Using computer vision technology to evaluate the meat tenderness

of grazing beef
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Raw meat surface features from non-grazing animals are reported to be correlated with meat tenderness.
However, meat from grazing beef may have different tenderness to that of non-grazing beef due to differences
in activity and diet. The feasibility of using meat surface characteristics from grazing beef in New Zealand to
estimate meat sensory tenderness was tested. Results from striploin samples from 50 carcasses demonstrated
that geometric, spectral and textural characteristics of meat from grazing beef were correlated to meat
tenderness assessed by trained tasting panels. Correlations were obtained using a neural network approach

(adjusted R? = 0.62) and a linear multivariable regression technique (adjusted R = 0.58).

The red meat industry is increasingly concerned about
the quality, as opposed to the increased quantity, of meat
products. Several studies have shown that tenderness is
the most important criterion for dictating meat eating
quality, as judged by consumer taste panels (Savell &
others 1989). Currently, carcass grading programs are
used to assess carcass quality. The programs are intended
to provide some indication of a meat’s relative palatability,
but these programs have their disadvantages such as
subjectivity and inconsistency. A survey of supermarket
beef quality conducted in New Zealand (NZ) showed
that many grading programs are not accomplishing their
objective of ensuring consumer satisfaction (M Paine
pers comm). Beef quality assessed from human graders
does not always have a strong correlation with taste
panel measures. Although some objective mechanisms
to measure meat tenderness are available (for example,
the Warner-Bratzler Shear Device), these evaluation
processes are destructive (Jeremiah & Phillips 2000).

Image processing technologies have promise for
assessing meat quality objectively and effectively (Gao
& Tan 1996, Kim & others 1998, Vote & others 2003).
Previous efforts using image processing techniques for
meat assessment were aimed at automating the meat
grading process, based on eating criteria (eg palatability,
tenderness, flavour, and juiciness). Several recent studies
reported that raw meat surface features are potentially
good indicators of meat tenderness (Park & others 1998,
Li & others 1999, Tan & others 1999, Tan 2004). These
findings were based on results from examining meat
of grain-fed beef, which is fundamentally different to
meat from grazing beef, which typically has less fart, little
marbling and more collagen.

The objective of this study was to examine if meat
surface features from grazing beef reflect meat tenderness,
as has been found for grain-fed beef (Park & others 1998,
Li & others 1999). Based on our observations, grazing
beef, relative to grain-fed beef, has different muscle
size and shape, a greater proportion of collagen or
intramuscular fat, and obscure surface texture patterns;
as such, we developed a new algorithm for extracting

meat surface features for meat from grazing beef.
Differences of surface texture (longissimus muscle area,
marbling scores and lean color) between beef muscle
from grazing and grain-fed cattle have also recently been
confirmed by Baublits & others (2004). The mear surface
features, extracted using visual technology, were related
to tenderness scored by trained sensory panels. The
effectiveness of using these surface features for tenderness
estimation was evaluated with a linear multivariable
analysis and a non-linear neural network method. The
tenderness evaluation from the sensory panels was
also benchmarked against a mechanical tenderometer
evaluation method. In addition, the pH of each striploin
sample was analysed to examine the relationship of pH to
tenderometer scores. The meat surface features and pH,
combined with sensory and tenderometer scores, were
used to develop an automated system for consistent and
objective meat tenderness assessment.

Materials and methods

Sample collection

Meat samples (Longissimus dorsi) from 50 carcasses of
NZ grazing beef were collected in two trials. In Trial One,
22 grazing steers from the Whatawhata Research Centre,
Hamilton NZ, were killed at a commercial abattoir.
Half of these animals had been fed a corn supplement
(4 kg/day) in addition to their usual grazing, for eight
weeks prior to slaughter to test if the meat features could
convey the grain feeding effects on beef tenderness. In
Trial Two, 28 grazing heifers were slaughtered at the
abattoir and used for sampling. The pH was measured
(Orion pH meter) within 24 h of slaughtering of each
carcass for both trials, at the ribeye region close to the
shoulder end. One portion of striploin (200 mm or 2
kg) was taken from the left side of the carcass. Each
portion was vacuum packed, and then frozen 24 h after
slaughtering for subsequent imaging, sensory panel
processing, and tenderometer testing. The right-side
striploins of 22 steers from Trial One were vacuum
packed, frozen 24 h after slaughtering, and then sent to
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the University of Missouri for parallel sensory evaluation.
The processing protocol for the right- and left-side
striploins was the same.

