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Abstract

Turbidity and chlorophyll introduce high uncertainty in
remote sensing of Chromophoric Dissolved Organic Matter
(cboM) in riverine and coastal water. To reduce the
uncertainty, we developed a functional linear model (FLM)
to analyze spectral responses to CDOM concentrations
observed in a cruise along two rivers and a tidal bay. The
analysis was supported with the measurement of high
spatial resolution underwater CDOM concentrations and
concurrent in situ above-surface hyperspectral remote
sensing reflectance. The functional linear model is able to
explain up to 91percent of CDOM observations (R = 0.91,
RMSE = 0.0206). The dummy variables of local environ-
mental factors included in the estimation improve CDOM
assessment in coastal water. Our analysis suggests that the
pattern changes of the FLM coefficient curves provide
useful information for understanding the spectral signal
interference from turbidity and chlorophyll. This work
presents a feasibility study of in situ remote sensing of
CDOM on a shipboard platform.

Introduction

Riverine water constituents are influenced predominantly
by adjacent terrestrial ecosystems (Bricaud et al., 1981).
Chromophoric or colored dissolved organic matter (CDOM)
is an important component in riverine water. CDOM can
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have significant effects on biological activity in aquatic
systems by diminishing light penetration, and conse-
quently, influencing bacterial respiration. These properties
have limiting effects on photosynthesis of phytoplankton,
decreasing primary productivity and affecting ecosystem
structure (Hansell and Carlson, 2002). In addition, many
observations have provided evidence that CDOM is corre-
lated to dissolved organic carbon (DOC) in many situations
(Ferrari et al., 1996; Del Castillo et al., 2000; Stedmon

et al., 2006). cDOM is commonly used as an important
indicator for DOC dynamics in freshwater and coastal
marine ecosystems. CDOM affects the overall water color
(rivers, lakes, and ocean) as seen by many satellite remote
sensing instruments, such as MODIS and SeawiFs (Antoine
et al., 2008). Therefore, remote sensing of CDOM is impor-
tant in studying aquatic ecology and carbon dynamics
(Ritchie et al., 2003; Mannino et al., 2008).

Many successful research results on remote sensing of
CDOM to assess DOC in aquatic ecosystems have been
reported by Del Castillo and Miller (2008), Spencer et al.
(2007), and Vignudelli et al. (2004). Currently remote
sensing of CDOM has been mostly focused on either lake
freshwater (Kutser et al., 2005a; Kutser et al., 2005b) or
oceanic marine (Case 1 water) ecosystems (Mobley, 1999;
Siegel et al., 2002). Kutser et al. (2005b) concluded that
CDOM content in lakes in Southern Finland can be estimated
by band ratio of go-1 aL1 band 2 and band 3. Other coarser
spatial resolution sensors for retrieving CDOM in oceanic and
coastal waters are MODIS and SeawirFS (Mueller and Austin,
1992; Antoine et al., 2008; Brown et al., 2008). A representa-
tive algorithm for remote sensing of CDOM, expressed by an
absorption coefficient of ocean water is the multi-band
quasi-analytical algorithm (QaA) developed by Lee et al.
(2002). There are several alternative algorithms for remote
sensing of CDOM, such as computer-based discrete modeling
methods. However, Kishino et al. (2005) found that result is
unreliable when a Neural Network model was implemented
to compute the CDOM concentration using ASTER data from
Tokyo Bay.

Common remote sensing algorithms in ocean color are
mostly based on the band ratios of remote sensing
reflectance R, at several wavelengths in the visible spectrum
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(Brown et al., 2008; Lee and Hu, 2006; Mueller and Austin,
1992). The cboM assessment derived from the current
remote sensing of CDOM algorithms for riverine water is
subject to large errors as compared to those for oceanic
waters due to spectral signal interference from suspended
sediments and chlorophyll (Del Castillo and Miller, 2008;
Pan et al., 2008). Therefore, remote sensing of CDOM in
riverine and coastal waters remains a challenge. In such
complex environments, hyperspectral remote sensing will
exhibit an advantage by providing spectral responses to
water inherent optical properties (10P) in a broad spectrum
of narrow bands.

Several studies confirmed that high spectral resolution
(10 nm or better) improves the estimation of 10P in coastal
water (Brando and Dekker, 2003; Ammenberg et al., 2002;
Doxaran et al., 2006). However, the significant bands for
CDOM estimation are not always at the same wavelengths
due to the spectral signal interference from turbidity and
chlorophyll, as well as the high degree of spatial and
temporal heterogeneity at all scales in riverine and coastal
waters. Therefore, a challenging problem in the use of
hyperspectral reflectance is to identify significant wave-
lengths out of hundreds of narrow bands for a particular
constituent (Karaska et al., 2004). A common practice in
analyzing hyperspectral data is to first reduce the dimen-
sionality through band selection, derivative analysis, spectral
indices, or hyperspectral transformation (Giardino et al.,
2007; Gong et al., 2003; Pu et al., 2005; Xu and Gong, 2007).

