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Abstract
Much effort has been spent on examining the spatial
variation of classification accuracy and associated
factors on a per-pixel basis. In the past few years, 
object-based classification has attracted growing interest.
This paper examines factors affecting the spatial varia-
tion of classification uncertainty in an object-based
vegetation mapping. We studied six categories of factors
in an object-based classification: general membership,
topography, sample object density, spatial composition,
sample object reliability, and object features. First,
classification uncertainty (classification accuracy on a 
per-case basis) is derived with a bootstrap method. Then,
six categories of factors are quantified by categorical or
continuous variables. In this step, the appropriate
radius for calculating the spatial composition metrics
of sample objects is also discussed. Finally, classification
uncertainty is modeled as a function of those factors
using a mixed linear model. The significant factors
are identified and their parameters are estimated from
restricted maximum likelihood fit. The modeling results
show that elevation, sample object size, sample object
reliability, sample object density, and sample spatial
composition significantly influence the object-based
classification uncertainty. Many of these factors
are closely related to the object-based approach. The
result of this study helps in understanding classification
errors and suggests further improvement of the
classification.

Introduction
Remotely sensed data are used extensively in land-cover
mapping through a variety of classification approaches. The
technique of image classification groups image units to map
units or cartographic regions based on spectral features and/or
ancillary features according to certain mapping objectives.
Accuracy is calculated to assess the fitness of using remotely
sensed data and the quality of a particular classification.
A confusion matrix (or error matrix) is currently the core of
quantitative measures of accuracy (Congalton and Green,
1999). Many measures of classification accuracy may be
derived from a confusion matrix, such as the Kappa coeffi-
cient for overall evaluation, and the user’s accuracy or
producer’s accuracy for individual classes considering the
error of commission or omission. These statistical measures
of accuracy report the percentage of correctly classified pixels
as a general quantitative measure of the classification quality
over the entire image area.

The classification error is normally neither uniformly
nor randomly distributed over a region; instead, the spatial
pattern of accuracy is often very distinct (Campbell, 1981;
Lunetta et al., 1991). It is often necessary to study accuracy
on a per-case basis (per-pixel or per-object), in order to
understand the magnitude and variation of accuracy over
a region and to effectively use the classification results.
Therefore, classification uncertainty is adopted to supplement
the general measure of accuracy provided by the confusion
matrix and its derivatives (Foody, 2002). Uncertainty is a
quantitative measure of doubt and distrust on a per-case
basis when a classification decision is made in crisp or hard
way, i.e., per-case accuracy or local accuracy (Unwin, 1995).
Some aliases of classification uncertainty have been used,
such as misclassification probabilities, classification probabili-
ties, reliability, or case-based accuracy. Classification uncer-
tainty can be defined in a number of ways (Gong et al., 1996;
Pu and Gong, 2004). Most calculations of classification
uncertainty are closely related to specific classifiers and
are often derived as a by-product of the classification likeli-
hood. For example, in the supervised maximum likelihood
classification, uncertainty is calculated from posterior proba-
bility that a classification unit (pixel) actually belongs to a
particular class (Foody et al., 1992; Gong et al., 1996; Canters,
1997). A measure of uncertainty in a minimum distance
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classification can be conveniently derived as the inverse
distance between a classification unit to the cluster mean. In
addition, a few other measures of uncertainty are based on
classification variability over multiple simulated test datasets.
These datasets are usually simulated from nonparametric
statistical procedures, which are independent of the classifier
(Steele et al., 1998). Much of the recent effort in studying the
spatial distribution of classification quality has been focused
on the visualization of classification uncertainty (Fisher, 1994;
Van der Wel et al., 1998; Foody, 2002). Visualization of
classification uncertainty provides not only an understand-
ing of the distribution of classification quality and help in
identifying problematic areas, but it also reveals the factors
driving this variation and suggests possible improvements.

Some researchers have reported that terrain, sample size,
sample distribution, landscape complexity, or even reliability
of sample data are important factors in classification accu-racy
and its spatial variation in a pixel-based classification (Congal-
ton, 1988a; Dicks and Lo, 1990; Gong and Howarth, 1990;
Stehman, 1992; Friedl et al., 2000; Foody, 2002). For example,
through the comparison of forest, agriculture and range,
Congalton (1988a and 1988b) concluded that the patterns of
classification error are influenced by landscape features such
as sampling distribution, topography, and spatial complexity.
Steele et al. (1998) used two sites to illustrate the strong
spatial correspondence between the patterns of misclassifica-
tion probabilities and terrain. In a review paper, Foody (2002)
pointed out that spatial distribution of samples has important
implications on classification accuracy. The statistical require-
ments of sampling have to be balanced against realistic
constraints due to physical accessibility, budget, or other
practical restrictions. Relatively less attention has been paid
to the effect of unreliable training samples in classification
accuracy. Unreliable training data can result from the subjec-
tive nature of field and photo verification, image registration
and so on (Lunetta et al., 1991). Under some circumstances,
the problem of sample reliability is very implicit and therefore
has often been ignored, such as the impure mapping unit or
unconfident interpretation, especially for automatic sampling
over a large dataset in an object-based classification context.

Rather than visually comparing pattern similarity or
reporting the summarized accuracy affected by the above
factors, several recent researchers have used statistical
analysis to study the relationship between classification error
and potential explanatory variables related to landscape and
sample distribution (Moisen et al., 2000; Smith et al., 2002;
Smith et al., 2003; Van Oort et al., 2004). Most of them used
a dichotomous response variable to indicate whether or not
each sample pixel was correctly classified, and developed
a logistic regression to model this binary response. They
assessed the effects of various characteristics of sample
pixels on classification accuracy, including land-cover class,
focal neighborhood heterogeneity, patch size, and landscape
indices. They come to the conclusion that “per-pixel classifi-
cation accuracy was significantly higher for pixels with more
heterogeneous focal neighborhoods, pixels located in larger
patches, pixels located in regions with a less heterogeneous
landscape and pixels located in regions with a more coarsely
textured landscape” (Van Oort et al., 2004).

