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[1] Given the coarse scales of coupled atmosphere-ocean global climate models, regional
climate models (RCMs) are increasingly relied upon for studies at scales appropriate for
many impacts studies. We use outputs from an ensemble of RCMs participating in the
North American Regional Climate Change Assessment Program (NARCCAP) to
investigate potential changes in seasonal air temperature and precipitation between present
(1971–2000) and future (2041–2070) time periods across the northeast United States.
The models show a consistent modest cold bias each season and are wetter than
observations in winter, spring, and summer. Agreement in spatial variability and pattern
correlation is good for air temperature and marginal for precipitation. Two methods were
used to evaluate robustness of the mid 21st century change projections; one which
estimates model reliability to generate multimodel means and assess uncertainty and a
second which depicts multimodel projections by separating lack of climate change signal
from lack of model agreement. For air temperature we find changes of 2–3�C are outside
the level of internal natural variability and significant at all northeast grid cells. Signals of
precipitation increases in winter are significant region wide. Regionally averaged
precipitation changes for spring, summer, and autumn are within the level of natural
variability. This study raises confidence in mid 21st century temperature projections
across the northeast United States and illustrates the value in comprehensive assessments
of regional climate model projections over time and space scales where natural variability
may obscure signals of anthropogenically forced changes.
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1. Introduction

[2] Current trajectories in greenhouse gas concentrations
are increasing the likelihood of significant impacts from
climate change in coming decades. A recent study using a
multithousand-member perturbed-physics ensemble showed
global-mean temperature increases of 1.4 to 3 K by 2050,
relative to 1961–1990 under a mid-range forcing scenario
[Rowlands et al., 2012]. However, the geographic pattern of
change is not uniform. Understanding both the magnitude
and uncertainty in climate change projections at the regional
scale is critical, as uncertainties in the regional climate
response can lead to uncertainties in associated climate
impacts [Mearns, 2003; Wood et al., 2004].
[3] Model simulations suggest the potential for future

temperature and precipitation changes across the northeast

United States. By the end of the 21st century, warming can be
expected across all seasons, and winter precipitation is pro-
jected to increase by 11 to 14% depending on the emission
scenario used in the simulations [Hayhoe et al., 2007]. Cli-
mate change studies have traditionally been performed using
atmosphere-ocean general circulation models (AOGCMs)
with resolutions of 100 to 400 km [Alley et al., 2007]. These
coarse scales leave AOGCMs unable to capture the effects of
local forcings such as complex topography which modulates
the models’ climate signal at local scales. To overcome this
shortcoming, downscaling of climate model simulations has
become common and has been shown to provide valuable
information for impacts research and adaptation planning
[Mearns et al., 2009; Wood et al., 2004]. Downscaling can
be achieved through either dynamical or statistical methods.
Statistical downscaling typically involves relating large
scale climate features to local climate at a particular loca-
tion. Dynamical downscaling involves the application of a
regional climate model (RCM) forced by global climate
model boundary conditions. More realistic parameteriza-
tions of surface processes in sophisticated RCM land-sur-
face schemes can provide more realistic simulations of
surface conditions and the associated physical processes
critical to the simulation of climate extremes [Roy et al.,
2011]. Large international efforts such as PRUDENCE
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(http://prudence.dmi.dk/), ENSEMBLES (http://ensembles-
eu.metoffice.com/), and CORDEX have made use of high
resolution downscaled model data for projections of future
climates at regional scales [Giorgi et al., 2009].
[4] The North American Regional Climate Change

Assessment Program (NARCCAP) [Mearns et al., 2007] is
producing high resolution climate change simulations from
different combinations of AOGCMs and RCMs, providing a
rich set of data that facilitate investigations of uncertainties in
regional scale projections of future climate across North
America [Mearns et al., 2009].Mearns et al. [2012] describe
results from Phase I, an evaluation component of the pro-
gram, wherein the RCMs are nested within NCEP/DOE
global reanalysis II. Their comparisons with observed data
for the period 1980–2004 show that, for air temperature
across North America, both positive (model overestimates)
and negative biases occur. The Hadley Regional Climate
Model 3 (HRM3) exhibits a large warm bias in winter and
summer. Both positive and negative biases are noted with
summer precipitation. For winter, precipitation biases are
largely positive. Phase I results showed relatively low tem-
perature and precipitation biases over the northeast. The
RCMs replicate well the monthly frequency of precipitation
extremes across coastal California, where the precipitation is
largely topographic, while performing somewhat less well
across the UpperMississippi River watershed [Gutowski et al.,
2010]. NARCCAP data have been used to characterize
potential future increases in the intensity of extreme winter
precipitation across the western United States [Dominguez
et al., 2012] and to produce projections of seasonal climate
across the southeast United States [Sobolowski and Pavelsky,
2012]. Simulations with the Abdus Salam Institute Theoreti-
cal Physics Regional Climate Model Version 3 (RegCM3),
one of models used by NARCCAP, suggest an increased fre-
quency of extreme hot events and a decreased frequency of
extreme cold events across much of the northeast, by late
century [Diffenbaugh et al., 2005]. This RCM also simulated a
future increases in mean annual and extreme precipitation
event frequency. NARCCAP RCM simulations and data from
each respective driving GCM were used to construct proba-
bilistic projections of high-resolution monthly temperature
over North America [Li et al., 2012].
[5] Detailed assessments of individual model errors, often