Functional linear model (FLM) has an advantage over
existing approaches due to the efficient use of the abundant
spectral features in hyperspectral data. This is a nonpara-
metric method in functional data analysis (FDA) to analyze
information on intrinsically smooth curves or functions
(Cardot et al., 2003; Cardot and Sarda, 2005). Hyperspectral
reflectance across the spectrum is generally a smooth curve
as a function of wavelengths. Rather than using the
reflectance at all wavelengths comprehensively and equally,
it is appropriate to use a functional representation to
describe a spectral curve. FLM has wide applications (Ikeda
et al., 2008; Song et al., 2008), but it has not been used for
hyperspectral data analysis according to the published
literature. The FLM technique has great potential for analyz-
ing hyperspectral data and to improve IOP inversion in
riverine and coastal water.

In addition to the issues of algorithms and data, the
previous research on remote sensing of 10P in riverine and
coastal water is usually based on a small number of ground
truth samples, and is limited to satellite acquisition time
and fixed locations. For example, Vignudelli et al. (2004)
studied the distribution of boc and cDOM in coastal waters
of the northern Tyrrhenian Sea based on field data col-
lected with a limited number of buoys. For the purpose of
monitoring cDOM loading influenced by various sources
from different terrestrial landscapes along a river, it is
necessary to use a shipboard data acquisition approach
concurrently with high spatial resolution underwater cDOM
observation. However, there is little data analysis previ-
ously reported on remote sensing of cboMm calibrated and
validated by concurrent high spatial resolution underwater
CDOM observations.

The objective of this study is to examine if the func-
tional linear model (FLM) would improve the analysis of
hyperspectral data and reduce uncertainty in remote sensing
of cDOM in rivers and tidal bays. We have conducted an
underwater survey of CDOM concentrations at high spatial
resolution along two rivers and a bay. A large set of in situ
spectral reflectances was acquired above the water surface
on a shipboard platform concurrently with the underwater
observations. With these field measurements, we first

1148 October 2010

analyze if R,; can be derived accurately from total upwelling
reflectance R, acquired with a sensor viewing geometry at
the nadir direction and across wide range of day time.
Second, we examine if FLM could reduce the uncertainty in
remote sensing of CDOM in rivers and bays which have high
level of turbidity and chlorophyll. Finally, we explore the
potential of using the coefficient curves of the FLM to
analyze the spectral signal interference of turbidity and
chlorophyll in remote sensing of CDOM.

Study Site and Data Description

Our study site encompassed the lower Hackensack and
Passaic Rivers and their confluence, Newark Bay (Plate 1).
This system, which is tributary to New York Harbor,
contains the Port of Newark-Elizabeth Marine Terminal.
The Hackensack River rises in southeastern New York. It
drains the New Jersey Meadowlands, a large ecosystem of
wetlands in northeast New Jersey consisting of both open,
undeveloped space and developed areas, with a large
proportion of natural wetlands. The Hackensack River is
approximately 87 km long and has a drainage area of
approximately 137 km?2. The tidal portion of the river
extends from its confluence with Newark Bay upstream to
New Milford, New Jersey, a distance of approximately

32 km. The Passaic River is the other tributary to Newark
Bay. The river is approximately 129 km long and is tidal
through the 27 km stretch from its confluence with
Newark Bay upstream to the Dundee Dam in Garfield, New
Jersey. However, the percentage of wetland area in the
Passaic River watershed is not as large as that in the
Hackensack River watershed. The depth of the Hackensack
and Passaic Rivers generally ranges from 12 to 14 m, but
is as deep as 61 m in places (Freeman, 1991). The mean
water elevation is 0.6 m above sea level, and the average
range in tide is about 1.2 m.

Methods

Several key techniques used in this study can be widely
adopted by broad applications of remote sensing in water
quality assessment. We describe these methods in four
sections: underwater CDOM measurement, in situ hyperspec-
tral measurement, removal of water-surface reflected
radiance, and functional data analysis.

Underwater CDOM Measurement

Spatial variation of CDOM concentration was measured
underwater on a cruise from freshwater in upper end of
both the Hackensack River and the Passaic River extending
seaward to Newark Bay on 24 October 2006. The MiniShut-
tle, a small towed vehicle based on a 0.6 m V-Fin depres-
sor vane manufactured by YSI/Endeco was used on this
survey cruise (Gardner ef al., 2005). A cDOM fluorometer, a
chlorophyll fluorometer and an optical backscatter sensor
(0oBS) manufactured by Seapoint Sensors (Exeter, New
Hampshire) were mounted on the MiniShuttle, as well as a
5 cm diameter MicroCTD from Falmouth Scientific (Fal-
mouth, Massachusetts) for temperature, salinity and depth
measurements. It was deployed from a 7.6 m research boat
with a towing speed of about 5 kts (2.5 m/s). The instru-
ments are able to resolve variations in cDoM fluorescence
within the top 0.5 to 2 m of the water column, with
horizontal sampling interval of 1 to 5 m.

