implications on spatial analysis theory. With respect to each entity in a space, SCT partitions the space into a number of
small unit cells and gives each cell a unique chromatic code. The spatial topological relationships among these cells are able to
be represented and computed by their codes. Based on the different statistical rules on cellular codes, cells could be merged into
larger clusters, such as a variety of Voronoi diagrams. Moreover, because cells are coded with the same data structure, it is easy
to store and manage these codes in relational database, and then any spatial analytical operation could be realized simply by
structured queries. SCT establishes a basic framework that not only provides a theoretical tool for spatial analysis and
computations but also helps us to understand the space—entity relationship insightfully.
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1. Introduction

To represent geographical entities and phenomena, there are
two conceptually spatial data models, object- and field-
based, serving in spatial analysis (Goodchild 1992, Lo and
Yeung 2002). As one type of field-based model, spatial
tessellation is an important approach to analyze geographi-
cal patterns and dynamics. In natural landscape, regions are
divided into patches, corridors, and matrices (Dramstad
et al. 1996). In human geography, countries and cities are
divided into land lots, urban blocks, and social commu-
nities. Numerous data structures and models have been
developed to represent and characterize spatial tessellations.
The raster data model is actually the most well-known
spatial tessellation that regularly partitions space into
many minimum indivisible grids (Longley et al. 2005).
The raster model is a nonentity model. It means that even
without entities, the pure space could still be divided into
grids. A low-resolution grid may represent a mixture of
space and many entities, whereas many high-resolution
grids may together represent the same space or one entity.
The coordinates of a raster grid like (x, y) or (i, j) only
indicate spatial locations. We are able to do spatial compu-
tations based on their coordinates but it is difficult to repre-
sent each subregion and entity uniquely and individually.
Compared with the raster model, Voronoi tessellations are
more associated with entities. They subdivide space into
many irregular Voronoi regions with respect to the entities

in the space (Okabe ef al. 1992, Gold 1994). In Voronoi
tessellations, the connections between spatial regions and
entities are limited and too specific. For example, one
Voronoi region is often assigned to one entity as its ‘region
of influence’ or ‘proximal region’ (Aurenhammer 1991,
Laurini and Thompson 1992), and therefore each Voronoi
region could be marked by the entity’s name such as
‘Boston’ or (a, b, ¢, d). However, we cannot do any math-
ematical operations on these name strings, for example,
computing the distance between two regions. In short, the
raster model is good at spatial computation and Voronoi
diagrams focus much on entity representation. We may need
a new model combining the two important aspects of geo-
graphical analysis.

Besides representing entities and space, spatial data
models also serve to represent spatial relations between
different real-world entities. Based on either object- or
field-based data models, a variety of theories, models, and
methods have been introduced from different perspectives.
Region connection calculus (RCC) models are based on
Clarke’s calculus of individuals (Cohn 1992, Randell et al.
1992). The 4-I (intersection), 9-I, and Voronoi-based 9-I
models consider the set operations between the interior,
exterior, and boundaries of entities (Egenhofer and
Franzosa 1991, Egenhofer and Herring 1991, Chen et al.
2001). Some scholars used spatial direction relations to
reason topological relations (Frank 1996, Papadias and
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Theodorodis 1997), some employed regular grids to reason
spatial relations (Kovalevsky 1989, Winter 1995), and some
studied fuzzy spatial relation models such as the egg-yolk
representation (Lehmann and Cohn 1994, Schneider 1999,
Roy and Stell 2001). In addition, for spatial index and
computation in geographic information system (GIS),
many concrete data structures have been proposed, such as
R-trees, pyramid-trees, and Hilbert curves (Guttman 1984,
Faloutsos and Roseman 1989, Berchtold et al 1998).
However, no matter what models and structures are
employed to represent spatial relations, in practice, most
of the spatial reasoning, computation, and analysis are
based on the spatial locations of geographical entities,
which are featured as points, lines, and polygons, and are
organized as coordinates, nodes, and arcs in spatial data-
base. As a result, all of those traditional location-based
spatial relation models often lead to some extent of com-
plexity, because they involve complicated geometric com-
putation using spatial coordinates.

In this study, we proposed a new spatial tessellation
model — spatial chromatic tessellation (SCT) — and mainly
focus on the so-called arranged chromatic diagram (ACD),
amost common form of SCT. An ACD partitions space into
a number of small irregular regions with respect to entities
in the space. These irregular regions are called ‘cells’ in the
terminology of computational geometry (O’Rourke 1998).
Distinguished from the above-mentioned spatial data mod-
els and tessellations, ACDs assign each region a meaningful
and distinct chromatic code as its inherent attribute. The
chromatic codes, derived from an entity’s attributes, could
be thought of as the analogy of genetic codes that contain
plentiful information and implication. One of the most sig-
nificant points is that chromatic codes imply spatial topolo-
gical relations and consequently are rather easy to reason,
analyze, and compute without involving spatial coordinate
calculation. In ACDs, cellular chromatic codes play a basic
and critical role. Based on these codes, cells could be
statistically merged into clusters oriented to different geo-
graphical applications.

(a)

The rest of this article is organized in the following
manner. Section 2 describes how to partition space and
assign chromatic codes and gives some basic concepts and
properties of ACD. In Section 3, we discuss about the
relationships between spatial topology and cellular or clus-
ter chromatic codes. Section 4 demonstrates how to use
statistical rules to merge cells into clusters and also shows
the connections between ACDs and Voronoi diagrams. For
better understanding of ACD, the last section makes a con-
clusion and discusses related issues, further topics, as well
as some implications.

2. Spatial chromatic tessellation

As atype of SCT, ACD’s basic structure is quite straightfor-
ward. Here, we only introduce the simplest ACD. At first, a
pair of entities induces one line and hence divides the space
into two parts, which is the same way as in the abstract
Voronoi diagrams to induce two half-planes (Klein 1989).
Then an amount of entities will induce numerous lines and
subdivisions. In computational geometry, such structures
are equivalent to the arrangements of lines (O’Rourke
1998). Let P = {p1, p», ..., pn} be a set of n entities in the
plane, and each entity has a unique color as its index. Their
colors comprise a color index set C = {cy, ¢y, ..., ¢,}. For
every pair of entities, for instance, p; (blue) and p, (green) in
Figure 1a, there is a line /(p1, p,) (or [; » for short), called the
dyed-boundary, partitioning the plane into two half-planes
H(py, p>) and H(p,, p1). The two half-planes are dyed the
colors of corresponding entities respectively, that is, H(p;, p,)
is dyed blue and H(p,, p;) green. All dyed-boundaries
compose an arrangement of lines in which every face is
dyed colors from the color index set. The face is also called
a cell. Cells are bounded by edges (O’Rourke 1998) and are
called closed if they are fully bounded or open if partly
bounded. Figure 1b shows the examples of open and closed
cells induced by three entities. The diagram composed by all
cells is called the ACD. Our subsequent study and analysis
are restricted to the ordinary ACD (OACD), where entities

Figure 1. Partition and dye the space. (a) For two entities: Two half-planes are labeled (B) and (G) and assigned codes (1, 0) and (0, 1),
respectively. (b) For three entities: It consists of 7 cells — 6 are open and 1 in the center is closed. The cell’s label (B, B, R) or code (2, 1, 0)
means with respect to three dyed-boundaries /1(py, p»), L(p2, p3), 3(p3, p1) that the cell is dyed blue twice (to /; and /5), red once (to /,), and no
green. The special cell with color gray (R, G, B) is called competition triangle. (Colour versions of all figures available online.)
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are point objects and dyed-boundaries are always perpendi-
cular bisectors between two entities.