termed ‘biases’, are critical to determining model usefulness
for understanding potential impacts of climate change. The
ability to simulate the climate of a region depends largely on
the quality of the forcing AOGCM and the degree to which it
represents flow conditions at the boundary [Christensen
et al., 1998; Giorgi et al., 2001]. For example, biases of
only a few models can affect the multimodel mean and result
in physically unrealistic results. One analysis [Liepert and
Previdi, 2012] found that many of the studied AOGCMs
had an unphysical and hence ‘ghost’ sink or source of
atmospheric moisture. Several recent studies shed light on
the nature of uncertainty in climate change projections. For
instance, Hawkins and Sutton [2011] in an analysis of the
CMIP3 multimodel ensemble found that for decadal means
of seasonal mean precipitation, internal variability is the
dominant uncertainty for predictions of the first decade
everywhere, and for many regions until the third decade
ahead. Model uncertainty is generally the dominant source
of uncertainty for longer lead times. In an earlier review

[Hawkins and Sutton, 2009] showed how the different
contributions to climate projection uncertainty vary with
lead-time over the 21st century (see their Figures 2 and 3).
Beyond about 20 years, model uncertainty becomes greater
than internal variability, and of course, emission scenario
uncertainty becomes dominant after about mid-century. Most
recently, Deser et al. [2012] found that the dominant source
of uncertainty in the simulated climate response using a
40-member simulation ensemble with the NCAR Commu-
nity Climate System Model Version 3 (CCSM3) under the
SRES A1B for middle and high latitudes is internal atmo-
spheric variability, and that uncertainties in the forced
response are generally larger for sea level pressure than pre-
cipitation, and smallest for air temperature. Thus the impli-
cation from that study is that forced changes in air
temperature can be detected earlier and with fewer ensemble
members than those in atmospheric circulation and precipi-
tation. The availability of multimodel simulations has helped
to focus efforts on new approaches to synthesize climate
change projections [Giorgi and Mearns, 2002; Knutti et al.,
2010; Tebaldi and Knutti, 2007; Tebaldi et al., 2011]. This
includes methods which weight models based on perfor-
mance relative to present-day conditions and/or the deviation
from the group mean [Giorgi and Mearns, 2002, 2003].
Christensen et al. [2010] describe a weighting scheme which
incorporates six model performance metrics. Tebaldi et al.
[2011] argue that assessments using multiple climate mod-
els should separate lack of climate change signal from lack of
model agreement by assessing the degree of consensus on the
significance of the change as well as the sign of the change.
[6] In this study we describe the sign, magnitude, and

quantitative significance of precipitation and temperature
changes across the northeast United States between the
periods 2041–2070 and 1971–2000. We apply a method
designed for calculating average, uncertainty range, and a
measure of reliability of simulated climate changes at the
regional scale from ensembles of different climate model
simulations. A second method, which complements the first,
is used to account for model performance and natural vari-
ability and, in turn, determine best estimates of likely
changes by mid-century. The climate change analysis fol-
lows an assessment of model performance relative to fields
derived from observed station data. Investigating the ability
of the suite of RCMs to capture the magnitude and vari-
ability in current climate provides additional information on
their potential for improving understanding of regional scale
climate change impacts across the northeast United States.