The output from the cbom fluorometer is a voltage
proportional to the fluorescence at 440 nm with an excita-
tion at 370 nm. It is necessary to convert CDOM fluorescence
(voltage) to CDOM concentration (QSU). QSU denotes quinine
sulfate units, which is equivalent to the fluorescence of the
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Plate 1. Study site: Passaic River, Hackensack River and Newark Bay. The dots (might be connected
at this scale) in green, yellow, and pink colors are the sample points where the in situ hyperspectral
measurements were acquired.

stated concentration of quinine dihydrogen sulfate dihydrate = spectra to remove the Raman scattering peak. Fluorescence

in 0.05 M sulfuric acid. In order to determine the cbom spectra were integrated in the wavelength range of 350 to
concentration, we collected discrete samples in pre-com- 650 nm and expressed as quinine sulfate units (QSu) by
busted Pyrex bottles by hand at locations shallower than computing with a five-point quinine sulfate standard curve
25 cm deep in water. These discrete samples were analyzed (pH = 2) (Chen and Gardner, 2004). One QSU was equivalent
on a Photon Technologies International (PTI) Quantum to the fluorescence of 1 ug/l quinine sulfate at pH2. Discrete
Master 1 spectrofluorometer with A,, = 337 nm, a 1 cm samples were taken from similar water masses as that

quartz cell, and emission scans from 350 nm to 650 nm. A recorded by the instruments for field cboMm fluorescence.
blank (Milli-Q water) spectrum was subtracted from sample With these field measurements and laboratory processes, we
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Figure 1. Correlation between Fluorometer Volts meas-
ured below water surface by MiniShuttle and corrected
laboratory Fluorescence (Qsu) that represents for cbom
concentration.

established a linear relationship (Figure 1) between cDOM
fluorescence (voltage) and CDOM concentration (Qsu). The
linear function is consistent with that reported by Huang
and Chen (2009) and Gardner et al. (2005). Because of the
steady linear relationship, it is appropriate to use CbomM
fluorescence (voltage) to represent CDOM concentration. In
the rest of this paper, we express CDOM concentration as the
fluorometer voltage.

In situ Hyperspectral Measurement

Concurrently with the underwater CDOM observations, we
acquired in situ hyperspectral reflectance data using an
Analytical Spectral Devices (ASD) spectroradiometer at 1.5 m
above the water surface. The instrument uses three separate
detectors spanning the visible, near-infrared (VNIR), and
shortwave infrared (swir1 and swirz) with a spectral sampling
interval of 1.4 nm for the VNIR detector and 1.0 nm for the
SWIR detectors. The spectral measurement is resampled and
reported for every 1 nm. The exploratory analysis of R, for
CboM in this project focuses on wavelengths in the range of
350 to 700 nm, where cDOM exhibits distinct optical proper-
ties. Therefore, it maintains a 351-band spectral curve for
each sample point. The ASD spectroradiometer was mounted
on the bow of the boat. It is equipped with a 5 m fiberoptic
cable so that the sensor foreoptic can reach beyond the boat
edge by more than 3 m to avoid boat shadow effects at most
of boat moving directions. The majority of in situ remote
sensing samples were acquired from 09:30 to 11:00 am and
from 2:00 to 4:30 pm local time on 24 October 2006. About
5 percent of the samples were taken between 11:00 am to
2:00 pm to test if the errors introduced near Noontime can
be corrected with HydroLight model. The samples were
logged with concurrent GPS positions. The ASD spectrora-
diometer was calibrated and optimized every ten minutes or
whenever cloud conditions changed. Field spectra acquisi-
tion spanned 20.6 km in the lower Hackensack River (337
samples), 6.6 km in the lower Passaic River (206 samples),
and 9.5 km (141 samples) in Newark Bay (Plate 1).

Sensor viewing geometry is an important issue in
remote sensing of ocean color (Maselli et al., 2009). The
viewing geometry is usually defined by the zenith angle 6,,
and azimuth angle ¢,. HydroLight simulations suggest that a
viewing direction of 40° from the nadir (6,) and 135° from
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the Sun (¢,) will minimize the effects of Sun glitter while
avoiding instrument shading problems (Mobley, 1999). This
view geometry setting is practical for stationary measure-
ment in ocean study. However, when conducting in situ
measurements on a shipboard platform in a cruise along a
meandering river, we need to avoid the varying azimuth
angle (¢,), caused by the change in the boat heading.
Although the variation of the ¢, can be minimized by using
specific instruments and frequent justification, this setting
would be impractical to many research projects involving
mobile high resolution measurements along cruise tracks.
Instead, a view geometry setting without changing ¢, is
preferred. This viewing geometry can be set as perpendicu-
lar to the water surface (nadir view direction) in a boat
cruise. In this way, it could avoid inconsistent ¢,, but with
a trade-off of more sun glitter interference or increased
surface reflected radiance. Fortunately, the trade-off effects
can be minimized in post-processing using the HydroLight
model (Mobley, 1999). Therefore, we conducted a series of
in situ hyperspectral measurements using ASD spectrora-
diometer and acquired total water reflectance (R;) with a
viewing direction of 0° from the nadir (f, = 0). The solar
zenith angle, 6, was in the range of 52 to 77° during the
data acquisition cruise. Although Mobley (1999) reported
that surface reflectance factor has little variation for the
sensor view (zenith) angles 6, between 0 to 45° when 6,
>60°, we still verified the remote sensing reflectance R,
derived from 6, = 0 setting.