If n entities in P induce a simple arrangement of dyed-
boundaries, which means every pair of dyed-boundaries
meet exactly in one point and no three lines meet in a
point, then the number of dyed-boundaries L(n) and cells
D(n), respectively, are

Ln)=~n® —=n M
and

1 1 3 1
D(n):§n4—zn3+§n2—zn+l 2

If the dyed-boundaries are always the perpendicular bisec-
tors, then

5, T, T
D(n)—gn 5" +8n 12n—|—1 3)

With respect to each dyed-boundary /; ;, a cell is always dyed
a color either ¢; or ¢;, therefore it contains L(n) colors. A cell
is denoted by (cy, ¢, . . ., cz(m), ¢; € C, Where ¢; is called the
color component of the cell. For example, in Figure 2a, {(1,
1, 1,2, 4, 4), with six color components, indicates that with
respect to each dyed-boundary [, 5, /1 3, /1.4, [ 3, [ 4, 13 4, the
cell is dyed six times with color ¢y, ¢y, ¢, ¢, ¢4, Ca,
respectively. Note that to compute the color components,
dyed-boundaries need to predefine an order. In OACD, we
use the order such as /; 5, [y 3, /1 4, 2.3, [> 4, I3 4, Which can be
definedas /;;,i=1,2,...,n—1l,andj =i+ 1,i+2,...,n.

All cells derived from the entity set P form the ACD of
P, denoted by A(P),

l12

I2,4

4

(@)

D(n)
A(P) = U G S
i=1

A cell is dyed L(n) times but only # colors are available for
dyeing, and when n > 3, L(n) > n, so some colors must be
dyed into a cell repeatedly. Therefore, a cell { could be
expressed as {([c1, t1], [¢2, &2], - - -, [Cu> 1)), i € C, Where
[c;, t;] 1s called the color vector (denoted by 1) of the cell. ¢;
indicates how many times the cell is dyed by ¢;. We call ¢;
the hue (denoted by H(/,)) and ¢, the saturation (denoted by S
(1,)) of a color vector ;. A cell {’s ith color vector is denoted
by ([i] = 4; and then the cell is further denoted by {(41, 45,
.., 4,). For any given cells, their hues ¢y, ¢,, ..., ¢, are
always the same but the saturations are variables, so we omit
the hue and express a cell as {(#, t, ..., t,), where the
arrangement of ¢, &, .. ., ¢, is called the chromatic code of
the cell. For example, in Figure 2b, the cell {{(1, 1, 1,2,4,4)
is rewritten as {;(3, 1, 0, 2) with chromatic code (3, 1, 0, 2).
For any entity p; in total it induces n — 1 dyed-
boundaries with the rest of n — 1 entities in P. If with respect
to every induced dyed-boundary, a cell is always dyed c;,
then the maximum ¢; is n — 1; on the contrary, if it is never
dyed c;, then the minimum ¢ is 0, therefore we obtain the
following constraint.
Given an ordinary A(P), for { € A(P) and A = {[i],

0<SA<n—1 (5)

namely, 0 <t < n—1.

The purpose of partition and dyeing is to discretize
space into many small fundamental elements, which hold
the entity’s attributes as their own attributes. All cellular
chromatic codes of an entity set are arranged as a full-color
table (see Table 1) for structural storage in a relational
database.

(b)

Figure 2. An ACD generated by four entities. (a) Cells are labeled by their color components. (b) Cells are labeled by their arranged
chromatic codes. This ACD contains 18 cells, in which 6 cells are closed and 12 cells are open.
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Table 1.  The full-color table of the ACD in Figure 2.

G o 33 G &5 Ge {7 s Qo Gro $i1 $az2 13 $aa $as i Ca7 G

Notes: One row represents an entity and one column represents a cell. The number inside a grid is A[s], indicating how many times an entity’s color is dyed into
the cell. This table could be alternatively transposed by interchanging its rows and columns.

3. Spatial topology between cells and clusters

The union of n cells £y, {5, ..., {, is called an n-cell cluster,
denoted by £{{y, {5, ..., {4}, and in most cases, n > 1 (one
cell could be taken as 1-cell cluster). These n cells are called
elementary cells of the cluster. It is an interesting property
that spatial relations between cells and clusters can be
derived by simple primary algebraic operations on chro-
matic codes. First, we define the operations of cellular
chromatic union and intersection.

Given two cells {(#11, t12, - - . t1,) and (a(to1, 6o, - . .,
t,), their chromatic union(+)/intersection(—) are defined,
respectively, by

OO =t hntnttn, .. e hy) (6)

For example, {1(3, 2, 1, 0) + (53, 1, 2, 0) = &{(,
CZ} = §(6’ 39 37 O)

Because a cell always has 7 color vectors, the above two
operations thus could be further similarly extended to the
union/intersection between a cell and a cluster, a cluster and
a cluster, and among more than two cells and/or clusters. For
the example of two clusters in Figure 4, £,(6, 3, 3, 0) + &(5,
5’ 2, O) - 5{51’ 52} = 5(117 8: 5: 0)

Note that the chromatic union/intersection is only the
operation of chromatic codes. The results of chromatic
union/intersection may not be exactly equal to those of the
corresponding spatial or set union/intersection. For exam-
ple, if a cell unions with itself, then spatially it returns itself,
but chromatically it returns a cell whose saturations are
doubled.

Given two clusters &(¢11, t12, . - ., t1,) and &x(tq, b, - . -,
tzn), iftll =i, =1, ..., L, =l then 51 and 52 arc
called the equicolor and denoted by &; = &,.

The first property is that there are no equicolor cells in
OACDs, thatis, V{;, {; € A(P)and i # j:

Gi#F( (N

The proof of this property is shown in the Appendix.
Therefore, chromatic code could be taken as cellular unique
identifier. The proof of Lemma 1 (see Appendix) also shows

that all chromatic codes are permutations of a basic code set
{0, 1, ..., n}, which is called the primary chromatic code of
cells or clusters.

The second interesting possible property is that the
spatial topological relations between two cells are uniquely
determined by a number, the transition number. Transition
number between the two clusters &(¢11, t12, ..., t1,) and
&b, b, - . ., 1y,) 1s denoted by e(y, &), computed by

n

e(€1,6) =Y |t — tal ®)

i=1

and shortly expressed as e;, ¢ or e ».

For an n-cell cluster £{4, {5, ..., {,}, its interior transi-
tion number E£(&) is defined as the sum of transition numbers
of all pairs of its elementary cells, that is,

1 n n
E€) =5 D ). GG ee ©)

i=1 j=1

A cluster with interior transition number £ is called a
k-transferred cluster.