2. Data and Methods

2.1. Model Data

[7] The NARCCAP [Mearns et al., 2007] is archiving
outputs from a set of regional climate model (RCM) simu-
lations over a domain spanning North America. For the
NARCCAP effort, each participating RCM is forced with
boundary conditions from at least two atmosphere-ocean
general circulation models (AOGCMs). Table 1 list the
models and the respective modeling centers. Three hourly
RCM outputs are available for the contemporary period
1971–2000 and for the future period 2041–2070. The
NARCCAP effort involves the use of the SRES A2 emis-
sions scenario [Nakicenovic et al., 2000] by all modeling
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groups. Use of the high mid-century greenhouse gas con-
centrations of the A2 scenario may not be unreasonable given
recent greenhouse gas concentration trajectories (P. Tan and
R. Keeling, Trends in atmospheric carbon dioxide, 2012,
Scripps Institution of Oceanography (scrippsco2.ucsd.edu/))
and the fact that the commonly used A1B scenario closely
tracks A2 through mid century. We use 2 m air temperatures
and precipitation data for a subset of GCM-RCM pairs
available at the time of this writing. Table 2 shows the cur-
rently available model pairs among all planned NARCCAP
combinations. When discussing a model simulation we
use the convention GCM_RCM, for example CCSM_MM5.
Spatial resolution for each model is approximately 50 km and
each RCM has its own native grid. For this study we derived
seasonal means and totals from the archived 3 hourly data.
To facilitate the analysis we interpolated all native data values
to a common 0.5 degree grid. Our analysis includes all
0.5 degree grid cells which fall within the 9 northeast U.S.
states. A more complete discussion of the NARCCAP project
is presented in Mearns et al. [2009].

2.2. Observed Data

[8] Bias assessments were made by comparing estimates
from NARCCAP GCM-RCM pairings with data representing
air temperature and precipitation observations from station
records. We use monthly 2 m air temperatures and precipi-
tation on a 0.5 degree grid available from the University of
Delaware (UDel) database (K. Matsuura and C. J. Willmott,
Terrestrial air temperature: 1900–2008 gridded monthly time
series, version 2.01, 2009, http://climate.geog.udel.edu/�
climate/; C. J. Willmott and K. Matsuura, Terrestrial precip-
itation: 1900–2008 gridded monthly time series, version 2.01,
2009, http://climate.geog.udel.edu/�climate/). The UDel data
set was developed through interpolations of meteorological
station data which account for the lapse rate in temperature
with increasing elevation [Willmott and Matsuura, 1995] and
makes use of spatially high-resolution air temperature and
precipitation climatologies [Willmott and Robeson, 1995].
Monthly values over the period 1971–2000 are used here to

construct fields of seasonal mean air temperatures and pre-
cipitation at each grid cell over the northeast.

2.3. Analysis

[9] This paper presents an assessment of biases and
uncertainties in seasonal air temperatures and precipitation
fields among the available NARCCAP GCM-RCM pairs.
We focus on mean climate across the northeast United States
for each season over the two periods, hereafter the “present”
(1971–2000) and “future” (2041–2070). Seasons are defined
using monthly values as follows: winter (DJF), spring
(MAM), summer (JJA), and autumn (SON). Through this
analysis we quantify regional averages from the models and
observations and describe changes in the projected mean
seasonal climate. We also examine biases between RCM and
observed data fields and changes in statistical properties of
the fields.
[10] Uncertainties in future climate projections can be

estimated through use of not only multimodel ensembles,
but also through application of statistical methods which
take into account the natural climate variability (�) and the
performance of individual models in relation to the ensemble
group. To improve our assessments we apply here the reli-
ability ensemble averaging (REA) method [Giorgi and
Mearns, 2002] to determine average, uncertainty range, and
a measure of reliability of simulated changes from the
ensemble of available NARCCAP GCM-RCM pairings.
Sobolowski and Pavelsky [2012] applied the REA method
together with NARCCAP data to estimate likely future air
temperature and precipitation changes across the southeast
United States.
[11] The REA method defines a change over two time

periods as a weighted average of ensemble climate model
members. Here each climate model value is the regionally
averaged seasonal temperature. Two model reliability factors
contribute to the weighting for each model; a factor based on
a model’s ability to reproduce current climate and a factor
based on the distance of the model’s change estimate from
the REA average. A simple multimodel mean of ensemble
members for, as an example, season temperature T is

DT ¼ 1

N

X
i¼1;N

DTi ð1Þ

where N is the number of models, the overbar indicates
ensemble averaging, and D indicates the simulated change.

Table 1. Models Used in This Study

Global Model Model Center

CCSM National Center for Atmospheric
Research

CGCM3.1 Canadian Centre for Climate
Modeling and Analysis, Canada

GFDL Geophysical Fluid Dynamics
Laboratory, USA

HadCM3 Hadley Centre for Climate Prediction
and Research / Met Office, UK

Regional Model Model Center

CRCM OURANOS / UQAM, Canada
ECP2 UC San Diego / Scripps Institute of

Oceanography, USA
HRM3 Hadley Centre for Climate Prediction

and Research / Met Office, UK
MM5 Iowa State University, USA
RCM3 UC Santa Cruz, USA
WRFG Pacific Northwest National Lab, USA

Table 2. Regional Climate Model (RCM) and Forcing Atmosphere-
Ocean General Circulation Model (AOGCM) Combinations Used
in This Studya