Removal of Water Surface Reflected Radiance

The optical signal commonly used in ocean color is R, in
sr~'. Estimation of R,, from the total upwelling reflectance R,
requires three separate measurements on radiance: L, L, and
L, (Mobley, 1999):

_ (Lt - pLs)
Rrs - Ed (1)

where L, is the total upwelling radiance reaching the
detector, and L, denotes the incident sky radiance. The
sensor pointing direction for measuring L, (0, = 180°) is in
the opposite direction to that for measuring L, (6, = 0°).
Here, p is the proportionality factor that relates the L, to
water-surface reflected radiance (L,). E; (W m™2 nm™!) is the
downwelling irradiance incident on the water surface. E,
was estimated by radiance measurement L, received from a
spectralon white surface (Lambertian reflector) which has a
known irradiance reflectance R, as:

Lg(A)
E ) = RN (2)
g

The total water surface upwelling reflectance (R,) is
defined by ASD spectroradiometer as R, = ft With Equation

g
1 and Equation 2, R,; can be estimated with the formula below

(3)

By using HydroLight, we simulated p for every 30 minutes
of the cruise; p is a function of wind speed, visibility, cloud,
humidity, solar zenith angle, and sensor viewing direction.
Solar zenith angles were determined by time, date, and
location. Other required inputs for calculating p in the
HydroLight model were from the NOAA National Climatic
Data Center. Alternative to Equation 2, it is common to
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simulate irradiance (E;) and sky radiance (L) as recom-
mended in NASA Ocean Optics Protocols (Mueller et al.,
2003), instead of using in situ measurements. In this study,
we derived R, with the Equation 3 by using observed R,,
and simulated L, p, and E; with the HydroLight model. The
simulated parameters were validated by using 60 observed
downwelling sky radiances L’ and irradiances E;'. If R,
denotes the remote-sensing reflectance when the Equation 3
is calculated with observed sky radiance L, and irradiance
Eq', the uncertainty of R,; can be evaluated by comparing
with R,;’. Our measurements for L,’ and E; were arranged
with even time intervals (09:14 am, 10:01 am, 2:51 pm,
and 3:36 pm).

Functional Data Analysis
A functional linear model was applied to improve CDOM
estimation from hyperspectral R,; in a spectral range of
350 to 700 nm. Generally, R, is a smooth curve correspon-
ding to wavelengths. So the first step in developing a
functional linear model is to represent each R,(A) by a
smooth function that results from a mathematical approxi-
mation of curves using a linear combination of a set of
basis functions. Example basis functions include polyno-
mials and Fourier series. The coefficients of the linear
combination were obtained through the standard least
squares regression. Spline is the most preferable and
common choice of polynomial basis function for non-
periodic functional data. A spline function is usually
formed by joining polynomials of specified order at fixed
points (Cardot et al., 2003). It achieves the rapid computa-
tion of polynomials and substantially greater flexibility
with only a modest number of basis functions. The B-
spline is the most popular basis system to construct a
spline function. A B-spline is a spline function that has
minimal support with respect to a given degree, smooth-
ness, and domain partition.

In classical statistics, a conventional multivariate linear
model predicts dependent variable Y by multiple independ-
ent variables X; in the form of

yvi=at EB/XU"'SI‘ (4)
j

where §; is the regression coefficient, « is the intercept, and
g; is the residual. Given that the independent variables are
functional, a functional linear model replaces the regression
coefficients by a regression coefficient function B(s), so the
model takes the form:

vi=a+ /Xj(s)B(s)ds + e, (5)
0

In our research context, y; is the CDOM concentration of
sample i and x,(s) is the smoothed remote sensing
reflectance of sample i at wavelength s, obtained from

the previous step. In order to consider the influence of
individual environmental conditions in the two rivers and
the bay, we introduced two dummy variables str, and str,
to the FLM:

w
yvi=a+ /XI-(S)B(S)dS + 8,str, + 8,str, + ¢; (6)
0

If stry = 1 and str, = 0, samples were from the Hackensack
River; if str; = 0 and str, = 1, samples were from the Passaic
River, and if in the Newark Bay, str; = 0 and str, = 0. When
these dummy variables become significant in the modeling

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

result, it demonstrates that the spectral characteristics vary
with different environmental conditions for the given field
CDOM concentration. In other words, additional to spectral
variables, dummy variables might improve CDOM estimation
significantly.

In the estimation of the function B, the aim is not only
to maintain the fidelity to the observed data, but also to
avoid excessive local fluctuation. The former is measured by
the residual sum of squares; the latter can be quantified by
linear differential operators, such as the second order
derivative. Therefore, we adopted a roughness penalty
approach, penalized residual sum of squares, defined as:

N v 2
PENSSE = E{yi —a— /X,»(S)B(s)ds — 8,8tr; — 8,str, (7)

i=1
0
+ )\/[DZB(S)]ZdS
0

A smoothing parameter A is chosen to control the trade-off
between roughness and infidelity. The larger the value of A,
the smoother the regression coefficient function B(s). Eventu-
ally, A is determined as the value for which the prediction
error is the lowest based on cross-validation (Figure 2). The
functional data model was implemented using the statistical
package R (Ramsay and Silverman, 2005).