In Figure 3al, we take {4, the pink cell, as an example
and observe the following spatial topology (the cellular
indices, chromatic codes, and transition numbers are
referred to in Figure 3b—d, respectively: {5, {5, {q1(the
orange cells) share {4 with a common edge, so that they
could be taken as its nearest neighbors, and in these cases,
e=2;(1, (s, 6 (510, {12 (the green cells) are the second
nearest neighbors, connecting {4 with only a common ver-
tex, and in these cases, e = 4; the spatial topological rela-
tions between {4, and {7, {1313 (the blue cells) are
disconnected, and in these cases, e = 6. Actually, it is easy
to find out a possible property that ‘for two cells, the larger e
they have, the further they are.” Note here the ‘further’
means topological relations instead of spatial distance. In
this sense, we call transition number the chromatic distance
between two clusters.

We checked all six closed cells in Figure 3al and they
keep the same property. Open cells, however, do not entirely
follow the property. We think it is due to the boundary effect
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Transition number:

2 2 2

(b) The 1st nearest neighbors, connected by a common edge

G v 4] 4] % 08 %o (o

Transition number:

G12

€41 €42 €45 €48 €49 €410 €412

0 0 0 +1 +2 +2 +1
0 -1 +1 -2 -2 -1 +1
2 42 +#1 #1101 A
-2 -1 -2 0 0 0 -1

4 4 4 4 4 4 4

(¢) The 2nd nearest neighbors, connected by a common vertex

‘ 4] ‘ (44 Gz G G5 Qe (7

Transition number:

18

€47 €413 €414 €415 €416 €417 €418

+1 42 43 43+ o+ 42
-2 +1 -1 0 0 +1 +1
+2 -1 -1 -1 +2 -1 0
-1 -2 -1 -2 -3 -3 -3

6 6 6 6 6 6 6

(d) The 3rd nearest neighbors, disconneted

Figure 3. Topological relations between cells and transition numbers. In (al) and (a2), cells with same colors have same transition numbers
to the pink cell {4(3, 1,2, 0) or {14(2, 1, 0, 3). (al) shows the spatial relations between {4 and other cells. (a2) shows an open cell {; and other
cells with transition numbers 2, 4, 6, 8 (dyed with the same color, respectively). (b)—(d) show the transition numbers corresponding to their

spatial relations.

because there are always some points lying in the convex hull
of'a given point set in space. For example, in Figure 3a2, with
respect to (14(2, 1, 3, 0), yellow, green, light blue, and dark
blue cells have transition numbers 2, 4, 6, and 8, respectively.
Although e = 2 still corresponds to the nearest neighbors, the
correspondences between spatial relations and transition
numbers when e = 4, 6, 8 are not as explicit and distinct as
those in the cases of closed cells. For instance, cells {(2, 3, 0, 1)
and (¢ are disconnected but they have a small transition
number 4. An approach to handle this problem is extending
ACD to three-dimensional space (imaging all points located

on a sphere, a dyed-boundary turns to a great circle of the
sphere, and a half-plane turns to a hemispheric surface),
then all open cells are closed (e.g., {(2, 3, 0, 1) and ;¢ are
actually connected by a common vertex on the other hemi-
sphere). An alternative approach to solve this problem is to
calculate the shortest path (see the Appendix). The above
two approaches are quite complicated and we do not intend
to give full details here. Nevertheless, in a general geogra-
phical space :* with a great amount of entities, most of the
cells are closed and only a few marginal cells are open but
not our focus in this study.
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The above properties between cells still work for clus-
ters. First, we consider 2-cell clusters are totally D(n) com-
binations of unions of two cells. For these 2-cell clusters,
they may have interior transition number 2, 4, 6, 8, and so
on. We call the cluster with the minimum interior transition
number the minimum transferred or simple cluster. For two
cells connected with a common edge, they unite into a
simple 2-cell cluster, that is, a 2-transferred cluster.

In OACDs, the definition of simple clusters is the same
as the simple polygons (Okabe et al. 1992). Table 2 shows
possible chromatic codes of all simple 2-cell clusters gen-
erated from an entity set P with four entities. The corre-
spondences between spatial relation and transition number
of simple 2-cell clusters are similar to those in the 1-cell
clusters. Figure 4 demonstrates an example of 2-cell’s spa-
tial relations and their associated transition numbers. We can
still observe that for two 2-cell clusters, the larger transition
number they have, the topologically further they are.

Table 2 shows that arranged chromatic codes of all simple
2-cell clusters are still always distinct but come from one of
the cluster primary chromatic codes {0, 2, 5, 5}, {0, 3, 3, 6},
{1, 1,4, 6}. In this OACD, the cellular primary code is {0, 1,
2, 3}, and when a cell transfers one number, there are only
three alternatives to keep primary chromatic code
unchanged: from 0 to 1, 1 to 2, or 2 to 3. Table 3 shows
why such three primary codes arise. In the same way, we
computed that for 4-transferred 2-cell clusters, their primary
codes are always {0, 3,4, 5}, {0,4,4,4}, {1,1,5,5}, {1, 2,
3,6}, {2, 2,2, 6}, distinct from those of the simple clusters.
For the 6-transferred, their primary codes are {1, 2, 4, 5},
{1,3,3,5}, {1,3,4,4}, {2, 2,3, 5}, {2, 3, 3, 4}, and the 8-
transferred are {2, 2, 4, 4}, {2, 3, 3, 4}, {3, 3, 3, 3}. All of
these primary chromatic codes are distinct from each other,
except the 6- and 8-transferred sharing the same code
{2,3,3,4}.

For simple 3-cell clusters, they have the same prop-
erty. Table 4 lists all the chromatic codes of 3-cell

simple clusters, which should bear interior transition
number 8. Their codes are still distinct with primary
chromatic codes {1, 3, 5, 9}, {1, 2, 7, 8}, or {0, 4,
6, 8}. We hope to find a general expression to represent
the spatial relations between all simple clusters by their
transition numbers. Here, we just report the above
observations found in OACDs and would like it to
remain as an open problem and hope it can be rigor-
ously solved in mathematics.

Table2.  2-Cell simple clusters with primary chromatic codes {0,
2,5,5}%, {0, 3,3,6},and {1, 1, 4, 6}.

G G e G+86
3210 3201 2 6411
3120 3210 2 6330
3102 3201 2 6303
3120 3021 2 6141
3102 3012 2 6114
3021 3012 2 6033
3210 2310 2 5520
3201 2301 2 5502
3120 2130 2 5250
3102 2103 2 5205
3021 2031 2 5052
3012 2013 2 5025
2310 2301 2 4611
2130 2031 2 4161
2103 2013 2 4116
2310 1320 2 3630
2130 1230 2 3360
2031 1032 2 3063
2013 1023 2 3036
1320 1230 2 2550
1032 1023 2 2055
1230 0231 2 1461
1032 0132 2 1164
0231 0132 2 0363

Note: Each cluster’s chromatic code is unique.