Objected-based classification has been adopted more and
more to extract information from high-resolution imagery.
In contrast to conventional approaches, the processing unit
in object-based classification is the image object rather than
the pixel. The classification decision is based on features
describing the characteristics of each image object. The
“sample” data used in classification has to be a subset of
image objects containing ground truth information, and we
call it “sample object.” This change of processing unit has
new impacts on classification accuracy. First, the generation
of sample objects may introduce clustered and unreliable

samples. In pixel-based vegetation classification, it is well-
accepted to use pixels overlapping with the field survey plot
as sample pixels. While in object-based classification, a field
survey plot rarely perfectly overlaps with image object(s).
It is often partially superimposed on more than one image
object. Taking image objects partly cov-ered by a field survey
plot as sample objects, object-based classification unavoid-
ably uses some sample objects of the same class in clusters.
In addition, some sample objects included are not reliable
since they are only partially within the survey plot. Second,
if we define “sample” as the training or test data in the
unit directly handled by an classifier (i.e., object), sample
size and sample distribution are not only determined by
field sampling strategy, but also by how the ground truth
is projected onto image objects in order to select sample
objects. This process is relatively subjective. Third, in
contrast to pixel-based classification, the dimension of image
objects varies. The characteristics of the image objects might
play a role in the classification accuracy to a certain degree.
Therefore, it is necessary and meaningful to examine the
uncertainty of the object-based classification in association
with the properties of sample objects.

This paper evaluates the impact of these potential factors
on object-based classification uncertainty. It is well recog-nized
that classifiers, accuracy assessment methods, and data
preprocessing (e.g., atmospheric correction) affect classification
accuracy (Congalton, 1988; Gong and Howarth, 1990; Lunetta
et al., 1991). However, these factors are not specific to individ-
ual classification units (pixels or objects) and do not vary
over spatial location. In other words, they are treated as
“global factors” influencing the global or general accuracy
of a classification. These global factors are unlikely to lead
to the spatial pattern of classification uncertainty or the
variation of per-case accuracy for a classification procedure.
Instead of analyzing the effects of global factors, the objective
of this study is to investigate the potential explanatory vari-
ables affecting spatial variation of classification uncertainty in
an object-based classification. Along the lines of previous work
by Smith et al. (2002 and 2003) and van Oort et al. (2004), in
this study we consider the factors related to sample distribu-
tion and landscape complexity. Our objective is distinct from
theirs because of its object-based context. In addition, for
several reasons, we include three categories of explanatory
variables: terrain, sample reliability, and object features. First,
our classification has a focus on detailed vegetation classes
over a relatively large area using high-resolution imagery.
Topography as ancillary features played an important role in
the classification. Second, because of the aforementioned
process of sample object generation, the affects of unreliable
samples become more significant in object-based classification
than in pixel-based classification. Third, due to the irregular
dimension of image objects, the category of object features is
included to better characterize image objects. Size, brightness,
shape, and orientation of image objects in this category are
tested as potential factors in classification uncertainty.

This study examines the factors describing each sample
object with general membership, landscape characteristics
(topography, object density, spatial composition), sample
object reliability, and object features. Our hypothesis is that
these factors have significant influence on classification
uncertainty. We tested the hypothesis based on an object-based
vegetation mapping with airborne high-resolution images.
A mixed linear model was used to examine the effect of
spatially related factors on classification uncertainty. Classifica-
tion uncertainty is first derived from the bootstrap method.
The possible factors affecting spatial variation are quantified
by either continuous or categorical variables. Then, classifica-
tion uncertainty is fitted by those explanatory variables with
the mixed linear model. Based on the model, we identify
significant factors and discuss the relationships between them.
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Methods
Data and Earlier Results
In this study, object-based vegetation classification is based
on airborne images at 1 m resolution in Point Reyes National
Seashore, California (Yu et al., 2006). The study area is about
72,800 ha (180,000 acres) and covered by 26 frames of the
Digital Airborne Imagery System (DAIS) images. The sensor
system has four bands: Blue (450 to 530 nm), Green (520 to
610 nm), Red (640 to 720 nm), and Near-infrared (770 to
880 nm). Tonal balance was conducted among all the images.
No further atmospheric correction was performed in this
study, considering the clear and dry atmospheric conditions
when the image data were collected and a relatively low
flight altitude of 2,500 m above ground. First, pixels were
grouped into image objects through the Fractal Net Evolution
Approach (FNEA) segmentation using eCognition® 4.0 from
Definiens AG (Baatz et al., 2004). Then, features were

generated for each object. After conducting feature selection,
a non-parametric classifier, nearest-neighbor was employed
to classify the objects into 48 classes. The classification
scheme was designed at the alliance level according to the
vegetation classification system of the California National
Plant Society (CNPS) (The California Natural Diversity
Database, 2003). The alliance is a physiognomically uniform
group of plant associations sharing one or more dominant
species. Among 48 classes, 43 are vegetation alliances, which
could be categorized into forest, shrub, and herb.

Our sample data were acquired mainly from the 1,329
field survey plots (0.5 ha each) provided by the National Park
Service, supplemented with our field reconnaissance. Those
field survey plots were superimposed on the image objects.
Any image objects overlapping with the field survey plots by
more than 10 percent of its own area were taken as a sample
object (Baatz et al., 2004; Yu et al., 2006). As a result, the loc-
ations of the 6,824 sample objects are presented in Figure 1.