Results and Discussion

Uncertainty Analysis of R,

Figures 3 to 5 are the uncertainty analysis of R, derived
from R,. The samples of R, were acquired across the wide
range of day time. The percent of water surface reflectance
over the total upwelling reflectance, (R, — R,,)/ R, is about
70 to 80 percent (Figure 3). The water surface reflectance is
higher at near Noontime (12:50 pm for daylight saving time)
than that after 2:50 to 3:50 pm (Figure 3). The variation of
surface reflectance from morning to late afternoon is less
than 10 percent of the total upwelling reflectance. The small

N\

Prediction Error
22
L

Log,q4

Figure 2. The smoothing parameter controls the trade-off
between roughness and infidelity. The larger A produces

the smoother coefficient curve. The model determines the
A when it gives the lowest prediction error.
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Figure 3. Percent mean of water surface reflectance
over total upwelling reflectance (R;—R,s)/ R; across the
spectrum (slightly smoothed). The samples were taken
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Figure 4. The variation of p values during the cruise at
wavelengths: 400 nm, 405 nm, 640 nm, and 698 nm,
respectively, for every 30 minutes.

differences across the wide range of day time confirm that
we have derived R,; by removing water surface reflectance
from the total upwelling reflectance appropriately, including
the acquisition around Noontime.

The most important parameter in removing surface
reflectance is the value of p, the ratio of L, to L,. p was
simulated with the HydroLight for every 30 minutes. Figure 4
is the variation of p values during the cruise at wavelengths,
400 nm, 405 nm, 640 nm, and 698 nm. It demonstrates that
the ratio of L, to L, peaks around Noontime (1:00 pm for
daylight saving time). The ratio sharply decreases when it is
away from Noon. The ratio is higher at longer wavelengths
(e.g., 640 nm and 698 nm) than that at shorter wavelengths
(e.g., 400 nm and 405 nm) during Noontime. However, the
amount of water surface reflected radiance is still higher at
shorter wavelength during Noontime (Figure 3). The combina-
tion of Figure 3 and 4 revealed that shorter wavelength has
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Figure 5. Differences between R, and RS, where R,
denotes the remote-sensing reflectance calculated with
observed sky radiance Ly’ and irradiance E,'. This shows
the uncertainty of R, by comparing with R'.

much higher sky downwelling radiance than longer wave-
lengths during Noontime. This analysis provides evidence
that the simulated p values are able to capture the higher
water surface reflected radiance during noontime and the
variation across the spectrum. This result indicates that in
situ hyperspectral measurements between 11:30 am and
1:30 pm are still valuable if the values of p can be assessed
appropriately.

In addition to p, two other parameters, L, and Ej, are also
important factors to derive reliable R,. Figure 5 shows the
uncertainty analysis of remote sensing reflectance by compar-
ing remote sensing reflectance R,,’ (calculated with observed
sky radiance L," and irradiance E;') and R, (calculated with
HydroLight simulated sky radiance L, and irradiance E;). The
differences between R,, and R,,’ (R, — R,') across time are
all less than *10 percent of R, except for a few bands at
very short wavelengths (403 to 428 nm). The small uncer-
tainty exhibits that HydroLight simulated p, L,, and E, are
satisfactory variables for removing surface reflected radiance
from the total upwelling reflectance. Note that the R,; seems
slightly overestimated at shorter wavelengths and underesti-
mated in longer wavelengths (Figure 5). All these in situ
measurements of total upwelling reflectance R, were acquired
at a nadir-viewing direction. This uncertainty analysis
confirmed that remote sensing reflectance R,; derived from
total upwelling reflectance R, acquired following our ship-
board setting has satisfactory quality for CDOM estimation.

CDOM Estimation using Functional Linear Model

Separate FLMs were developed to estimate CDOM in the
Hackensack River, the Passiac River and Newark Bay. The
model for Newark Bay provided the best estimation
(Figure 6a) to underwater observations (R? = 0.911;

RMSE = 0.0206) among the two rivers and the bay. The
best estimation in Newark Bay coincided with small
variation of turbidity in spite of relatively high value

(2.6 to 2.8 OBS volts). Also the bay has low level and
small variation of chlorophyll (0 and 0.2 fluorometer volts)
(Figure 7). The combination of small variation of turbidity
and low chlorophyll created less complexity of spectral
signal interference so that the model is able to explain
more CDOM variation. The data samples acquired in the
Passaic River showed the similar level of turbidity and
chlorophyll except slightly wider variation in turbidity
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Figure 6. cboM estimation from functional linear model for: (a) Newark Bay (R? = 0.911), (b) Hackensack
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Figure 7. The range of turbidity and chlorophyll in the
two rivers and the bay.
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(2.4 to 3.0 OBS volts) compared to Newark Bay

(Figure 7). The FLM for the Passaic River did not predict
cpoM (R? = 0.753, and RSME = —0.0252) as well as that
for the Newark Bay (Figure 6c).