Global Models

Regional Models

CRCM ECP2 HRM3 MM5 RCM3 WRFG

CCSM 1 2 3
CGCM3 4 5 6
GFDL 7 X 8
HADCM3 X 9 X

aWe use model pairings that have data for both historical and future
periods. Numbers are references for model pairs examined. An ‘X’
indicates a model pair for which data are being produced, but are
unavailable at time of writing. See section 2.
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With the REA method, the average change fDT is a weighted
average of the ensemble members

fDT ¼ eA DTð Þ ¼
X

i
RiDTiX
i
Ri

ð2Þ

where the operator eA indicates REA averaging and Ri is a
model reliability factor, defined

Ri ¼ RB;i

� �m � RD;i

� �n� � 1= m�nð Þ½ � ð3Þ

The factor RB,i is a measure representing model reliability as
a function of model bias (BT,i) in simulating contemporary
temperature. The factor RD,i is a measure which reflects
model reliability in terms of the distance (DT,i) of the change
calculated by a given model from the REA average. Para-
meters m and n are user defined weights for each reliability
factor. Here we choose a value of 1 for each weight. The
uncertainty range around the REA change is estimated using
the root-mean square difference (rmsd) of the changes, ~dDT .
The total uncertainty range is �~dDT or 2~dDT . Natural vari-
ability, �T, for regionally averaged seasonal air temperature
(�P for precipitation) is estimated using the UDel data
observed fields. For temperature, the 100 year time series of
regionally averaged seasonal values is de-trended and then
smoothed using a 30 year running mean. The difference
between the maximum and minimum values in the 100 year
smoothed series becomes �T. Natural variability estimation
and the other details of the REA method are described in
Giorgi and Mearns [2002].
[12] More recently, Tebaldi et al. [2011] introduced a

method appropriate for studies involving multiple models.
The method separates lack of signal from lack of informa-
tion due to model disagreement. It accomplishes this objec-
tive by assessing the degree of consensus on the significance
of the change as well as the sign of the change. With this
method, weather noise in the simulations is the variability
over which significance in the model change signal is com-
pared. Here, grids where at least 7 of the 9 models (X = 78%)
show significant change and at least Y = 80% of those
models agree on sign of change are shaded by magnitude
and stippled. Grids are shaded by the multimodel mean but
not stippled where less than 7 of the models show significant
change. It is in these areas that Tebaldi et al. [2011] argue
that a signal of change lies within the noise of weather var-
iability, and that the models still contain useful information.
Areas where at least 7 of the models show significant change
but less than 80% of those model agree in sign are left
unshaded. For these grids the models are presenting
conflicting information. Hence, confidence there is low. The
above X and Y percentages are a subjective choice and can
be set differently based on the desired level of confidence.
Our choices for X and Y are similar but not identical to the
66% and 90% levels adopted in the Intergovernmental Panel
on Climate Change’s Fourth Assessment Report [Alley et al.,
2007]. We apply both techniques described by Giorgi and
Mearns [2002] and Tebaldi et al. [2011] to the NARCCAP
model suite in order to answer questions regarding the
magnitude and significance of projected climate changes
across the northeast United States. Narrowing down the

uncertainty range in climate model projections with the help
of observations is an important challenge in climate research
[Mearns et al., 2012]. As Lenderink [2012] points out, while
“it makes sense to weight model results according to the
model’s ability to represent pertinent aspects of the observed
present-day climate … such an evaluation of simulations is
far from trivial”, and furthermore, while “… a model whose
simulations of the present-day climate are close to observa-
tions [it] may well contain a set of errors that compensate
each other today, but may strongly distort the response to
climate warming as the balance between errors changes.”

3. Results and Discussion

3.1. Air Temperature

[13] The ability of models to reproduce contemporary
climate is important, as large biases limit our confidence in
projections of future climate impacts such as extreme
weather events. Regional climate models should capture
well the spatial variability in climatic fields along with the
regionally averaged mean climate. For seasonal tempera-
tures (1971–2000), the models as a group perform well in
capturing spatial variability across the northeast United
States as measured by standard deviation in the observed and
model fields. Figure 1 shows Taylor diagrams which capture
statistics of the observed and model seasonal temperature
field across the 211 northeast grid cells. The models tend to
exhibit spatial variability which is similar to the observa-
tional fields, as reflected by the agreement in standard
deviations. The models slightly underestimate spatial vari-
ability in winter. Grid cell correlations are also relatively
high, generally greater than 0.85, and highest in winter.
[14] Across the northeast United States, the NARCCAP