Figure 1. Study site, sample objects in highlighted (yellow) polygons and their centroids indicated by
dots. A color version of this figure is available at the ASPRS website: www.asprs.org.
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The reason for choosing 10 percent as overlapping criterion
will be discussed in a following section. The object-based
classification achieved an overall accuracy of 58 percent over
the entire study area. The classification was reported and
results were discussed by Yu et al. (2006). Due to the com-
plexity and high heterogeneity of the vegetation types, the
global statistical accuracy might not be optimal to evaluate the
classification over the entire study area. We want to further
study how the accuracy varies spatially. This understanding
would improve our knowledge in three areas: (a) the map
quality derived from the classification, (b) identification of the
potential factors to improve the classification according to
error spatial distribution, and (c) accuracy variations caused
by sample objects generation and object dimension associated
with an object-based classification.

Estimation of Classification Uncertainty with Bootstrap Methods
The bootstrap is a general nonparametric procedure for
assessing statistical accuracy and quantifying expected
prediction error or uncertainty (Efron and Tibshirani, 1993;
Hastie et al., 2001). The advantage of bootstrap estimation
is the independence of classifier and its broad applic-
ability. The basic idea of bootstrap is to randomly draw
datasets from the sample data with replacement by a Monte
Carlo simulation (Hilborn and Mangel, 1997). Each boot-
strap dataset has the same size as the original sample data.
This is done B times, producing B bootstrap datasets. The
classification is then conducted on each of the bootstrap
datasets, and the accuracy is assessed by examining the
behavior of the classification over the B replications. Since
Bootstrap methods involve generating “replicate” sample
datasets from the original samples, they improve confi-
dence in parameter estimates and uncertainty calculation
with better data quality and increased sample size. Each
hypothetical sample dataset, called a Bootstrap sample
(set), represents a potential set of observations that could
be obtained when resampling from the population.

It is necessary to modify the bootstrap algorithm when
it is applied to nearest neighbor classifiers (Efron and
Tibshirani, 1997; Steele et al., 1998). In nearest neighbor
classification, the observation to be classified is assigned
to the membership of the closest sample in feature space.
If the observation is in the bootstrap sample, the nearest
observation is itself and the observation is certain to be
correctly classified. Consequently, the classification error
will be underestimated. To avoid this problem, leave-one-
out bootstrap is adopted to classify only the observations
that are not in the bootstrap sample (Steele et al., 1998).
Figure 2 illustrates how to derive case-based accuracy

with the Bootstrap method. In the case of 1-nearest neighbor
classification, the original sample set is denoted as Z �
(z1, z2, . . . , zN) with N observations. B bootstrap sample set
Z*b (b � 1, 2, . . . , B) are drawn from the original sample
set. Each bootstrap sample set Z*b also has N observations
from N times draw with replacement, certainly some of which
are duplicates. Taking a bootstrap sample set as training
samples, observations that do not appear in the bootstrap
sample set b are classified. The duplicated observations are
treated as one observation. C(Z*b) represents the classification
result with Z*b as training samples. This process is repeated
with the next bootstrap sample until every observation has
been classified at least some predefined number of times. It
was set 500 times in this study. For each observation (sample
object), classification uncertainty is defined as the ratio of the
number of times being correctly classified to the total number
of times being classified. Some studies calculated incorrect
classification ratio, which is complementary and comparable
to this definition (Steele et al., 1998). It is worth mentioning
that this mean estimate of the accuracy tends to be slightly
optimistic (Hastie et al., 2001). From this estimation, a larger
classification uncertainty value actually indicates two facts:
first, the observation has high probability of being correctly
classified; and second, the classification result is certain and
less dependent on a specific sample set since the uncertainty
is the average accuracy from different sample sets. This
classification uncertainty is also called per-case accuracy
because of this implication.

Quantifying Factors Affecting the Classification Quality
Six categories of factors are quantified as explanatory
variables to model classification uncertainty: topographic
variables, object membership, sample object density, spatial
composition, sample object reliability, and object features.
These variables are discussed in detail in this section.

Topographic Variables
Five topographic variables are derived using 10 m DEM from
the USGS Bay Area Regional Database, including elevation
(ELEV) in meters, slope (SLOPE) and aspect (ASPECT).
To better characterize solar radiation, two radiation indices,
SI (Solar Index) and TRASP (Transformed Aspect) are
transformed from slope and/or aspect using Equations 1 and
2 (Lewis and Hutchinson, 2000; Moisen et al., 2000):

(1)

(2)

where aspect is in degrees from north, and slope is in
degrees. TRASP has a range of 0 to 1. It is assigned zero to
land oriented in a north-northeast direction (30 degrees east
of north), the coolest and wettest orientation and one to the
hotter, drier south-southwest slope.

Object Membership
The forty-eight classes in the classification belong to four
general groups: forest, shrub, herb, and non-vegetation,
according to a vegetation key created specifically for the study
site (Keeler-Wolf, 1999). The major confusion or misclassifica-
tion occurred between classes belonging to the same general
group. To compare the classification strength for each group
due to their spectral separability, we adopted the membership
of the four general groups (GROUP) as an explanatory factor.
We assume the classification accuracies of classes in the same
general group are more closely correlated than the classes
between groups. GROUP is a categorical variable with four
levels, which represents the four distinct groups.