(a) (b)
& & €12 Spatial topological relation
5520 4 Connected by 1 common cell
6033 6 Connected by 1 common edge and 1 vertex?
4161 8 Connected by 1 common edge b
6033 4161 8 Connected by 1 common edge
6033 4116 8 Connected by 1 common edge
4116 4161 10 Connected by 1 common vertex
BEssol 4116 12 Disconnected
4116 5520 12 Disconnected

Figure4. Examples for transition numbers and spatial relations between 2-cell clusters. a: The relation between the red cluster £(6330) and
the green £(6033). Their common vertex comes from their elementary cells 3210 and 3012 and the common edge comes from cells 3120 and
3021 (see Figure 2b). b: The relation between £(6330) and the blue cluster £(4161). They have no common vertex such as in a, because their
elementary cells 3210 and 2031 are disconnected. In b, clusters’ spatial relation is equivalent to be connected by a partial common cluster

edge.
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Table 3.  Three scenarios with transition number 2.

Transitions with e = 2 Primary codes of 2-cell clusters

0123 (0 <> 1) — 1023
0123 (1 < 2) — 0213
0123 (2 <> 3) — 0132

0123 +1023 = 1146
0123 + 0213 = 0336
0123 + 0132 = 0255

Note: The formula in the first grid denotes when 0 and 1 exchange their
places, 0123 transfers to 1023.

4. Interpretation of arranged chromatic codes

An important function of ACD is that cells are able to be
merged into a large cluster. This section introduces how to
statistically interpret and integrate cellular chromatic codes.

In ACDs, cellular aggregation is based on their full-color
tables. In relational database, a full-color table consists of
columns and rows, representing cells and entities, respec-
tively. Or inversely, we can use columns to represent entities
and rows to represent cells. In terms of different statistics in
full-color table, that is, the chromatic merging rules, cells
could be merged into clusters hence forming new spatial
tessellations or patterns.

4.1. Entity-based merging rules

The saturation of a color vector means how much influence
an entity imposes on the cell. Then from an entity’s

Table 4.  3-Cell simple clusters with interior transition number 8 and primary chromatic codes {0, 4, 6, 8}, {1, 2,7, 8} and {1, 3, 5, 9}.

G G G e es €3 E(©) G +o+EG
1230 0231 0132 2 2 4 8 1593
2031 1032 0132 2 2 4 8 3195
1320 1230 0231 2 2 4 8 2781
2130 1230 0231 2 2 4 8 3591
2031 1032 1023 2 2 4 8 4086
2103 2013 1023 2 2 4 8 5139
3012 2013 1023 2 2 4 8 6048
2130 2031 1032 2 2 4 8 5193
3021 2031 1032 2 2 4 8 6084
2310 1320 1230 2 2 4 8 4860
3120 2130 1230 2 2 4 8 6480
3210 2310 1320 2 2 4 8 6840
3102 2103 2013 2 2 4 8 7218
3021 3012 2013 2 2 4 8 8046
3102 3012 2013 2 2 4 8 8127
3120 2130 2031 2 2 4 8 7281
3120 3021 2031 2 2 4 8 8172
3210 2310 2301 2 2 4 8 7821
3102 3201 2301 2 2 4 8 8604
3210 3201 2301 2 2 4 8 8712
3120 3210 2310 2 2 4 8 8640
3120 3021 3012 2 2 4 8 9153
3120 3210 3201 2 2 4 8 9531
1032 0132 1023 2 4 2 8 2187
2130 1230 2031 2 4 2 8 5391
3021 3012 2031 2 4 2 8 8064
3102 3012 2103 2 4 2 8 8217
3102 3201 2103 2 4 2 8 8406
3120 3021 2130 2 4 2 8 8271
3120 3210 2130 2 4 2 8 8460
2310 1320 2301 2 4 2 8 5931
3210 3201 2310 2 4 2 8 8721
3102 3201 3012 2 4 2 8 9315
3120 3210 3021 2 4 2 8 9351
1032 0231 0132 4 2 2 8 1395
1032 2013 1023 4 2 2 8 4068
2130 1320 1230 4 2 2 8 4680
3012 2103 2013 4 2 2 8 7128
3021 2130 2031 4 2 2 8 7182
3201 2310 2301 4 2 2 8 7812
3021 3102 3012 4 2 2 8 9135
3210 3102 3201 4 2 2 8 9513

Note: Each cluster’s chromatic code is unique.
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perspective, the first rule is finding out the cells where one
entity has the most dominance than the others.

(NEIGHBORHOOD, R;) For an entity p;, merge all
cells where its saturation #; is the maximum, that is,

Epi,R)={C:ti=n—-1} (10)

where £(p;, Ry) is the cluster of p; with respect to Rule 1
(called the neighborhood rule and denoted by R;), and {{:
t= n — 1} is a set that contains all cells with property
t; = n — 1. In this rule, p; is called the generator of the
cluster. The maximum #; = n — 1 is obtained from Equation
(5). Equation (10) is abbreviated and denoted by

&piRy) =<n—1> an

Because every entity generates a cluster in this rule, the
clusters generated from all entities compose a new diagram
named neat ACD (NACD). For Ry, its NACD is denoted by

An(P,R)) Lk@&h (12)

In Table Sa, R, is illustrated by a rule-color table extracted
from a full-color table. In this rule-color table, for every row,
the cells with the same maximum saturation, that is, the
grids with the same color, are merged into clusters, as in
Figure 5a.

For an entity p;, its cluster merged from R, is equivalent
to its ordinary Voronoi region, that is,

{piR1) =V(pi), pi € P (13)

Because in OACD the dyed-boundary is a perpendicular
bisector, the points in H(p;, p;) being dyed color ¢; indicate
that p; is its nearer entity than p;. For any cell in A(P), the
saturation of ¢; being n — 1 indicates that for all dyed-
boundaries induced by p;, the cell are always dyed
color ¢;. Hence for any point in the cell, the p; is the nearest

Table 5.  Rule-color tables of Rules 14 ((a)—-(d)) and high-order Voronoi diagrams ((e) and (f)).
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Note: In each table, cells marked with the same color are merged into one cluster.



23:00 17 Decenber 2010

Downl oaded By: [Zhu, Weining] At:

Annals of GIS 245

(a) Rule 1 =V(P)

(c¢) Rule 3 = VEI(P)

Figure 5. NACDs generated from four entities in Rules 1-4.

entity among the P. Also in Ry, all the cells that satisfy the
above property are merged into a cluster and such a clus-
tered region is the same as the definition of Voronoi region,
which consists of all the points at least as close to p; as to any
other entities p;.

Based on the above proof, we conclude that NACD in
Rule 1 is equivalent to the ordinary Voronoi diagram, that is,

An(P,R,) =V (P) (14)
There are several other similar rules as follows:

(R,) For an entity p;, merge all cells where its saturation
t; is the second largest, that is,

§pisRy) =<n—2> (15)

(R3) For an entity p;, merge all cells where its saturation ¢ is
the third largest, that is,

(b) Rule 2 = V3(P)

(d) Rule 4 = Vy(P)

Epi,Ry) =<n—3> (16)

(Ry) For an entity p,, merge all cells where its saturation ¢; is
0, that is,

§(pi,Ry) = <0> (17)

R,—R, are equivalent to the second-, third-nearest point, and
furthest point Voronoi diagrams, respectively, that is, AN(P,
R2) = VPAP), AN(P, R;) = VPI(P), and AN(P, Ra) = Vip(P),
respectively. Their rule-color tables and NACDs are shown
in Table 5b—d and Figure Sb—d.