models tend to underestimate seasonal temperatures (Figure 2).
No strong spatial pattern exists in the temperature bias fields.
Biases are significant (95% confidence level based on student
t test) for 88, 62, 73, and 87% of the grid cells in winter,
spring, summer, and autumn, respectively. The outlier over
western Maine each season is a grid cell with a large amount
of open water. An anomaly with the grid multimodel mean
2 m temperature appears to be the source of the temperature
bias. Regional mean bias are �2.1, �1.8, �1.9, �2.3�C for
winter, spring, summer, autumn seasons, respectively
(Table 3). Individually, all model pairings underestimate
spatially averaged 1971–2000 mean temperature in summer
and autumn (Figure 3). All but two model pairs
(CCSM_MM5 and CGCM3_WRFG) underestimate tem-
perature in winter, while all but two (CCSM_MM5 and
CCSM_WRFG) underestimate it in spring.
[15] Boxplots of seasonal air temperature distributions

for the gridded fields of present observations (O) and
NARCCAP models present (P) and future (F) are shown in
Figure 4. Comparing the distribution for the future period
alongside those for the present provides a sense of how pro-
jected future changes compare with model biases. It also
reveals if and how temperatures might change, along with
other properties of the distribution. Temperature distributions
are nearly normal. In autumn, for example, while 25% of the
grid cells have observed temperature exceeding 10.9�C, none
of the RCM (multimodel mean) grid cells exceed that value.
In summer a similarly shaped distribution is biased colder by
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approximately 2�C. No change occurs with the shape of
temperature distributions between the present and future
periods. Comparing the multimodel means for the present
and future periods shows seasonal temperature increases of
3.0, 2.0, 2.6, 2.9�C in winter, spring, summer, and autumn,
respectively (Figure 4). Thus, based on simple multimodel
means for each season, the mean change exceeds the mean
bias. The greater winter changes are consistent with expected
global trends assumed to be related to the ice-albedo feed-
back [Dickinson et al., 1987; Hall, 2004]. A recent analysis
of projected changes for the period 2035–2064 (relative to
1961–1990) using nine AOGCMs and the A2 scenario
[Hayhoe et al., 2007], however, found lower change magni-
tudes across the northeast and, interestingly, a larger pro-
jected increase in summer than winter. The study authors
speculated that the larger change in summer versus winter
was attributable to feedbacks between evaporation and tem-
perature along with a declining effect from the ice-albedo
feedback.

[16] Applying the REAmethod [Giorgi andMearns, 2002]
provides additional information regarding uncertainties in
the magnitude of future seasonal temperature changes
(Figure 5). First, each REA average change differs from the
ensemble average change by a few tenths of a degree C, with
winter temperature changes across the northeast lower by
0.3�C (2.7 versus 3.0�C). In comparison, natural variability
(�T) is 0.5�C or less in spring, summer, and autumn, and
approximately 1�C in winter (Table 3). Thus, the magnitude
of change each season is well outside the range of natural
variability. The uncertainty range calculated from the REA
method (�dDT) is largest in winter and smallest in spring
(Table 3).
[17] Results from the model agreement mapping method

[Tebaldi et al., 2011] reveal interesting differences across the
region. Temperature changes are significant (95% level) over
the entire region in each season (Figure 6). As noted above,
the ensemble mean change is largest in winter, where the
projected temperature increase exceeds 3�C across more than

Figure 1. Taylor diagrams showing standard deviation (�C), RMSE (�C), and correlation for the
observed and for each model seasonal (1971–2000) air temperature field across the northeast United
States. Seasons throughout the analysis and in the subsequent figures are define winter (DJF); spring
(MAM); summer (JJA); autumn (SON). GCMs and RCMs are listed in Table 1 and Table 2. Statistics
are calculated over all 211 grid cells of the observed field and from the nine GCM-RCM fields. The star
indicates the statistics for the observed field. Contour of the reference standard deviation (from observed
field) is show by the dashed line. RMSE contours are in gray. Correlation rays are the (left) 95th and
(right) 99th significance levels.
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60% of the region. Spatially, the largest changes are found
across northern areas. In summer the pattern is reversed, with
changes approaching 3�C across the southwest and declining
northward. Relatively smaller changes are found across
coastal areas in summer. It is clear that across the northeast
United States, the anthropogenically forced signal of change
by mid-century rises above the level of internal weather noise
for each season. The pattern of winter temperature change
suggests a reduction in cold air outbreaks affecting the
northern part of the region and a reduction in snow cover. For
summer the greater increases in temperature toward the south
suggest increased warm air inflow from the continental
interior.