TRASP �
1 � cos((p/180)(aspect � 30))

2

SI � cos(aspect) * tan(slope)

Figure 2. Derivation of classification uncertainty with
Bootstrap algorithm.
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Sample Object Density
Sample object density is included in the analysis to test
the effect of two factors: sampling scheme and sample
object generation. First, although a large number of survey
plots were collected in this study, sampling was con-
strained by accessibility. Most field survey plots are
located close to a road. A non-random sampling scheme is
likely to introduce bias to the accuracy assessment (Foody,
2002). The accuracy assessment may be less credible for
regions with sparse samples. Therefore, the spatial distribu-
tion of sample objects may lead to spatial variation of
classification uncertainty. Second, the method of sample
object generation also determines the sample object density
and thus affects uncertainty. Polygons from image segmen-
tation, i.e., image objects, are the minimum classification
unit in object-based classification. The most straightforward
method of generating sample objects is to overlay survey
plots onto image objects and calculate the ratio of the area
covered by a survey plot to the entire area of the corre-
sponding image object. An image object will be selected as
a sample object if this ratio is greater than a predefined
minimum percentage, as illustrated in Figure 3. This
widely accepted method has been adopted by the commer-
cial software eCognition® (Baatz et al., 2004). The lower
this percentage, the more objects are taken as sample
objects. Therefore, the spatial pattern of sample density is
determined by both the field sampling scheme and the
criteria used to define sample objects.

We choose 10 percent as the minimum overlapping
criterion in order to include more sample objects. In this
study, the size of image objects is equivalent to the size of
the survey plot (the average area of image objects is 4,300 m2

and that of the survey plots is 5,000 m2) and the dimension
is irregular. Consequently, the portion of an image object
covered by a field survey plot is often a small fraction of the
entire image object. The number of sample objects we can

acquire is quickly reduced by increasing the “overlapping”
criterion. Meanwhile, more and more survey plots are not
covered by any image object with the fraction greater than
the increased overlapping criterion. Consequently, fewer
survey plots are taken into account for sample object
generation. Figure 4 illustrates that the number of sample
objects generated and the number of survey plots used
decrease rapidly with increasing the overlapping criterion.
Therefore, a relatively small ratio is adopted to guarantee
more field survey plots are considered as ground truth.
On the other hand, using a lower ratio will include some
unreliable sample objects. We addressed this concern by
adding Sample Reliability (SamRel) as an explanatory factor.
The effect of sample reliability on classification accuracy is
one of our interests to study.

The sample object density (SamDen) is estimated using
a kernel function illustrated in Figure 5 (Bailey and Gatrell,
1995). First, the centroid of each sample object is extracted
as point features. Then, the quadratic kernel function is
used to estimate the density of the point pattern (Silverman,
1998). Conceptually, the bivariate probability density
function is symmetric curved surface about each point,
determining the weight of the neighbor points as a function
of distance to the point. The value of the weight is the
highest at the location of the point, and diminishes with
increasing distance from the point, reaching 0 at the band-
width. Bandwidth is the radius of the range within which
a point’s neighbor points significantly contribute to the
density of the point, which is designated according to the
desired amount of smoothing. The density at each spatial
location is calculated by adding the values of all the kernel
surfaces superimposed on this location. In Figure 5, the
grey level represents the estimated sample object density.
Larger bandwidth includes more neighbor samples in the
density estimation and the density changes in a slower
and smoother way.

Figure 3. Sample object generation. The three grey-filled polygons are field survey
plots and the empty polygons are sample objects, which satisfy the overlapping
criterion. The round dots indicate the centroids of sample objects and the triangle
symbols indicate the centroids of the field survey plots.
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Spatial Composition of Sample Objects
Spatial composition describes the variety of the samples and
their spatial pattern/layout at a certain scale (Turner et al.,
2001). Spatial composition indices in this context refer to
the quantitative measures of the occurrence of sample object
classes in a given neighborhood. Those indices have been
used to quantify the spatial heterogeneity of the focal
neighborhood (3 � 3 window) around each pixel in study-
ing spatial variability of pixel-based classification accuracy
(Moisen et al., 2000; Smith et al., 2003; Van Oort et al.,
2004). We adopted four spatial composition indices: rich-
ness, two diversity indices, and evenness. In the calculation
of these indices, we ignore dimension and use the centroids
to represent the sample objects (Dimension of image objects
is considered individually in another category of explana-
tory variables, “object features”). The four metrics are

calculated for circular areas centered at each centroid.
Richness (RICH) is defined as the number of sample
classes present within a given radius. Two diversity indices
(D1 and D2) are calculated as

(3)

(4)

where S is richness, n is the total number of sample objects
within a given radius, and ni is the number of sample
objects belonging to the i th sample class. Then n is the sum
of ni. Figure 6 illustrates how to count S, ni, and n at the
location of a sample object.

Actually, D1 is the exponential of Shannon’s entropy,
and D2 is the reciprocal of Simpson’s index (Hill, 1973).
The higher the value of D1 and D2, the greater the diversity.
Both D1 and D2 start with 1 as the lowest possible value,
representing only one class within the radius; their maximum

D2 � ��
S

i�1

ni (ni � 1)
n(n � 1) �

�1

D1 � exp���
S

i�1
�� ni

n � ln � ni

n ���

Figure 4. The relationship between the overlapping
criterion (the proportion of an image object overlapping
with the field survey plot to the whole area) and the
number of sample objects generated and survey plots
taken into account.

Figure 5. Calculation of sampling object density by
Kernel estimation. The black dots indicate the centroids
of the sample objects; the gray scale on image indi-
cates the value of the sample object density. The
estimated sample object density looks smoother with
larger bandwidth.