From R; to Ry, the saturation decreases from the max-
imum to 0. We organize rules like R—R4 to a rule group that
corresponds to the kth-nearest point Voronoi diagrams:

R<0,1,2,... > (18)
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ACD is also easy to generate high-order k, for example,
the ordered order-2 and order-2 Voronoi diagrams. To do so,
their rules should be, respectively, as follows:

5((pi’ pj)7R0rdered—2) = {C:ti =n- 1('\1‘] =n- 2} (19)

and

5((171" p/)’ Rorderfz) = {C:ti t4= 2n — 3} (20)

Their rule-color tables are given in Table 5e and f. In fact,
from the perspective of ordering, for n entities, when the
order k reaches its maximum 7, OACDs could be hence
regarded as the ordered highest-order (i.e., order-n) Voronoi
diagrams, which are too trivial to be studied by most of the
spatial analysis communities. In ordered highest-order
Voronoi diagrams, the ordered n-orders may be the same
as chromatic codes, because in ACDs their corresponding
rule is

<, =0t =1n...nt, =n—1} 1)

Equation (21) is similar to the permutation of cellular pri-
mary chromatic codes. In this case, each cell is merged into
itself due to the nonexistence of equicolor cells. Although
OACDs and the ordered highest-order Voronoi diagrams
seem identical in their appearance, they are actually differ-
ent in essence. In OACDs, chromatic codes are quantitative
characteristics rather than qualitative labels in ordered high-
order Voronoi diagrams. For example, given 4 entities
(labeled by A, B, C, D or 0, 1, 2, 3), in their ordered
order-4 Voronoi diagrams, ‘3’ in the order (3, 0, 1, 2) or
‘B’ in the order (B, C, A, D) is just a symbol indicating that
the nearest entity is labeled by ‘3” or ‘B,” butin OACDs, 3 in
code (3, 0, 1, 2) is a number indicating the magnitude of
influence imposed by the first entity.

@

Chromatic codes provide not only a new perspective to
generate and interpret Voronoi diagrams but also abundant
information for more statistical merging. How to set mer-
ging rules depends on the addressed problem or a specific
application. The statistics of chromatic codes are usually
along two directions: entities and cells, namely, the rows
and columns of a full-color table. Ordinary Voronoi dia-
grams are entity-based interpretations and they only involve
with the maximum saturation. Other statistics, such as mini-
mum, sum, average, and even complicated statistical dis-
tributions, are all possible variables to merge cells. In entity-
based merging, each cluster is relevant to one or more
generators, whereas in Section 4.2, we will introduce cell-
based merging, which focuses on permutation characteris-
tics of a chromatic code, regardless of who the generators
are.

4.2. Singular cells and their geographical significance

In the OACD induced by 4 entities, the cellular chromatic
codes are always the permutations of the primary chromatic
code {0, 1, 2, 3}. However, other primary chromatic codes,
such as {0,2,2,2}, {1,1,1,3},and {1, 1, 2, 2}, should be
allowed at least theoretically. For n entities, we call their
primary chromatic code {0, 1,2, ..., n} the normal primary
chromatic code and otherwise the singular primary chro-
matic codes. This subsection focuses on these singular cells
and explains their geographical significance. In fact, the
singular cells are degenerated into vertices in OACDs (see
an example in Figure 6b). If dyed-boundaries are not bisec-
tors, the singular codes will occur in ACDs (see Figure 6).

Chromatic codes indicate how much influence every
entity could impact on a subregion. For instance, p;—p4 are
the quarters of four gangs and they set their territories by
roads. In this instance, gangs are entities located in p;—py,
roads are dyed-boundaries, and urban blocks bounded by
roads are cells. From the geographical perspective, normal

(b)

Figure 6. Singular cells in ACD. (a) Cases for {3, 1, 1, 1} (green cells) and {2, 2, 2, 0} (red cells). (b) Cases for {2, 2, 1, 1} (yellow cells)

and a degenerated cell (blue vertex).
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primary chromatic code {0, 1, 2, 3} is an ordered distribu-
tion where the gangs’ dominance is graded distinctively. {0,
2, 2,2} is a uniform distribution where three gangs’ dom-
inance is balanced in a high level, so that the three gangs
may compete for their territories. In {1, 1, 1, 3}, three gangs
are balanced in a low level although one gang has an out-
standing dominance, so that the three gangs may either
compete with each other in a low level or they are more
likely inclined to cooperate to contend with the dominant
gang. {1, 1,2, 2} means two gangs are balanced in low level
whereas the other two gangs are in the high. Because of the
administration of public security, a police station may con-
cern those singular cells where an open fight may happen,
because they could be regarded as competitive or isolated
regions never being exclusively dominated by any entities.

Primary chromatic codes could be rearranged to all
possible chromatic codes. It is easy to know that the normal
code {0, 1, 2, 3} generates 24 permutations, whereas {1, 1,
2,2}, {0,2,2,2}, and {1, 1, 1, 3} generate 6, 4, and 4
permutations, respectively. This property indicates that in
ACD most cells are with normal primary chromatic code {0,
1,2, 3}, occupying the most of the space. In these cells, each
entity is orderly settled in an appropriate position and there
are no entities in extreme dominance as in {1, 1, 1, 3} or
competitive balance as in {0, 2, 2, 2}.

Besides entity-based rules, cells could also be merged in
cell-based rules. The cell-based rules only consider the
statistics of cellular primary chromatic code without con-
sidering who the generator of a cluster is. Rule 5 is an
example.

(Rs) Given an ACD generated by n entities, merge all
cells where the maximum saturation is n — 1, that is,

E(Ry) = {¢: max(s) = n— 1} (22)

In this rule, all cells with primary chromatic codes {0, 1, 2,
3} or {1, 1, 1, 3} are merged into a cluster. If the ACD is an

13,2. 1,0}

OACD, because all cells have the same primary chromatic
code {0, 1, 2, 3}, we then obtain the whole space.

Furthermore, {0, 0, 3, 3} is also a possible singular
code, but where is it? Actually, such cells do not exist in
OACD:s, that is,

ti=t=n—lort;=4=0,13, €, i#  (23)

Because ¢; = n — 1 indicates that with respect to the dyed-
boundary /(p;, p;), the cell is always dyed c;, whereas
t; = n — 1 indicates that it is always dyed c; in the same
way, but with respect to /(p;, p;), a cell cannot be dyed twice.
Also, #; = 0 indicates that the cell is never dyed ¢; and #; = 0
indicates that it is never dyed c;, but with respect to /(p;, p),
the cell must be dyed either ¢; or ¢;. This constraint for
singular primary chromatic codes means that the cells are
unable to dye both ¢; and ¢;, or neither ¢; nor ;.