The frozen striploins were cut into steaks with a band
saw. The steaks were assigned to evaluation treatments
as outlined in Figure 1. Cuts #2 and #3 were used for
taste panel assessment. Cut #4 was imaged after thawing
for 48 h at -1°C and then held for 30 minutes at room
temperature. These thawed steaks were imaged in five
sessions and were processed in parallel with sensory
panel evaluation. Cuts #5-8 were used for tenderometer
testing after thawing for 48 h. In order to obtain reliable
sensory evaluation of beef tenderness, two sensory panels,
one from the USA and one from NZ, evaluated samples
from the same animals. The cross-country sensory results
were used in verifying the quality of sensory scores.

Sensory protocol

Sensory evaluation was conducted using ten trained
panellists, separated to avoid peer influence. The
evaluation was performed under red lighting to minimise
the effects of visual differences. The sensory scale used
by panellists in NZ was a 9-point system (1 = not tender,
9 = very tender). The average score of the ten panellists
was used as a measure of the tenderness of each steak
sample. Steak samples (20 mm thick) were cooked on
broiling pans in electric ovens. A T-type thermocouple
was inserted approximately at the centre of each steak to
measure the internal temperature. The steaks were first
broiled to an internal temperature of 34°C, turned over,
and then broiled to a final internal temperature of 68°C.
The edges of the cooked steaks were removed and the
remaining portion was cut into 1.25 cm cubes. The cubic
samples were served in beakers for sensory evaluation.
The beakers were preheated in sand baths to 76°C to
help maintain the sample temperature.

Sensory protocol and cooking methods used at the
University of Missouri were the same as those used in
New Zealand except for the scoring scale. The University
of Missouri team used an unstructured 16-point line
scale (0 = not tender, 16 = very tender) for scoring.
The US sensory evaluation system was to test the linear
correlation between the two scale systems.

Tenderometer examination

Tenderometers are mechanical devices designed to
measure the force needed to displace meat within the
sample (Jeremiah & Phillips 2000). The tenderometer
contains a set-up of stainless steel needles, sometimes
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Figure 1. Evaluation treatments for each striploin
sample

referred to as probes. Tenderness or toughness of the
samples is calculated by shear force measurement. The
MIRINZ Tenderometer, as described by Macfarlane
& Marer (1966) was used to examine the toughness
of the cooked beef samples. The beefsteaks used for
the tenderometer test were cooked in the same way as
those for the sensory panel evaluation. This mechanical
approach was used to benchmark the visual imaging
technique to the sensory evaluation.

Image processing and feature extraction

All meat samples were imaged using an image acquisition
system that included a colour digital camera (JVC KY-30
3CCD) and a QUINTEK mosaic colour frame grabber
card. The lighting box used with the camera was 80 cm
in height with a 50 cm? floor area. Four Philips high
frequency fluorescent tube lamps were mounted on the
ceiling. The internal walls of the box were painted white
to project uniformly diffused light of the same intensity
over the samples.

An algorithm was developed to segment the steak
images into various object images. The segmentation
algorithm is similar to the one designed by Gao & Tan
(1996), but modifications were made to the algorithm
to better suit meat from grazing beef. The segmentation
was automated. Each image of Longissimus dorsi (LD)
muscle contains intra-muscular fat (marbling) and lean
muscle (Gerrard & others 1996). After the segmentation,
the object images of the LD, the marbling, and the
ribeye were used for analysis. The LD image contained
only the LD muscle (without other tissue or marbling
in it). The marbling image had only the marbling inside
the LD. The ribeye image was a combination of LD and
marbling images, ie the LD with marbling. From these
object images, colour, marbling and textural features
were extracted.

Features characterising the colour were extracted
for the LD muscle only. The mean, standard deviations,
and third moments for each of R, G and B (red, green
and blue) were calculated individually. The standard
deviations indicate the non-uniformity of the colours,
and the third moments show the skewness or imbalance
of colours.

To measure marbling abundance, statistics on marbling
flecks were obtained based on number and area densities
for different size categories based on fleck size (A) (such
as A=5, 5<A<50, A=50). The marbling density features
computed were:

1. The number of marbling flecks in each size category
divided by the ribeye area

2. The number of all marbling flecks divided by the
ribeye area

3. The total marbling area for each size category divided
by the ribeye area

4. The area of all marbling flecks divided by the total
ribeye area.

These four density features are commonly used to
describe the marbling abundance (Gerrard & others
1996, Li & others 2001).