The levels of chlorophyll and turbidity in the Hacken-
sack River were in much broader ranges compared to that
in both Newark Bay and the Passaic River (Figure 7). Since
turbidity and chlorophyll cause spectral signal interfer-
ences, the model for the Hackensack River did not explain
CDOM variation (R? = 0.64, RSME = 0.0321) as well as that
for the Passaic River and Newark Bay (Figure 6). In fact,
none of the published remote sensing algorithms (Lee and
Hu, 2006) could explain more than 50 percent the varia-
tions of CDOM observations in riverine and coastal water. In
spite of the variations of turbidity and chlorophyll levels,
the FLM for the Hackensack River still produced a satisfac-
tory CcDOM estimation. The functional linear models have
indicated an apparent advantage in reducing uncertainty of
remote sensing of CDOM in riverine and coastal water over
existing algorithms. The advantage is attributed to the fact
that the FLM is able to take into account the abundant
hyperspectral features in a broad spectrum, which capture
the shifts of wavelengths significant to CDOM analysis
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Figure 8. Coefficient curves of the functional linear model for: (a) Newark Bay (R? = 0.911), (b) Hacken-
sack River (R? = 0.637), (c) Passaic River (R> = 0.753), (d) all study site (R?> = 0.815). The curves in solid
lines plot the coefficients of models developed for each scenario (two rivers, a bay, and lumped scenario).
The two dashed lines above and below each coefficient curve denote the confidence intervals. A wavelength
is considered significant if the confidence interval of the corresponding coefficient does not include zero. The

further a coefficient and its confidence interval are away from zero, the more significant the corresponding
wavelength is. The regions shaded in gray are significant wavelength regions.

(Figure 8). The shifts of significant wavelengths are usually
caused by the high variation of turbidity and chlorophyll
levels. These evidences confirmed that the variation of
turbidity and chlorophyll affects remote sensing of cbom
(Kahru and Mitchell, 2001).

Linear functional modeling results indicated that the
variation of environmental conditions in individual river
watershed is a major determinant of riverine CDOM concen-
tration. For example, both modeled and observed cbom
concentrations in the Hackensack River are clustered to the
high end (Figure 6b). The Hackensack River is bordered by
extensive tidal wetlands and open water areas, while the
Passaic River is mainly surrounded by developed areas.
The high cDOM concentration in the Hackensack River
coincided with the high percentage of wetland and salt-
marsh areas in the river watershed (Plate 1). This is
consistent with the results from many previous studies
(Aitkenhead et al., 1999; Gardner et al., 2005). The large
fluxes of cDOM occur when wetlands serve as barriers
precluding water infiltration of the soil column. Because of
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the river-wetland interaction, the Hackensack River also
has greater variation of CDOM concentrations than either the
Passaic River or Newark Bay. CDOM concentrations in both
the Passaic River and the Hackensack River are much
higher than that in Newark Bay, where the level of salinity
is much higher and the terrigeneous cbom was diluted by
marine water.

The influences of local environmental factors on
riverine CDOM became clear in a lumped scenario in which
all data from the two rivers and the bay were merged. The
FLM for the lumped scenario explained about 81.5 percent
(RMSE = 0.0395) of the underwater CDOM variation
(Figure 6d). Since about 50 percent data in the scenario
are from the Hackensack River, the wide variation of
turbidity and chlorophyll levels affected the FLM. This
situation is common when a FLM is applied to multiple
rivers. Additionally, the model for the lumped scenario
was further improved by adding two dummy variables
indicating the influence of location characteristics of two
rivers and the bay (Equation 6 and 7).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



TABLE 1. COEFFICIENTS AND CONFIDENCE INTERVALS OF TWO DUMMY VARIABLES AND THE
CONSTANT (INTERCEPT) OF THE FUNCTIONAL LINEAR MODEL

Coefficient &/ Lower Conf. Upper Conf.

Intercept o Interval Interval
Hackensack (str; = 1, str, = 0) 4,77 X 1073 4.60 X 107° 493 X 1072
Passaic (str;, = 0, str, = 1) 5.08 X 107° 4,94 X 1073 5.20 X 1073
Newark Bay (str, = 0, str, = 0) 3.68 X 1073 3.49 X 107° 3.88 X 107°

The resultant coefficients of the dummy variable for the
Hackensack River (str; = 1, str, = 0) and the Passaic River
(str; = 0, str, = 1) were §; = 4.77 X 1072 and
8, = 5.08 X 107°, respectively, as listed in Table 1. Because
the confidence intervals of 8, and 8, do not include zero,
they are both statistically significant in the model. The
statistical significance indicates the uniqueness of environ-
mental conditions in the Hackensack River and in the
Passaic River. The model improved the estimation by 3
percent (R? = 0.84), if the dummy variables were consid-
ered. This result demonstrates that local environmental
factors have impacts on the relationship between cbom and
spectral curves. Some field studies have shown that the
optical properties of CDOM at a given concentration vary
slightly due to different sources, production and regulation
(Aitkenhead-Peterson et al., 2003). For example, the
autochthonous cboOM (derived from algae and macrophytes)
will look lighter than allochthonous cpoMm (derived from
organic soil and humic substances). Wang et al. (2010)
reported that the potential environmental factors associated
with the cDOM sources are surface and ground water runoff,
vegetation characteristics and density, and soil properties.