Equation (23) is not the only constraint subjected to
singular codes. Complete constraints can be transformed
to an equivalent of partitioning an n-order complete graph
G. In G, a vertex represents an entity and an edge represents
the dyed-boundary induced by the two adjacent vertices of
the edge. The G needs to be partitioned into #n subgraphs Gy,
Gy, ..., G,, where G; consists of a vertex p; and S(4;) edges.
Figure 7 is an example to partition a 4-order complete graph.
Note, for some types of ACD, the above constraints might
be invalid. For example, in half ACD (hACD) (see
Section 5), it is possible to find a cell with code {0, 0, 3, 3}.

Chromatic codes could also be employed to analyze
point pattern. Given a cluster &({5, {5, .. ., {}) and an entity
pj, the sum of p;’s saturations in ¢ is called p;’s local influ-
ence in the cluster and is denoted by I (£, p)), that is,

k
IL(&p) =D TG, G e (24)

i=1

and p;’s global influence I(p;) is defined from all cells, that is,

TN\ {3; 1, 1,1}

{2,2,2,0}

25 90

Figure 7. Graph partition corresponding to the primary chromatic codes of four entities.
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Figure 8.
I with the pattern in (a).

D(n)

I(p;) = ZI(Ci[f]),Ci € A(P)

i=1

(25

Given the four entities {p1, p», p3, p4} with distribution of
Figure 2, the global influence of each entity, namely, the
sum of all numbers in each row, is listed in the last column
of Figure 8b. The entity p; has the most global influence 34,
and p, and p4 both have the least global influences 22. When
their pattern is similar to that in Figure 8a, where p, locates
at the center of the space, their global influences turn to
I6(p1) = 36, I6(p2) = I6(p3) = I6(p4) = 24 (see Figure &c).
These results indicate that for a given entity in space, the
closer to the center it is, the more global influence it bears.
Assuming points in set P distribute evenly in the space, P
generates an ACD where cells also distribute homoge-
neously. In such an ACD, when an entity locates at space
center, it occupies more cells as its nearest neighbors (where
its saturation is » — 1) hence with more global influence, but
if an entity locates at space margin, it occupies more cells as
its kth-nearest neighbors (where its saturation is n — k) hence
with less global influence. It is similar to put a speaker in a
square center and more people could hear it. If we put it at
the corner, then more people are margined and hence cannot
hear the sound clearly.

We noticed that the whole space would be represented
by a cluster merged from all cells, that is, A(P) = £Ig(p1),
I(p2), - . ., Ig(p,)). For example, the space occupied by four
entities such as in Figure 2a could be coded by £(34, 22, 30,
22), whereas those in Figure 8a could be coded by £(36, 24,
24, 24). From the two examples, we can see that if two point
sets have the different spatial patterns, they will generate
different chromatic codes accordingly. Inversely, if we do
not know the pattern of a given point set, we can calculate
the chromatic code of the whole space and then derive its
point pattern.

5. Summary and future work

A new tessellation model, SCT, was proposed for space—
entity modeling. Based on the half-plane partition and

(a) A point pattern that an entity p; is in the center. (b) Global influences (/) of entities with the pattern in Figure 2. (c) Entities’

arrangement of lines, ACD, especially the OACD, was
studied as an example of SCT. The basic concepts, opera-
tions, applications as well as other important aspects of SCT
and ACD were introduced. In SCT, cells are assigned char-
acteristic chromatic codes. These codes bear useful infor-
mation that could be applied to analyze the relationships of
space-to-space, entity-to-entity, and entity-to-space.
Furthermore, these structured codes are flexible and feasible
for geographical statistics and computation. The generation
and the application of SCT follow three principles: parti-
tioning, dyeing, and merging. In the real world, many sys-
tems coincide with the similar principle. For example, wild
animals mark their habitats with their scent, cells with
genetic information aggregate to tissues and organs, and
atoms with internal particles combine to molecules and
substance.

Compared with raster model and Voronoi diagrams, SCT
is a spatial tessellation tightly connecting space and entities —
amore general perspective to represent space—entity relation-
ship. We can take chromatic codes as a kind of object-
orientated coordinates of the space. Recalling Euclidean
coordinates (x, y) in raster model or a text label (a, b, c, d)
in Voronoi diagrams, we can see that they are too specific on
depicting either space or entity attributes. A chromatic code
like (3, 2, 0, 1) combines the merits of raster and Voronoi — it
can be applied not only to spatial computation, similar to
using Euclidean coordinates (x, y), but also to entity inter-
pretation, similar to using Voronoi label (a, b, ¢, d).

SCT is a quite novel model and holds many implications
waiting for more explorations. Some mathematical tools
will be helpful for this model, such as the theory of graph,
permutation group, and combinatorics. In this article, we are
unable to cover everything of SCT. Here, we just briefly
discuss some related issues and future works.

5.1. Complex chromatic space

We would like to remind the readers that ACD is only one
type of SCT. In practice, the generation and application of
SCT could be generalized as a three-step scheme: partition-
ing space, dyeing entity attributes, and merging cells. How
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to implement the scheme is fairly flexible, depending on
what the real entity is, what the real space is, and what the
problem we want to solve is. Here we only studied OACD,
the simplest form of ACD. In OACD, entities are points and
dyed-boundaries are bisectors. The real world, however, is
much more complicated than OACD. Geographical entities
could be linear and areal objects and space are three dimen-
sional. The dyed-boundary is also a broad concept in
SCT. For shape, a dyed-boundary could be a curve, a
zigzag, or even a zone; for objectivity, it could be real,
virtual, or even fuzzy; and for location, it could be not
only in the middle of two entities but also anywhere in the
given space. Each spatial partition is always with respect to
two entities. The essence of partitioning is that two entities
use something, namely the dyed-boundary, to distinguish its
own subspace from the others. As the next step, they need to
mark their subspace. This is the issue of how to dye space.
In OACD, entity index is the only attribute dyed into space,
but real entities often have more additional attributes, either
qualitative or quantitative. Any attribute is able to dye the
space. The essence of dyeing is that entities give their own
attributes to each subspace, so that the subspace turns to be
cell inheriting those attributes. These cellular attributes need
to be organized further, just like we arrange the cellular
color (1, 1, 1, 2, 2, 4) into a chromatic code (3, 2, 0, 1).
When cellular attributes are organized to chromatic codes,
they are all converted into a few numbers for future
computations.

Thus, after partitioning and dyeing, we transform the
space from a blank into an organism. At this stage, we could
even remove all entities. The coded and discretized space
can independently exist. To further reveal the feature of the
new space, the spatial chromatic statistics is an important
approach.

5.2. Spatial chromatic statistics

In ACD, the rule is a type of chromatic statistics that is
performed by chromatic codes. The cellular attributes, or
chromatic codes, could be organized as a full-color table
that is convenient to store in database. However, unlike the
traditional database table, the spatial chromatic statistic is
computable not only on columns but also on rows. The two
types of statistics correspond to two perspectives from
which we view the full-color table: entity-based or cell-
based. The entity-based statistics could be used in the ana-
lysis of how space influences an individual entity, and the
cell-based could be used in the analysis of how entities
influence the space.

When more entity attributes are dyed into cells, they
make more tables similar to the full-color table. All these
tables provide additional information for spatial statistics
and analysis. Moreover, the full-color table is not the only
source for spatial chromatic statistics. By merging, cells
disappear whereas clusters arise. Consequently, we can

organize the chromatic codes of clusters into a new table.
The subsequent merging, if necessary, could be based on the
statistic variables of the new table. This way is a hierarchical
merging from cells to small clusters then to large clusters.