Image texture generally refers to geometric properties
such as fineness, coarseness, smoothness, granulation,
randomness, and graininess of an image. The texture of
the beef muscle images reflects muscle fibre characteristics
such as size and arrangement and consequently may
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Figure 2. Relationship of pH values to tenderometer scores (kg/cm?)
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Figure 3. Benchmark of tenderness score produced using NZ v US
taste panels (top), and of both panel scores against tenderometer
values (bottom).

reflect beef tenderness. Two textural
extraction algorithms were adapted
for this application: co-occurrence
(Haralick & others 1973) and Pixel
Value Run Length (Gao & Tan
1996).

The co-occurrence algorithm
is used for studying the spatial
dependence of pixel values. The
spatial dependence of pixel values
may be represented by a matrix
Py, with entry Py (i,j) being the
relative frequency for two pixels
d-pixels apart in direction q to have
values i and j respectively (Haralick
& others 1973). Only direction
q = 0 was used, and nine values for
d (1 to 9) were tested.

For the Pixel Value Run Length
algorithm, a pixel value run is a
set of contiguous pixels having the
same or similar pixel value in the
same direction. A long pixel value
run indicates that the pixel values
do not change greatly over a long
distance, whereas a short run shows
significant spatial variability. Pixel
value run lengths can thus be used
to characterise the spatial variability
of pixel values in an image texture.
The pixel value run lengths were
computed from each image and
used to generate a histogram. The
run length histogram was defined
as P(R, g, T), where P stands
for frequency, R is run length in
number of pixels, q is the run
direction on the image plane, and
T is a pixel value band thickness
(Gao & Tan 1996). The band
thickness is the specified maximum
difference in the pixel wvalues
included into a run. Nine values
from 2 to 10 were tested in this
study. Since there was no obvious
directionality in the muscle images,
only q = 0 (horizontal) was used.
The run lengths were computed
for each colour function (R, G or
B) of a muscle image. From the
pixel value run length histograms,
the following three features were
calculated:

1. Average run length

2. Standard deviation showing
variations in run lengths, and

3. Third moment, indicating the
skewness or imbalance of run
lengths.

Data analysis

A statistical method, best subset,

was applied to these extracted meat

surface characteristics in order to

eliminare insignificant features with
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respect to the sensory tenderness scores. The remaining
features were used to develop a multivariable linear
regression model for predicting sensory scores. A non-
linear neural network approach (backward propagation)
was also performed to estimate tenderness. The linear
regression analysis results were benchmarked against
those from the non-linear analysis.

Results and discussion

Effect of grain supplement on beef tenderness
Originally, the experiment was partially designed to test
if tenderness scores between grain supplemented and
non-grain supplemented beef would be distinguishable.
Unfortunately, the statistical analysis showed that
the difference in beef tenderness based on the taste
panel scores from the two finishing treatments was not
significant (non-grain supplement = 5.3 * 0.8; grain
supplement = 4.9 * 0.7; p = 0.327). This result suggests
that the grain supplement period may have been too short
to influence beef tenderness. Attempts to analyse meat
tenderness between the two treatments using computer
vision technology were consequently discontinued.

Table 1. The best 20 variables correlated to taste
panel’s tenderness scores

Variables Variables Variables Variables
B_mean dq_fy dg_fio o G_3
dj fia da f, rl;_R_3 rs_G_3
dg_fy ds_f; rMs_R_2 rlio_G_2
d,_f; dy_fs rl,_R_2 rlg_G_3
dy_fi3 dq_fg rlg G_2 rg_B_2

Where B_mean: the average of blue value;

Labels: d, _f; are variables based on Co-occurrence algorithm, where d, stands for distance
in x; and f, stands for ith feature given in Haralick & others (1973).

Labels: rl_._m stands for characteristics of Run Length: where I: length; and j: |
momentum; C: colour R or G or B

Usefulness of pH to tenderness estimation

The pH of each striploin sample was plotted against
the corresponding scores of tenderometer evaluations
(Figure 2). The pH of mostsamples ranged between 5.4 and
5.8,buttenderometerscores were widely scattered between
3 and 11 kg/cm”. The lack of correlation between pH and
tenderness in this experiment is consistent with results
reported by Watanabe & others (1996) and Silva & others
(1999), however, they reported that beef tenderness has
a curvilinear relationship for pH values between 5.8 and
6.2. We were unable to test this hypothesis since there
were only a few samples with a pH higher than 5.8.