Furthermore, the positive coefficients for the two dummy
variables suggested that the FLM would underestimate the cDom
in rivers by neglecting the differences in local environmental
conditions. The FLM has the advantage of including ancillary
information in addition to spectral signatures. It implied that
remote sensing of CDOM can be potentially improved by
including some variables representing local environments, such
as percentage of vegetation cover in the watershed.

Variation of FLM Coefficient Curve
The functions or curves of the FLM coefficients provided
intuitive information on the most significant wavelengths for
remote sensing of CDOM (Figure 8). By comparing the signifi-
cant wavelengths among the four scenarios (two rivers, the
bay, and lumped data), we noticed that coefficient curves
vary in: (a) magnitude of coefficients, (b) range of confidence
intervals, (c) the number of significant regions (the number of
peaks or troughs in a curve), and (d) peak wavelength
positions in each of four scenarios. The coefficient curves for
Newark Bay (Figure 8a) and the Passaic River (Figure 8c)
have a similar pattern in terms of high magnitude and wider
range of confidence intervals. This pattern is consistent with
their similar environmental conditions: low chlorophyll and
high level of turbidity (Figure 7). The high turbidity level
was caused by the transit of cargo ships to several ports and
to industrial locations in the Newark Bay channel (e.g., the
port of Newark-Elizabeth Marine Terminal) as well as the
lower Passaic River (Kruger, 2008). In contrast, the coeffi-
cient curves for the Hackensack River (Figure 8b) and for the
lumped scenario (Figure 8d) share a pattern of smaller
magnitude and confidence intervals. This curve pattern is
consistent with the relatively low turbidity and the wide
variation of chlorophyll in the Hackensack River (Figure 7).
Based on the above pattern analysis, we conjecture
that the variations of the coefficient curves for cbom
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estimation are mainly degraded by spectral signals of
turbidity and chlorophyll as their quantities greatly affect
water optical properties (Han, 1997; Rundquist et al.,
1996). It appears that the pattern representing Newark Bay
(Figure 8a) and the Passaic River (Figure 8c) was influ-
enced by the high turbidity (Figure 7). The absorption by
tripton (detrital particles) in water is low at the red end of
the spectrum and rises steadily as wavelength decreases
into the blue and ultraviolet. Contrarily to absorption,
tripton increases the reflectance at the wavelengths of

570 to 690 nm (Chen et al., 2009; Chen et al., 2007; Fraser,
1998; Hadjimitsis et al., 2006). Due to the spectral scatter-
ing and absorption interferences from the mineral domi-
nated turbidity in Newark Bay and the Passaic River, the
shape of FLM coefficient curves for CDOM estimation is
different from that with low turbidity and high chloro-
phyll conditions in the Hackensack River (Figure 8b).

For the two high turbidity scenarios, the coefficient
curves have several local maxima and minima at wavelengths
in the spectral region from 570 nm to 690 nm. Also, confi-
dence intervals of the coefficient curves for the high turbidity
scenarios are much larger than that in the Hackensack where
turbidity level is lower and chlorophyll is higher. In any case,
soil types in watersheds contributing to the turbidity in
riverine and coastal water would make significant difference
in both reflectance magnitude and peak shift (Lodhi et al.,
1997). When turbidity is influenced by various levels of soil
suspended sediment concentrations, the coefficient curves
would be far more complex than what we observed in this
project. The potential relationship between coefficient curves
and turbidity level indicated that there is great need for more
observation data to quantitatively examine the spectral
interference of turbidity to CDOM estimation.

It seams that the patterns of coefficient curves for the
Hackensack River (Figure 8b) and the lumped scenario
(Figure 8d) were largely influenced by the spectral character-
istics of chlorophyll at wavelengths of 400 to 700 nm.
Chlorophyll-a and -b absorb blue light centered at 430 nm
and 450 nm and red light centered at 660 nm and 650 nm
(Jensen, 2007). Because of the lower absorption of green
light, chlorophyll causes the reflectance maximum around
550 nm (green peak). Also there is a prominent reflectance
peak around 690 to 700 nm caused by an interaction of
algal-cell scattering (Rundquist et al., 1995). The varying
levels of chlorophyll change the magnitude of the local
maxima and minima at either the exact or slightly shifted
wavelengths (Figure 8b and 8d). For the Hackensack River,
minima occur at 435 nm, 475 nm, and 640 nm; maxima
occur at 550 nm and 690 nm (Figure 8b). Other significant
wavelengths at 390 nm and 590 nm have relatively small
magnitude. This change suggests chlorophyll interference to
remotely estimated CDOM distribution (Lee et al., 1994;
Carder et al., 2002; SCCF RECON, 2008).

Our analysis demonstrated the advantages of using a
functional linear model over an ordinary linear regression
model. First, FLM produces better CDOM estimation by
using spectral features at more or all wavelengths. FLM
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approximates spectral reflectance curves by linearly
“stacking” a modest number of predefined basis functions

(65 B-spline of order 4) rather than the large number of bands
in an ordinary linear model (351 bands). The reduced number
of variables allows much less field observations to construct
the FLM and solve the regression coefficients. Second, the
estimate of regression coefficients is a continuous smooth
functional curve of wavelength. The smoothed functional
coefficients prevent the model from over-fitting the observed
data. The coefficient function curve provides much more
intuitive information on the relative significance of each
individual wavelength of hyperspectral data in CDOM estima-
tion. We believe these advantages of using FLM can improve a
wide range of applications using hyperspectral remote sensing.