Figure 6. Illustration of calculating spatial
composition metrics. Symbols distinguish
different classes (five classes): (a) Sample
objects within a certain radius, (b) Occurrence
frequency of sample classes. S is the number
of sample classes present within certain
radius; n is the total number of sample objects
within a certain radius, and ni is the number of
sample objects belonging to the ith sample
class. In this case, S � 5, n1 � 5, n2 � 6,
n3 � 3, n4 � 5, n5 � 2, and n � �ni � 21.
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Figure 7. Examples of sample object reliability. Circles (yellow) represent field survey plots and green
shaded polygons denote sample objects: (a) A reliable sample object of Coyote Brush; (b) through
(d) Three unreliable sample objects: (b) an image object of road mistakenly assigned as willow, (c) an
image object of California Bay mistakenly assigned as Coyote Brush, and (d) an image object of
perennial grassland mistakenly assigned as California Bay. A color version of this figure is available at
the ASPRS website: www.asprs.org.

objects. A dichotomous variable, sample object reliability
(SamRel) is defined to indicate the correctness of sample object
membership. The value of zero represents questionable sample
objects; the value of one represents reliable sample objects.

Object Features
In addition to the above indices characterizing the sample
allocation, four indices that depict the image objects are
derived: brightness, area, shape index, and main direction.
This category of indices quantifies the spectral value, size,
shape, and orientation of image objects, respectively (Baatz
et al., 2004). Brightness is the average digital number over
five bands (Blue, Green, Red, NIR, and intensity) of the
spectral mean values of pixels composing an image object.
The shape index (SHAPE) describes the smoothness of the
image object borders. Mathematically it is the border length
of the image object (e) divided by four times the square root 

of its area (A), i.e., . The denominator is equivalent to 

the perimeter of the square with the same area. The more
fractal an image object appears, the higher its shape index.
The main direction of an image object is the direction of the
eigenvector belonging to the larger of the two eigenvalues
derived from the covariance matrix of the spatial distribu-
tion of the image object (Baatz et al., 2004).

Mixed Linear Model
Due to the constraints of field sampling and sample object
generation discussed in the Introduction, the correlation
between variables and the autocorrelation of individual
variables are inevitable. A simple linear model cannot reveal
the underlying process properly if the variances and covari-
ances are in reference to spatial location and/or other factors.
Therefore, a mixed linear model was applied to study the
effect of the above factors on classification uncertainty. A
mixed linear model is a generalization of the standard linear
model, which allows the data to exhibit correlation and non-
constant variability (Littell et al., 2002). In contrast to simple
linear models, a mixed linear model contains both fixed- and
random-effects parameters and uses covariance structure for
random effects. A mixed linear model can be written as:

(6)

where Y is the vector of observed dependent variable values,
X is the known matrix of predictor-variable values, and b is

Y � Xb � Zg � �

e
4wA

values are the number of classes. The two diversity indices
are then used to calculate evenness (EVEN), referring to how
evenly the proportions of vegetation classes are distributed:

(5)

According to Equation 4, if there is only one sample
object in the radius (n � 1), the denominator of D2 will be
zero. In this case, D2 is assigned the value of D1. According
to Equations 3 and 5, if there is only one sample type
within this radius (s � 1 and ni � n), D1 is equal to 1.
Therefore, the denominator of EVEN will be zero. In this
case, the value of zero is assigned to EVEN since the
sampling is very uneven among classes.

Sample Object Reliability
Unreliable sample objects sometimes occur in the process
of preparing the sample objects before an object-based classifi-
cation. Although some unreliable samples could result
from incorrect interpretation and geo-referencing as in pixel-
based mapping, here we focus only on unreliable sample
objects created due to the batch process of sample object
generation. Two steps in this vegetation mapping may influ-
ence the reliability of sample objects: survey plot delineation
and sample object generation. First, the survey plots are 
re-constructed from the GPS-measured center coordinates of
the field survey sites. The size of field survey plots is approxi-
mately 0.5 hectare, without fixed dimension or orientation.
A circular area with radius of 40 meters around the measured
center coordinates was created, and those circular polygons
were delineated as survey plots. This step constituted an
approximation to the actual field measurement. Second,
sample objects are obtained through batch processing of
overlaying survey plots and image objects. Therefore, some
sample objects are not fully covered or dominated by a single
alliance or by the same alliance indicated from the survey
plot, although they satisfy the minimum overlapping criterion.

To determine the effect of sample reliability on classifica-
tion accuracy, we re-examined each sample object. A step of
image interpretation was conducted to verify the sample
objects one by one, and to mark the mis-assigned sample
objects. The incorrect class labels include forest objects
assigned as shrub or vice versa near the forest boundaries,
roads assigned to a vegetation class when they pass by a
vegetation survey plot, mowed ground assigned as herb, and
so on. Figure 7 shows four examples of unreliable sample

EVEN � (D2 � 1)/(D1 � 1)
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the fixed-effects parameter vector. The mixed model general-
izes the simple linear model by adding the known design
matrix Z and the unknown vector of random-effects parame-
ters g. Instead of assuming � as an unknown Gaussian
random error vector with zero-mean and constant variance,
the residual error � is an unknown random error vector
whose elements are no longer required to be independent
and homogeneous. A key assumption in the mixed model is
that g and � are normally distributed with:

where G and R are the variance-covariance matrices of g and
�, respectively. The variance of Y can be modeled by
specifying the structure of G and R.