5.3. Algorithm, data structure, and implementation

Due to the partitioning manner, the algorithm of OACD is
simple. We just need to iteratively (1) compute and store the
vertices that are generated by every current dyed-boundary
intersecting all the previous, (2) split all involved previous
cells into new cells, and (3) re-dye all cells (update their new
saturations in full-color table). Consequently, ACD pro-
vides a new algorithm to generate various Voronoi dia-
grams. For example, the kth-nearest point Voronoi regions
are easily generated by executing a simple SQL query:

SELECT*FROM FullColourTable WHERE #[i]=n—k+ 1

Then the retrieved cells can be merged and hence form the
Voronoi region of the ith entity. Repeating the above query n
times (leti = 1 to n), we obtain the kth-nearest point Voronoi
diagrams that are generated by the # entities.

In a traditional relational database, one row corresponds
to a record and one column corresponds to an attribute. To
store a full-color table in a relational database, we may take
either cells or entities as the records in rows. However,
because the number of cells is usually greater than that of
the entities, it is better to store cells as records. On the other
side, the statistic queries in traditional relational database
are often based on the attributes, that is, the columns of a
table, and therefore for full-color tables in the database, it is
inconvenient to deal with all kinds of spatial merging,
because they are based not only on cell-based but also
sometimes on entity-based rules. Therefore, we suggest
that in future the full-color table should be better treated as
a matrix rather than a database table.

5.4. Chromatic codes, spatial relations, and index

Mathematically, chromatic codes are the arrangement of
entity indices. The relationship between entities and space
is well established in these codes that are analogous to
genetic codes. Transition numbers could be thought as a
kind of topological chromatic distance. When two clusters
have close colors, they also have close topology. In spatial
index, chromatic codes could be used as a type of index.
Traditional spatial index uses minimum bounding rectangle
(MBR) or convex hulls. In ACD, we may use minimum
bounding clusters because spatial relations are easy to com-
pute through chromatic codes.

In ACD, chromatic codes represent cellular and clus-
ter’s spatial relations simply and explicitly. Our main con-
cern, however, is the spatial relations between entities,
especially for lines and polygons. One possible approach
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is first abstracting any entity as a point, partitioning and
dyeing the space, and then using this chromatic space to dye
entities backward. Then we can reason their spatial relations
based on their new colors. In Section 2, we have demon-
strated spatial relations between cells and cells, 2-cell and 2-
cell clusters, 3-cell and 3-cell clusters, but we still need to
figure out the general spatial relations between any n-cell
and m-cell clusters.

5.5. Half arranged chromaticity

Given an entity set P, if every pair of entities induces a dyed-
boundary, then the induced ACD is called a full ACD
(fACD). According to Equations (1) and (2), n entities
will induce L(n) = O(n*) dyed-boundaries and subse-
quently D(n) = O(n*) cells, so for a very large n, the number
of dyed-boundaries, cells, and color vectors per cell will be
too large to be handled in GIS. However, in our geographi-
cal world, when two entities are so far apart from each other,
they usually have no relationship. Consequently, for such a
pair of entities, it is unnecessary to induce their dyed-
boundary and dye the space, and hence a fACD turns to

the so-called hACD. For example, we can set a real distant
threshold, say, 1000 m, to determine whether we need to
induce a dyed-boundary. Or more realistically, we could
combine hACD to a small-world network. In this case, if
two people or entities are socially connected, they may
induce a dyed-boundary. The number of dyed-boundaries
and cells in hACDs could be sharply reduced to O(n) and
O(n?), respectively. From the perspective of spatial resolu-
tion, the number of cells in an ACD is similar to the number
of pixels in a raster image. If we define the number of cells
as the resolution of an ACD, then the resolution of the fACD
is the highest O(n*). The resolution of hACD is much lower
than a fACD’s. If we do not connect any pair of entities, then
the resolution is 1 (there is no spatial tessellation).
Therefore, ACD’s resolutions range from 1 to o).
Comparatively, in a traditional raster model, the range of
pixel amount can be technically from 1 to infinite if a pixel
size is set as small as possible.

hACD is more realistic and applicable than fACD. We
developed a computer program to generate ACD, NACD,
and hACD; see Figure 9. In hACD, the cellular primary
chromatic codes have more variations. For example, in full
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Figure 9. Graphical user interface of ACD program and an example of hACD generated by 16 entities. If the distance between the two
entities is greater than 200 pixels, then they are assumed to have no relationship and hence we do not generate their dyed-boundary. Cells
were merged in Rule 5, which is implemented by ‘“MERGE*FROM FullColorTable WHERE C_MAX = [i].” Rule 5 is slightly different
from Rule 1 that forms ordinary Voronoi diagrams. This diagram is an NACD where the subregions with the same color represent a cluster.
C_MAX is a statistical variable indicating the maximal saturation of a chromatic code. In a full OACD, C_ MAX is always n — 1, but in a half
OACD, C_MAX of some chromatic codes will be smaller. For this example, assuming the 16 entities are shops, we could observe two central
regions, the red polygons (cluster) in this figure, where C_ MAX is 6, showing that some shops have the greatest local impacts within the red
cells. This diagram implies that the geographical distance tends to form a space that contains a few local centers instead of only one global

center.
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OACD, primary chromatic code is always {0, 1, 2, ..., n},
but in hACD, a cell is probably with color {0, 0, 2, 3, ..., n},
where the first two zeros indicate that for each dyed-
boundary like I(p,, p;) or I(p,, p;), the cell is always dyed
the color p;. In addition, because entities p; and p, have no
relationship, they do not induce I(p, p»), so both p; and p,’s
colors have not been dyed into the cell at all. Therefore, if
given a cell with chromatic code segment ‘0, 0’ like in {0, 0,
2,3, ..., n}, then we will know not only that the distance
between p; and p, is quite far but also that the cell is far
away from both p; and p,. We also found many interesting
hACD features that are very different from the Voronoi
diagrams. For instance, different entities share the same
nearest neighborhood.
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Appendix

This appendix gives a proof of the first property of OACD, that is,
there are no equicolor cells in OACD. To prove it, let us start from
two lemmas.

Lemma 1: In an OACD created by P = {py, p>, ..., pn}, cellular
chromatic codes are always the permutations of {0, 1, 2, ...,
n—1}.