3.2. Precipitation

[18] In contrast to the performance for temperature, RCM
estimates for precipitation show lower agreements with the
observed fields. Precipitation correlations for many of the
GCM-RCM pairings (Figure 7) are much lower than those
for air temperature (Figure 1) and in many cases are not
significant. Spatial correlations are highest in winter. This
result is consistent with studies which suggest that climate
models are better at capturing stratiform than convective
precipitation [Mearns et al., 1995; Christensen et al., 1998;
Giorgi et al., 1998; Frei et al., 2003]. With the exception of
summer, standard deviations of the seasonal model fields are
consistently low relative to the observed field, illustrating
the more narrow precipitation distributions generated by the
models.
[19] Biases in multimodel mean seasonal precipitation

range from overestimates to underestimates, with a noted
spatial pattern across the region; lower biases toward the
coast, and greater biases inland (Figure 8). All biases are

significant. Biases tend to be higher across the northwest part
of the domain and decrease to the southeast. With the
exception of autumn, biases are generally positive, i.e. model
precipitation exceeds observed precipitation. In autumn the
largest negative biases occur across the east coast. The reason
for these negative biases is unclear and warrants further
investigation, particularly into the question of whether the
models adequately capture tropical and/or extratropical
cyclone formation and progression through the region. Indi-
vidually, most model pairs overestimate precipitation in
winter, spring, and summer (Figure 9). The CCSM_WRFG
model shows the lowest estimates and is the only model
which underestimates precipitation each season.
[20] Seasonal precipitation distributions illustrate the

reduced spatial variability exhibited by the RCMs compared
to the observed data, particularly in spring (Figure 10), for

Figure 2. Bias (�C) in multimodel mean estimate of seasonal 2 m air temperature (1971–2000) at north-
east United States grid cells. Bias is defined Tmodels - TUDel, where Tmodels is the multimodel mean air tem-
perature for the grid. Stipling indicates a significant bias at 95% confidence level based on student t test.
Data for observations are taken from the UDel 0.5 degree data set.

Table 3. Ensemble Mean Bias, Projected Change (2041–2070
Minus 1971–2000), Uncertainty Range, and Estimated Natural
Variability for Air Temperature (T) and Precipitation (P) Each
Season Across the Northeast as an Average Across the Nine
GCM-RCM Pairingsa

Temperature Precipitation

T bias T Change �dΔT �T P bias P Change �dΔP �P

Winter �2.1 3.0[2.7] 0.5 1.1 18 13[12] 7.0 12
Spring �1.8 2.0[2.1] 0.2 0.3 16 9[3] 7.9 6
Summer �1.9 2.6[2.7] 0.4 0.5 12 �2[�3] 6.1 8
Autumn �2.3 2.9[2.7] 0.2 0.4 �2 3[2] 6.5 6

aTemperature changes are in �C and precipitation changes are in
percentage of present model amounts. Values in brackets are the regional
averages from the REA method.
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which 90% of the RCM grid estimates span a range of 72 mm
season�1 (280 to 352 mm season�1), while 90% of the
observed grids span 116 mm season�1 (214 to 331 mm
season�1). No significant change is evident in the shape of
future precipitation distributions relative to the present dis-
tributions. For winter many of the individual model pairs
project wetter conditions by mid-century (Figure 9). No
consensus exists in the other seasons. While a change across
the winter and spring multimodel distribution is apparent
(Figure 10), the change in the mean (future - present) is less
than the mean (present - obs) bias, raising questions as to the
robustness of the projected seasonal precipitation changes
across the northeast United States.
[21] For precipitation, the difference between the REA

average change and ensemble average change is less than
2% in winter, summer, and autumn (Figure 11 and Table 3).
The REA average change is 6% lower than the ensemble
average change in spring. Regarding uncertainty in the
future precipitation change projections, the REA average
changes are well within the bounds of natural variability (�P)
in spring, summer, and autumn, and in winter both the REA

change and natural variability are comparable, with values
around 12% of present-day precipitation (Table 3). The REA
uncertainty range (�dDP) is approximately 6–8% around
the mean change each season.
[22] Applying the model agreement mapping method

reveals differing signs and magnitudes of change in both
space and time. It also provides important information
regarding our confidence in anticipated future trends. For
winter, the majority of models agree on precipitation
increases across the entire northeast, with the change mag-
nitudes highest (>15%) over interior areas and lowest along
the coast (Figure 12). The changes are statistically significant
for all grids. As noted above, the multimodel mean winter
change from the REA method is �12% (Table 3). For spring
changes are positive and significant across most of the
region. The exception being the state of Maine and the east-
ern half of Pennsylvania where white shading indicates that
several of the models simulate significant changes of oppo-
site sign. Where there is model agreement future changes
approach 10% in the lee of Lake Ontario. For summer, pre-
cipitation changes are soon significant across the southwest