The corrected Akaike Information Criterion (AICc) is
adopted as our criterion to select the appropriate covariance
model and to measure the model fitness. The definition of
AIC is based on the modeling perspective that the underly-
ing true model is essentially infinite dimensional and the
goal of modeling is to find the best approximating finite
dimensional model (Hoeting et al., 2006). Therefore, based
on the Kullback-Leibler information, AIC was developed as
a measure of the loss of information incurred by fitting an
incorrect model to the data:

where L is the model likelihood, p is the number of fixed
effect terms, and k is the number of random effect terms.
The first term is a measure of the quality of fit of the model,
while the second term is a penalty factor for the introduc-
tion of additional parameters into the model. AIC may
perform poorly if there are too many parameters in relation
to the size of the sample. Further small-sample (second-
order) bias adjustment led to the AICc statistic, in which the
penalty term is multiplied by the additional bias correction
factor n/(n � p � k � 2), i.e.,

where n is sample size (Burnham and Anderson, 2002;
Hoeting et al., 2006). AICc examines the complexity of the
model together with goodness of fit to the sample data, and
produces a measure which balances between the two (Littell
et al., 2002). Since AICc is on a relative scale, the model
with the smallest AICc values is the best approximation
for the information in the data.

The model fitting is conducted with the MIXED proce-
dure in SAS (SAS Institute Inc., 2002). The estimation
method is residual maximum likelihood (REML). The mixed
linear model includes both fixed-effects and random-effects,

AICc � �2log L � [2(p � k � 1)(n/(n � p � k � 2))]

AIC � �2log L � 2(p � k � 1)

Var�g

�� � �G 0
0 R�

 E�g

�� � �0
0�

and accounts for the different variance for the random effect.
Variables of fixed-effects include five topographic variables,
sample object density, four spatial composition indices,
sample object reliability and four object features. Sample
membership GROUP was set as a random effect since we
assume the classification uncertainty within a general group
exhibits more correlation than across general groups.

Using the mixed linear model, classification uncertainty
is modeled as a function of the six categories of variables
(Table 1). Sample object density and spatial composition
indices measure the spatial heterogeneity of sample objects
at a location; their values are estimated based on the
occurrence of sample objects within a predefined radius.
Consequently, this raises the question of radius selection.
By varying the radius from 100 m to 1,000 m with an
interval of 100 m, the sample object density (SamDen),
richness (RICH), diversity index 1 (D1), diversity index 2
(D2), and evenness (EVEN) are calculated for each sample
object. For convenience, we will simply call this group of
variables spatial metrics. The mixed model is fitted respec-
tively for the spatial metrics based on the ten different radii.

Results and Discussion
Model
Several covariance structures of G and R are tested including
variance components, spherical spatial and exponential
spatial. Based on the rule that a smaller AICc indicates a
more preferable model, the structure of variance components
is adopted for both G and R, which models a different vari-
ance component for each random effect (GROUP). Figure 8
plots the AICc for two cases based on a series of radii: one
model defining GROUP as a random effect, and the other
only including fixed effects. Declaring GROUP as a random
effect sets up a common correlation among all observations
belonging to the same general group: forest, shrub, herb, and
non-vegetation. The difference of AICc between the two
models ranges from 86 to 111 over all radii, which is shown
as the interval between the two curves. It demonstrates that
the random effect included in the model significantly lowers
the AICc and improves the correlation modeling in the data.

Table 2a lists the parameter estimates for random effect.
From the p-value, the effect of the non-vegetation group is
significant, but the effects of the three vegetation groups are
not. Therefore this result confirms that it is necessary to
model an additional correlation between all samples in non-
vegetation level to the rest of the samples in vegetation
level. In other words, the classification uncertainty between
the samples within a general group (vegetation or non-
vegetation) exhibits more correlation than those across
general groups, but the correlation of samples within each
vegetation group (forest, shrub, and herb) is not significantly
different from samples across other vegetation groups.
We could use one covariance component for all vegetation

TABLE 1. EXPLANATORY VARIABLES

Category Variables Type Radius

Object membership Group Categorical N/A
Topography Elevation, Slope, Aspect, Continuous N/A

SI, TRASP
Sample object density SamDen Continuous 100, 200,. ., 1000
Spatial composition RICH, D1, D2, EVEN Continuous 100, 200,. ., 1000
Sample object reliability SamRel Dichotomous N/A
Object features Brightness, Area, Shape Index, Continuous N/A

Main Direction
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groups. Therefore, GROUP could alternatively be designed
by two levels: vegetation and non-vegetation. This simplified
GROUP will not reduce the model efficiency.

Figure 8 also illustrates the variation of AICc as a
function of the radius at which the spatial metrics are calcu-
lated. The lowest AICc appears at a radius of 300 meters,
which means spatial metrics estimated with a radius of 300

meters can best model classification uncertainty. To have a
better idea of 300 meters compared with the average sam-
pling distance, we calculated two statistics: the median of
the distances from any survey plot to its closest neighbor
plot is 141 meters, and the median of the distances from any
sample object to its closest neighbor sample object is 40
meters. Referring back to Figure 3, the former depicts the
median distance between two closest triangle symbols and
the latter refers to the median distance between two closest
round dots. These two statistics explain the significant
variables of spatial composition (D1, D2, RICH, and EVEN) in
the model listed in Table 3. The spatial composition indices
at a radius of 100 meters are not significant in modeling
classification uncertainty. The reason for this is that a radius
of 100 meters confines the sample objects partly covered by
the same survey lot, i.e., belonging to the same class. In this
case, the variables of sample spatial composition are not
really meaningful. At a radius of 200 to 500 meters, sample
objects generated from other survey plots are involved, and
these indices reasonably reflect the spatial composition of
sample objects. Therefore, more variables are significant or
have very low p-values (�0.10). At 300 meters, the signifi-
cance reaches its maximum. It means the classification
uncertainty of a sample object is influenced most by neigh-
bor sample objects within 300 meters, which is about twice
the median distance between any two survey plots. Spatial
composition indices tend to be less significant when the
radius becomes greater than 500 meters, since a large radius
has a stronger normalization effect and reduces the spatial
variation. When the radius is greater than 900 meters,

Figure 8. AICC of the fitted models based on different radii.