Proof: According to the definition of a dyed-boundary of OACD,
any point p that is equidistant from any two entities p; and p;, that
is, d(p, p;) = d(p, p;), only locates on dyed-boundaries. Therefore,
in the plane )7, point p inside any cell is not equidistant from all
entities. Then for a given cell, P can be rearranged to {p,’, p5/, ..
P, } with the below order:

()

d(p,p))<d(p,py)<---<d(p,p)) (A1)

This order indicates that for n — 1 dyed-boundaries /,(p,’, p5’),
L1, p3), ..., L_i(p, p.)), the cell is dyed with p," n — 1 times, for
n — 2 dyed-boundaries [,(py, p3'), L', p4), . . .. Lia(ps', p,)), the
cell is dyed with p,’ n — 2 times, and so on. Therefore their cellular
chromatic codes are always the permutations of {0, 1,2, ...,n—1}.
U

For the permutations of {0, 1,2, ..., n — 1}, an E-transposition
(a, b), denoted by Te(a, b), is an exchange of only two elements a
and b but with all others staying the same. For example, Te(1, 2)
turns code (3, 2, 1, 0) to (3, 1, 2, 0). There is another type of
transposition (a, b), L-transposition, denoted by Tl(a, b). L-
Transposition only exchanges two elements whose locations
(indices) are a and b, regardless of what they are. For example,
TI(1, 2) turns code (3, 2, 1, 0) to (2, 3, 1, 0). Here, we can see that
the result of an action 7e(a, b) may not equal to that of 7l(a, b). An
E-transposition could be converted to an equivalent L-
transposition if their results are same. For example, 7e(1, 2) = T/
(2, 3), they both turn (3,2, 1, 0) to (3, 1, 2, 0).

Let us consider two scenarios: (1) Two cells {; and {, are
adjacent with a dyed-boundary [(i, ;); (2) acting TI(i, j) on {;.
Actually scenario (2) turns ¢ to {, and hence makes the scenario
(1). We call this turn moving a step from (', to {; by passing /(z, j).
If Tl(i, j) = Te(a, b), it is also called {'y’s transition from a to b, and
the absolute difference between a and b, |a—b|, is called the E-
transposition number of the transition.

Lemma 2: In an OACD, moving a step from {, to {» by passing a
dyed-boundary (i, j) is equivalent to acting TI(i, j) on {1 with E-
transposition number 1.

Proof: The generation of two adjacent cells {; and {5 is equivalent
to using (7, j) to partition an initial polygon. Assume /(i, j) is the
last dyed-boundary partitioning the polygon. Before the partition,
the polygon is expressed as

() (a2

where the bottom row represents the chromatic code of the polygon
and the top row represents code locations or indices. The code
indices are always fixed from 1 to n. Before the partition of (7, ),
the ith saturation is x and the jth is y. The ellipses indicate that at
these locations saturations have been already decided by previous
partitions and they keep unchanged for the action TI(Z, j).

Let x and y have a relationship y = x + &, and k& > 0, then the
polygon could be rewritten as

(...,x,...,x—i—k,.‘.) (A3)

After the partition of (i, j), the polygon is decomposed to two new
cells and they are dyed with color ¢; and ¢;, respectively. Then their
chromatic codes could be written, respectively, as

Cl(...,x+1,...,x+k,...) (A4)

and

CZ(...,x,...,x+k+l,...) (AS)

According to Lemma 1, the codes of {; and {;, should be both the
permutations of {0, 1, ..., n}. If k =1, then in {;, two saturations
are both x + 1. This contradicts Lemma 1. If k> 1, then in 'y, there
must be a saturation x hidden in its ellipses and so as in {5’s.
Therefore in {», two saturations will be equal to x. This also
contradicts Lemma 1. As a result, k£ can only be 0. That implies
x =y, and therefore their chromatic codes could be rewritten,
respectively, as

Cl(‘..,x—i—l,...,x,..‘) (A6)

and

CE(...,x,...,;ﬂrl,...) (A7)

Checking their locations and corresponding saturations, we can see
that elements at locations i and j are exchanged and the difference
between the two elements is 1. []
Corollary 1: In OACD, if two cells share an edge then their
transition number is 2.
Proof: According to Equations (A6) and (A7) in the proof of
Lemma 2, their transition numberis | (x + 1) —x |+ |x—(x+ 1)
|=2.0

The steps that a cell walks to its adjacent cells one by one form
a path. Given a cell { with an edge (7, j), the other cells that locate
in the half-plane H(j, i) are called {"’s half-outside cells with respect
to I(i,j) (Figure A1). Therefore, in an OACD, with respect to "5 all
edges, any cell is '’s half-outside cell except { itself.
Theorem 1: If € is the set of { s half-outside cells with respect to [
(i,j), thenfor any gout € 57 (¢Cout-
Proof: Let us represent a chromatic code using a graph (Figure A2).
In Figure A2a, each vertex represents a location / and also an
element with saturation S, and each edge represents a possible L-
transposition and also an equivalent E-transposition. According to
Lemma 2, moving a step is equivalent to swapping two vertices with
E-transposition number 1. A cell walking within the half-plane H{j,
i) implies that it passes the dyed-boundary /(7, /) only once, that is, 7/
(i, j) is no longer allowed, so in the graph, we erased the edge
between V; and V;. By the action of 71(3, j), S,, and S,,,+, are swapped
to V;and V; (Figure A2b). In order to prove this theorem, we actually
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Figure A1. With respect to (i, j), {1 moves a step to {», and then subsequently four steps to {s. These five steps make a path from {'; to (.
The shadow cells are {;’s half-outside cells with respect to /(7, j). They comprise the half-plane H(j, ).

Vn-1
" Sm2

Vn-1

Smi2 Sm2

Sm+1 Vi
(g S™

V2
Smiz V-1

Sm2

Sm Vi
(d) Sm-1

Figure A2. The four graphs demonstrate chromatic codes and moving steps. Vertices are code locations and always fixed from 1 to n,
whereas saturations are swapped between two vertices with E-transposition number 1. The solid lines represent the legal swaps. Moving
from (a) to (b) is an action of TI(V;, V;) = Te(S,,, Sy+1)- Then the edge (V;, V)) is the cutoff. Moving from (b) to (c) is an action of 7e(S,,_1,S;,,),
and (c) to (d) is Te(S,,, Syu+1). In the case (d), S+ is impossible to return V; again.

(1) Avertex swap is only allowed (legal) if its E-transposition
number = 1.
(2) The vertex swap between V; and ¥ is not allowed.

need to prove that no matter where the cell walks to, two elements S,,,
and S, are impossible to return their original respective locations V;
and ¥, if given the following two constraints:
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If we first act 7e(S,,,—;, S,,) (from Figure A2b to c) and next 7e(S,,,,
Su+1) (from Figure A2c to d), then S, returns V. At this time, we
fix S,, and try to swap S,,+; to V;. Because V; and V; are discon-
nected, at V}, S, is only allowed to swap with S,, >, and §),,_, is
only allowed to swap with S,,_3, and so on. Because at V), the
saturation becomes smaller and smaller, S,,+; is impossible to be
swapped to V. Similar scenarios will occur if we first move S,,,1 to
V;: the saturation at V; will become larger and larger. The above two
scenarios indicate that it is impossible to let S, and S,,,+; return to

their initial locations simultaneously. Consequently, at least at
either V; or ¥, {'’s saturation is not equal to that of its half-outside
cells, namely, ¢ and {,, are not equicolor cells.[]

Corollary 2: There are no equicolor cells in an OACD.

Proof: Given a cell { whose edges consist of a series of dyed-
boundaries, according to Theorem 1, {" is not equal to all correspond-
ing half-outside cells with respect to one dyed-boundary. Because any
cell can be regarded as (s half-outside cell with respect to a specific
dyed-boundary, therefore all other cells are not equal to {. []