Figure 3. Seasonal mean air temperature (�C) averaged across the northeast United States for each of the
nine GCM-RCMs pairs and the multimodel mean over the present period 1971–2000 (solid rectangles)
and future period 2041–2070 (hatched). The multimodel means are simple averages of the nine model esti-
mates (no weighting). The value for seasonal air temperature from the observed field is indicated by the
horizontal line. Models 1–9 are listed in Table 2.
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section of the northeast—much of Pennsylvania—where the
projected declines locally approach �10%. Across northern
areas the colored grids depict small change magnitudes, both
positive and negative, that are within the level of natural
variability. A similar result is apparent for autumn when the
models agree, over 90% of the region, that the signal is small
(positive change of around 1–5%) and has not emerged from
the noise.

4. Discussion and Conclusions

[23] Correlations between the observed and RCM gridded
seasonal temperature fields across the northeast are generally
good, and the models closely capture the standard deviation
present in the observed field. This suggest that the

NARCCAP RCMs adequately represent the spatial varia-
tions across the northeast United States. Cold biases,
however, are common, with ensemble mean biases of
approximately �2�C each season. It is not clear if this is
largely attributable to a cold bias in the forcing AOGCMs or
to physical parameterizations in the RCMs. Largest model
biases range from +4�C to �2�C and +10�C to �2�C in
winter and summer, respectively. Investigations of biases in
the NARCCAP RCMs is ongoing. Studies which quantify
errors in both model parameterizations and AOGCM forcing
data sets will improve assessment efforts.
[24] Temperature distributions of the observed and present

RCM (ensemble mean) fields are nearly normal, as is the
future ensemble mean field. The REA average change

Figure 4. Distributions of air temperature (�C) for the observed (O) and RCM present period (P) fields
for period 1971–2000, and for the future period (F). Each distribution consists of 211 0.5 degree grid cells
spanning the northeast United States. Heavy line in each box is the distribution mean. Thin line (nearly
identical to mean in most cases) is the distribution median. Boxes bracket the 25th and 75th percentiles.
Whiskers show the 5th and 95th percentiles.

Figure 5. REA change in seasonal 2 m air temperature (�C, 2041–2070 minus 1971–2000) across the
northeast United States (solid circles); corresponding upper and lower REA uncertainty limits [horizontal
lines]; ensemble average changes (open circles); and estimated natural variability values (squares).
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differs from the ensemble average change by only a few
tenths of a degree C. This is likely a result of no large out-
liers among the seasonal model temperatures (Figure 3).
Change magnitudes are more than double the level of natural
variability.
[25] Results from the model agreement mapping method

lends confidence to the mean projected mid-century seasonal
temperature changes and their spatial patterns. Changes
exceed the 95% confidence level at all grid points each sea-
son. We speculate that greater changes across more northern
areas in winter are attributable to losses in snow cover
through the ice-albedo feedback. Winter changes exceed 3�C
over more than half of the northeast. The winter regional
average 3�C increase here contrasts with a recent study of
nine IPCC AOGCM forced with the A2 scenario which
found a projected ensemble average increase (2035–2064
minus 1961–1990) across the northeast of less than 2�C
[Hayhoe et al., 2007].
[26] Our assessment of precipitation biases and uncertain-

ties in the future change projections stand in contrast with
those for air temperature. Correlations between the observed
and RCM precipitation fields are low and often insignificant.
The models also tend to underestimate spatial variability,
thus the likelihood that spatial patterns of change will be
close to those shown in this study is higher for seasonal
temperature than seasonal precipitation, as noted below. The
frequent inability of climate models to simulate regional
precipitation patterns is due to inherent smaller spatial scales
of variability in precipitation compared to air temperature.
Precipitation decorrelation scales are at least one order of
magnitude smaller. Simulations in summer are more locally
controlled than for other seasons [Plummer et al., 2006]. In

turn, winter precipitation is controlled more by the large-
scale flow. Summer precipitation is more closely tied to
model parameterizations and winter precipitation to the
driving data [Caya and Biner, 2004]. We note that precipi-
tation biases are generally positive (model overestimates) and
exhibit a southeast to northwest gradient across the region.
The regionally averaged bias is negative in autumn, with a
mean bias of �2% but local differences in excess of �20%.
NARCCAP Phase I simulations with forcing from NCEP
DOE II reanalysis show generally small biases across the
northeast, relative to other regions of North America [Mearns
et al., 2012]. Studies focused on RCM precipitation pro-
cesses are needed to determine how well tropical and extra-
tropical cyclones, which transport considerable moisture into
the northeast in autumn, are simulated. Mean seasonal biases
for both precipitation and air temperature are similar when
the RCM estimates are compared with Global Historical
Climatology Network data (http://www.ncdc.noaa.gov/
temp-and-precip/ghcn-gridded-products.php). This suggests
that the UDel data is adequate for assessing model
performance.
[27] The ensemble mean precipitation change estimated