TABLE 2. PARAMETER ESTIMATES AND THEIR STANDARD ERRORS IN THE MIXED MODEL: (A) ESTIMATES FOR RANDOM EFFECT, 
AND (B) ESTIMATES FOR FIXED EFFECTS

GROUP Level Forest Shrub Herb Non-veg

Estimate �10.504 �4.5224 �4.7173 19.7437
Std Error 6.8448 6.8451 6.8491 7.1061
P 	 �t� 0.2239 0.5567 0.5411 0.0598

(a)

Factors Intercept SamRel (0/1) ELEV AREA SamDen* RICH* D1* D2* EVEN*

59.4802 �7.1443/0 0.0449 0.0006 0.0429 4.7126 �8.3173 �4.1340 2.5464
Std Err 7.1490 1.4308 0.0046 0.0001 0.0118 1.4124 3.0352 1.8857 0.8310
P 	 �t� 0.0020 �.0001 �.0001 �.0001 0.0003 0.0009 0.0062 0.0284 0.0022

Note: Spatial metrics SamDen, RICH, D1, D2, and EVEN are calculated based on a radius of 300 meters.

(b)

b̂

TABLE 3. SIGNIFICANT VARIABLES FROM MIXED LINEAR MODEL

Radius (m)

100 200 300 400 500 600 700 800 900 1000

Topography ELEV �* � � � � � � � � �
SLOPE � � 0.11 0.11 0.09 0.09 0.08 0.10 0.11 0.12

Object features AREA � � � � � � � � � �
Sample object reliability SamRel � � � � � � � � � �
Sample object density SamDen � � � � � � � � � �

RICH 0.07 � � � 0.06 � 0.34 0.40 0.18 0.06
D1 0.18 � � � 0.08 � 0.66 0.90 0.18 0.07

Spatial composition D2 0.31 0.99 � 0.33 0.40 0.55 � � 0.36 0.65
EVEN 0.45 � � 0.86 0.07 0.53 0.10 0.98 0.86 0.60

Note: “�” indicates the variable is significant, i.e., p � 0.05.

06-095.qxd  7/11/08  10:11 PM  Page 1015



1016 Augu s t  2008 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

none of the spatial composition indices are related to
classification uncertainty.

Variation of Spatial Metrics with Radius
Spatial metrics denote the group of variables representing
sample object density and spatial composition. To examine
the variation of the spatial metrics with radius, we correlated
each spatial metric for all sample objects at a radius of 300
meters to the same spatial metric at any other radius. The
correlation coefficients for each spatial metric (SamDen,
RICH, D1, D2, and EVEN) are presented in Figure 9. The
values of the spatial metrics are dependent not only on the
spatial distribution of sample objects, but also on the radius
in the estimation. D2 and EVEN appear less stable and more
sensitive to radius than RICH and D1. This confirms the fact
proved by Hill (1973) that D1 and D2 in Equations 3 and 4
are the diversity numbers of first order and second order.
D2 depends more on common species/classes and less on
rare ones. When the radius is small, both the number of
sample objects and the number of classes are small. There-
fore, most types look like “rare.” As the radius increases,
more sample objects are included and common species are
explicit. Then, D2 changes dramatically. SamDen is the least
dependent on radius since its estimation takes into account
the weight as a function of distance. The sample objects
farther away are given less weight in the estimation of the
sample object density than those closer.

Referring to the significant variables listed in Table 3,
the more stable the spatial metrics are, the more chance the
spatial metrics exhibit significance in the model. Sample
object density is the most stable variable and it is significant
in the model at any radius, while EVEN is the least stable
variable and is significant only at radii of 200 and 300
meters. The radius at which spatial metrics are derived is
critical in assessing their significance. Some previous
research reported the heterogeneity measures are not
significant in modeling the classification accuracy in a pixel-
based classification (Moisen et al., 2000). Our result pro-
vides a possible explanation that the extent of heterogeneity
measures could be decisive. In an object-based approach, the
extent is the radius, and in a pixel-based approach, the
extent is the window size.

Significant Factors Affecting the Classification Uncertainty
In the mixed linear model, we identified the significant
variables at the level of a � 0.05 by F-test. Table 3 lists

these variables for each radius related to the calculation of
spatial metrics. In the case of a radius of 300 meters, all the
spatial metrics are significant. At least one spatial variable
from each of six categories is significant. These significant
variables are elevation, object size, sample object density,
spatial composition, and sample object reliability. In this
case, the model reaches the lowest AICc in the fitting.

denotes the estimate of the parameter b in the Equation 6.
The estimated by restricted maximum likelihood (REML) is
listed in Table 2b. Since the ranges of explanatory variables
are different from each other, the absolute value of is
not directly interpretable. Instead, its sign discloses the
positive or negative correlation to classification uncertainty,
and p-value indicates the significance. We elaborate on the
effects of these factors below:

1. Elevation is positively correlated with the classification
uncertainty. It means that classification results are better at
high elevation areas than at low elevation areas. From our
understanding, the effect of elevation on classification
uncertainty is driven by the plant phenologies and spatial
distribution at low and high elevations. The images used
in this study were collected in the summer, the dry season
in California. In the study area, areas at low elevation are
often covered with dry herbs, while areas at high elevation
are mostly covered by forest. Because forest areas are still
green and have a more distinct spectral signature in summer,
the classification accuracy is higher. In contrast, dry herbs
at low elevation areas loose chlorophyll in summer, making
it difficult to distinguish herb species. Therefore, the
correlation of topography and classification uncertainty may
not necessarily be extended to other areas.