Conclusions

Based on a large set of high spatial resolution underwater
CDOM observations and concurrent in situ above-surface
hyperspectral measurements of the total upwelling
reflectance, we examined a functional linear model
approach to see if it reduces the uncertainty in remote
sensing of CDOM in riverine and coastal water. Before
introducing the FLM approach, we evaluated the feasibil-
ity of in situ remote sensing of cDOM from above-surface
at nadir direction and across wide range of hours in a
day. Results confirmed that the HydroLight model is
efficient in removing water surface reflected radiance,
allowing use of data acquired at a nadir sensor viewing
angle (0, = 0). With the support of the HydroLight
model, the procedure allows shipboard data acquisition
without considering the change of azimuth angle (¢,)
from a boat cruise along a meandering river.

This study concludes with several suggestions. First,
the FLM is able to reduce uncertainty in remote sensing of
CDOM in riverine and coastal water and outperforms existing
algorithms. For the scenario of less variation of turbidity
and chlorophyll, the model explained 91 percent of cDoM
variation in the Newark Bay (RMSE = 0.0206). For the worst
scenario of a wide range of turbidity and chlorophyll, the
model is still able to predict CDOM up to 64 percent in the
Hackensack River (RSME = 0.0321).

Second, the FLM has an advantage of including ancillary
information in remote sensing of cboM. The results demon-
strated that CDOM estimation was improved by introducing
dummy variables representing local environmental condi-
tions. This indicated that ancillary information in addition
to spectral reflectance would be helpful to CDOM assessment
in riverine water.

Third, the patterns of FLM coefficient curve provide
critical information of identifying different level of cbom
concentration. It also explicitly shows the spectral signal
interference from turbidity and chlorophyll as their quantities
greatly affect water optical properties. However, our analysis
was largely based on visual assessment. Current results are
not sufficient to systematically explain the causes of FLM
coefficient variation across the spectrum. In future research,
large stratified field observations representing a broad range
of river conditions and water quality should be implemented.
In this way, we can understand how the coefficient curves
change corresponding to the level of turbidity and chloro-
phyll. With this improved understanding, we can modify the
functional linear model so as to reduce uncertainty in remote
sensing of CDOM in riverine and coastal water.
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Honesty, justice, and courtesy form a moral philosophy
which, associated with mutual interest among people,
should be the principles on which ethics are founded.

Each person who is engaged in the use, development,
and improvement of the mapping sciences (Photo-
grammetry, Remote Sensing, Geographic Information
Systems, and related disciplines) should accept those
principles as a set of dynamic guides for conduct and a
way of life rather than merely for passive observance. It
is an inherent obligation to apply oneself to one’s profes-
sion with all diligence and in so doing to be guided by
this Code of Ethics.

Accordingly, each person in the mapping sciences
profession shall have full regard for achieving excellence
in the practice of the profession and the essentiality of
maintaining the highest standards of ethical conduct in
responsibilities and work for an employer, all clients, col-
leagues and associates, and society at large, and shall . . .

1. Be guided in all professional activities by the high-
est standards and be a faithful trustee or agent in all
matters for each client or employer.

2. At all times function in such a manner as will bring
credit and dignity to the mapping sciences profes-
sion.

3. Not compete unfairly with anyone who is engaged in
the mapping sciences profession by:

Advertising in a self-laudatory manner;

b. Monetarily exploiting one’'s own or another’s
employment position;

c. Publicly criticizing other persons working in or
having an interest in the mapping sciences;

d. Exercising undue influence or pressure, or
soliciting favors through offering monetary
inducements.
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4. Work to strengthen the profession of mapping sci-
ences by:

a. Personal effort directed toward improving
personal skills and knowledge;

b. Interchange of information and experience with
other persons interested in and using a mapping
science, with other professions, and with students
and the public;

c. Seeking to provide opportunities for professional
development and advancement of persons
working under his or her supervision;

d. Promoting the principle of appropriate
compensation for work done by person in their
employ.

5. Undertake only such assignments in the use of map-
ping sciences for which one is qualified by education,
training, and experience, and employ or advise the
employment of experts and specialists when and
whenever clients’ or employers’ interests will be best
served thereby.

6. Give appropriate credit to other persons and/or firms
for their professional contributions.

7. Recognize the proprietary, privacy, legal, and ethical
interests and rights of others. This not only refers to
the adoption of these principles in the general con-
duct of business and professional activities, but also
as they relate specifically to the appropriate and hon-
est application of photogrammetry, remote sensing,
geographic information systems, and related spatial
technologies. Subscribers to this code shall not
condone, promote, advocate, or tolerate any organi-
zation's or individual's use of these technologies in a
manner that knowingly contributes to:

deception through data alteration;
b. circumvention of the law;

c. transgression of reasonable and legitimate
expectation of privacy.
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