using the REA method is approximately equal to natural
variability in winter, while changes in other seasons fall
within the estimated range of variability. Thus, the REA
method results suggest a lower level of confidence in the
future precipitation changes for spring, summer, and autumn,
but modest confidence for winter. In essence, the regional,
mid 21st century winter change signal from a weighted
multimodel mean can just be detected above the noise of
weather variability. For the remaining seasons, changes are
within the level of natural variability. Under the model

Figure 6. Change (�C, 2041–2070 minus 1971–2000) in seasonal temperature from the ensemble mean
of the nine model pairs. Significance determined following criteria described by Tebaldi et al. [2011].
Changes are significant at the 95% level for all grids (shown stippled) across the northeast. See text for
details on meaning behind the uncertainty and significance logic.
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Figure 7. Taylor diagrams showing standard deviation (mm season�1), RMSE (mm season�1), and
correlation for the observed and for each model seasonal (1971–2000) precipitation field across the north-
east United States. GCMs and RCMs are listed in Tables 1 and 2. Statistics are calculated over all 211 grid
cells of the observed field and from the nine GCM-RCM fields. The star indicates the statistics for the
observed field. Contour of the reference standard deviation (from observed field) is show by the dashed
line. RMSE contours are in gray. Correlation rays are the (left) 95th and (right) 99th significance levels.
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Figure 8. Bias (mm season�1) in multimodel mean estimate of seasonal precipitation (1971–2000) at
northeast United States grid cells. Bias is defined (Pmodels - PUDel) / PUDel * 100%, where Pmodels is the
multimodel mean precipitation for the grid. Stipling indicates a significant bias at 95% confidence level
based on student t test. Data for observations are taken from the UDel 0.5 degree data set.
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Figure 9. Seasonal mean total precipitation (mm season�1) averaged across the northeast United States
for each of the nine GCM-RCMs pairs and the multimodel mean over the present period 1971–2000 (solid
rectangles) and future period 2041–2070 (hatched). The multimodel means are simple averages of the nine
model estimates (no weighting). The value for seasonal precipitation from the observed field is indicated
by the horizontal line. Models 1–9 are listed in Table 2.

RAWLINS ET AL.: NORTHEAST CLIMATE CHANGES FROM RCMS D23112D23112

12 of 15



agreement mapping method [Tebaldi et al., 2011] winter
precipitation changes are significant and highest across
interior areas. For spring and autumn models agree on small
positive changes, which are significant over much of the
region in spring and within the level of natural variability in
autumn. The spatial change pattern in summer, with moderate
precipitation declines across Pennsylvania and lower chan-
ges, relative to internal variability, to the north, presents an
interesting case for attribution study.
[28] The magnitude and sign of seasonal precipitation

changes are broadly consistent with a recent study using nine
IPCC AOGCMs which also showed projected increases in

winter precipitation and no change to a decrease in summer
rainfall [Hayhoe et al., 2007]. Future increases in winter
temperature and precipitation would extend recent observed
decreases in the snowfall-to-precipitation ratio [Huntington
et al., 2004]. Our results raise confidence in expectations
for mid-century winter precipitation increases across the
northeast. Given the robust projections of winter air tem-
perature increases, a continuation of the recent trend toward
wetter and warmer winters [Hayhoe et al., 2007; Keim et al.,
2005] appears likely. For summer the combination of 2–3�C
warming and precipitation decreases approaching 10%
across much of Pennsylvania would likely create severe

Figure 10. Distributions of precipitation (mm season�1) for the observed (O) and RCM present period
(P) fields for period 1971–2000, and for the future period (F). Each distribution consists of 211 0.5 degree
grid cells spanning the northeast United States. Heavy line in each box is the distribution mean. Thin line
(nearly identical to mean in most cases) is the distribution median. Boxes bracket the 25th and 75th per-
centiles. Whiskers show the 5th and 95th percentiles.

Figure 11. REA change (%, D = P2041–2070 � P1971–2000/P1971–2000 ∗ 100%) in seasonal precipitation
across the northeast United States (solid circles); corresponding upper and lower REA uncertainty limits
(horizontal lines); ensemble average changes (open circles); and estimated natural variability values
(square). Units are percent of observed precipitation.
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water stress to ecosystems. This study illustrates the impor-
tance of using multiple model simulation estimates to gain
understanding of likely changes in climate at decadal time-
scales and smaller spatial scales.
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