Tenderness evaluation

Sensory evaluation is largely subjective and may be
biased by cultural influence, human emotions, and eating
habit. To ensure the quality of sensory evaluation, meat
samples of the same animals in Trial One were appraised
in New Zealand and the United States. Sensory teams in
both countries were comprised of trained taste panellists.
Despite the cultural difference of sensory groups, the
benchmark results were consistent and showed good
overall correlation (R? = 0.56) between the tenderness
evaluations from both countries (Figure 3a). Aside
from the tenderometer’s destructive nature, it is a more
objective way of measuring meat tenderness. Tenderness
scores from the US and NZ sensory panelists on the
meat samples in trial one were compared with the
tenderometer evaluation separately (Figure 3b). The
respective tenderometer correlation with tenderness is
R? = 0.575 for NZ panelists and R? = 0.3482 for US
panelists. The higher correlation from the NZ panellists
may indicate that they were better able to discern
differences in tenderness than the US panellists.

Empirical predictive model

A stepwise statistical analysis method was used to
select potential variables for tenderness assessment from
the extracted raw meat surface characteristics. Twenty
features were identified as significant in predicting
meat tenderness (Table 1). Of these, 19 were textural
fearures: 10 were identified with the co-occurrence

algorithm, and nine were identified
from the run length algorithm. Only

Predicted tenderness

® Linear model
= N network

R’ =0.5838
R® = 0.6205

)

one colour variable was chosen, and
no variables were selected from the
marbling analysis. The statistical
analysis showed that textural features
were most significant for tenderness
prediction in meat samples from
grazing animals.

Meat marbling features in
grazing beef did not contribute to
tenderness prediction. Very little
marbling can be found in NZ beef.
To further complicate the analysis,
not all white objects within the LD
muscle are marbling. Some white
objects are connective tissues

h =+

3 4 B ‘
Taste panel tenderness

6

(collagen). Marbling may improve
meat tenderness (McDonald &
Chen 1991), but connective tissues
decrease meat tenderness (Harris &

Figure 4. The neural network and linear regression model predictions

versus tenderness scores from taste panelists

others 1992). The two feartures would
serve to cancel each other out.
Meat colour had poor correlation
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with sensory scores of tenderness based on the statistical
analysis. Meat colour is associated with many external
factors such as exposure time, lighting, camera settings
and temperature of the imaging environment. Changing
meat chemical and physical conditions also provide
difficulties in controlling any of these colour factors.
Previous research identified that colour can be useful for
tenderness prediction (Wulf & others 1997), but as an
indicator it is less robust as colour changes with time and
lighting conditions continuously (Harris & others 2001,
Li & others 2001).

The linear regression equation was created for
predicting tenderness with the 20 selected variables. The
78 beef samples from both Trials One and Two (left and
right carcasses) were used for the analysis. Data from 66
randomly selected samples were used for the creation
and calibration of the model, and another 12 samples
were used for model verification (Figure 4). The created
linear model was able to explain 58% of the variation of
the tenderness (adjusted R% = 0.58).

Neural network model for prediction of

fenderness

Meat surface features and sensory evaluations were
similarly used for developing and calibrating a neural
network model with a backward propagation algorithm
for predicting meat tenderness (Kosko 1992). The same
20 variables used for the linear model were extracted
from the same 66 meat samples and used for the model
development. The learning rate and training goal were
set to 0.05 and le®. Eleven neurons were set in the
network structure. The trained neural network was tested
against the results for 12 meat samples separate from
the training data. The created neural network model was
able to explain 62% of the variation of the tenderness
(adjusted R? = 0.62), which is slightly better than the
result from the linear regression method (R? = 0.58).
Neural networks consistently have performed better for
meat samples than using statistic methods for previous
experiments (i & others 1999). The seemingly marginal
advantages of using a neural network approach over a
more traditional statistical method are not significant
enough to suggest that the relationship between meat
surface features and sensory evaluation is non-linear.

Concluding remarks

The results from this study suggest that selected geometric
textural characteristics of raw meat of grazing beef can be
used to objectively predict meat tenderness, as has been
previously shown for non-grazing beef. A neural network
approach was able to predict tenderness slightly better
than a linear regression approach. Unlike meat of beef
from feedlot systems, marbling features extracted from
beef LD muscles from grazing beef did not contribute
to meat tenderness prediction. The image processing
analysis was unable to identify any difference berween
grazing beef and grazing beef that had received an eight
week grain supplement. Several meat scientists advised
that the technology could improve its functionality
by considering pattern characteristics such as bundles
on raw meat surface. Also, separating marbling and
connective tissues could improve the model performance
of prediction.
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