2. Diversity indices are negatively related to classification
uncertainty, while sample object density, evenness and
richness are positively related to classification uncertainty.
The negative parameter estimate of diversity confirms that
better classification tends to occur in the areas of more
homogeneity and less diversity. Higher diversity implies a
larger percentage of boundary objects. These boundary
objects have a mix of landscape objects and contain mixed
pixels from two or more land-cover classes, which always
cause greater confusion between classes. This result is
consistent with the conclusion in previous studies of pixel-
based classification error. The areas with high sample
object density provide more ground truth information so
that they reasonably achieve better classification quality.
High evenness guarantees that every class present has
identically representative samples in the classification, so
it rationally benefits classification.

3. The dummy variable, sample object reliability, significantly
influences the classification uncertainty. The parameter
estimate of sample object reliability is �7.1 for SamRel equal
to zero. Since the dependent variable, classification uncer-
tainty, varies from 0 to 100(%) and sample object reliability
is a dichotomous variable, the reliable and unreliable sample
groups would have 7.1 percent difference in the estimated
per-case classification accuracy on average. In this study,
about 12 percent of the sample objects were assigned to an
incorrect class (Table 4), which mainly resulted from the
procedure of automatically generating sample objects from
survey plots. As we expected, those unreliable sample
objects strongly influenced classification accuracy. Through
individual checks, we found a large portion of the unreliable
samples had a classification uncertainty equal to zero.

b̂

b̂
b̂

Figure 9. Correlation coefficient of SamDen, RICH, D1,
D2, and EVEN between measures at a radius of 300 m
and at other radii.

TABLE 4. THE PROPORTION OF UNRELIABLE SAMPLE OBJECTS

Forest Shrub Herb Others All

Number of 2795 2263 1550 216 6824
sample objects

% of unreliable 10.13% 14.85% 11.10% 15.74% 12.08%
sample objects

06-095.qxd  7/11/08  10:11 PM  Page 1016



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Augu s t  2008 1017

4. The area of image objects is positively associated with
the classification uncertainty. Image objects were generated
from a region growing segmentation, which uses the
local spatial variance of spectral value as the criterion
to delineate objects. The object stops growing when the
variance exceeds a predefined threshold. Therefore, the
size of the objects reflects the local spatial variation of
the image. Objects of small size always occur in spectrally
heterogeneous areas, such as a highly mixed area, vegeta-
tion transitional area, or landscape boundary area. Objects
of larger size indicate a spectrally homogeneous area with
unitary spectral feature. It is reasonable that the per-case
classification accuracy is high in spectrally homogeneous
areas, i.e., objects of larger size.

Summary and Conclusions
The goal of this paper is to evaluate the impact of possi-
ble factors on the spatial variation of classification
accuracy in an object-based vegetation mapping. Classifi-
cation uncertainty provides a per-case basis classification
accuracy to supplement the conventional general accu-
racy. Along the lines of previous work examining the
impact of patch size, landscape characteristics, and terrain
on accuracy in pixel-based classification (Steele et al.,
1998; Van der Wel et al., 1998; Smith et al., 2002; Smith
et al., 2003), we examined six categories of factors: object
general membership, topography, sample object density,
spatial composition, sample object reliability, and object
features. Classification uncertainty derived from a boot-
strap method is modeled as a function of these factors
using a mixed linear model. The significant variables
were identified by F-test (p � 0.05) and the parameter
estimates of significant variables were resulted from REML

fit. The effects of the explanatory variables are interpreted
based on parameter estimates. We also investigated
variation of spatial metrics with radius, and consequently
compared their significance in the model.

The result supports the assumption that elevation,
sample object size, sample object reliability, sample object
density, and spatial composition all significantly influence
classification uncertainty. Elevation, sample object density,
evenness, richness, and area of image objects are positively
related to the classification uncertainty. Diversity indices
are negatively related to the classification uncertainty.
The dummy variable, sample object reliability, indicates an
unreliable sample would reduce the classification uncertainty
by 7.1(%). The significance of those factors is consistent with
that of comparable factors in the previous studies of pixel-
based classification error. The results of this study helps in
understanding the spatial allocation of classification error
and suggests further improvement of classification through
(a) using wet season images to classify herbs in low elevation
areas, (b) adding samples in areas of very low sample object
density, and (c) adjusting segmentation parameters to
reduce the number of unreliable samples. Some research has
reported that larger objects in the segmentation will achieve
higher spectral separability (Wang et al., 2004). However, we
would not recommend increasing object size in the segmen-
tation, although object size is positively related to classifica-
tion uncertainty. Large objects are more likely to contain a
spectral mixture from multiple landscape classes, and result
in a larger number of unreliable sample objects.

Except for topography, all other five categories of effects
are related to the object-based approach. With the increasing
use of the object-based approach in analyzing high-resolution
imagery, it is necessary to consider how to properly assess
and interpret classification accuracy in an object-based
classification. Conventional pixel-based classification uses the
regular cell (pixel) as the processing unit, which is much

smaller than the mapping or sampling unit. While in object-
based classification, sample objects are not quite equivalent to
the field sampling plots since one field plot always super-
imposes on a cluster of image objects. Therefore, the practice
of accuracy assessment is directly or indirectly affected by
sample object generation, sample object reliability, and object
dimension. The impact of sample and sampling strategy on
classification accuracy in object-based classification is much
more complex than in pixel-based classification. The results
of this study indicate there is a need to develop standardized
procedures for measuring and comparing accuracies in object-
based classification.
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