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The paleoclimatology of the Baffin Bay reglon ls based on a variety of
proxy data, some of which have been discussed in considerable detail in
previous chapters. Here, we compare the paleoclimatic record from
various sources and attempt to identify areas of agreement as well as
inconsistencies in the record, as presently understood. First,
however, we consider the value of paleoclimatic studies In this region.

THE SIGNIFICANCE OF BAFFIN BAY REGION PALEOCLIMATE

How important are climatic fluctuations of the Baffin Bay area (=
Baffin region)? What significance do Baffin region paleoclimatic data
have for other Arctic areas? Meteorological records, in the Arctic
are, unfortunately, quite brief (Chapter 2) but studles of data from
recent decades clearly indicate that temperature fluctuations in the
Baffin region are highly correlated with those elsewhere in the

Arctic. For example, Walsh (1977) showed that in all seasons, the
principal eigenvectors of Arctic surface air temperatures were centered
over Baffin Island, indicating temperature variations in the Baffin
region are typical of a very large part of the Arctic., Similarly, Keen
(1980) demonstrated that temperature fluctuations (1951-76) at c. 80°W
are more highly correlated with the 70°N zone average than any other
zone in the Arctic (Fig. 26.1). Consequently, Keen concluded that
"Baffin temperature [is] a sensitive indicator of summer conditions
across the Arctic as a whole." If such relationships are typical of
longer time scales (probably a reasonable assumption for periods when
surface boundary conditions were not drastically different from those
of recent decades) then the paleoclimatology of the Baffin region
assumes added importance. Paleoclimatic fluctuations of the Baffin
region are thus of significance to studies of the entire Arctic.



742 PALEOCLIMATOLOGY OF THE BAFFIN BAY REGION
LONGITUDE
0° 60°E 120°E 180° 120°W 60°W ce
L L A L L I L L B A0 255 oy B B 1-0

L

NOILVI3HH0D

Flll|I(J_l;ll14LllLllllLllllklll(‘llAI|O_O

Figure 26.1 Correlation coefficient of summer (3,J,A) mean temperature
at different longitudes at 70°N with the zonal average (1951-74).
Shaded area signifies longitudinal zone from West Greenland to the west
coast of Baffin Island at 70°N, Temperatures in this zone are highly
correlated with the zonal mean (after Keen, 1980) (with permission).

It has often been said that the Baffin region is particularly
'sensitive' to climatic fluctuations (e.g. Tarr, 1897; Andrews et al.,
1972). This sensitivity results from two main factors: low summer
temperatures and the position of Baffin Island in relation to the mean
position of the mid-tropospheric trough over northeastern North
America. On a latitudinal basis (Fig. 26.2) summer temperatures on
Baffin Island are lower than in any other sector of the Arctic (except
for the Greenland Ice Cap) (Barry et al., 1977; Keen, 1980). Thus,
relatively small changes in summer temperature markedly affect snow
cover conditions and glacier mass balance (Bradley and Miller, 1972).
In particular, the upland regions of Baffin Island, which are
extensive, are near the threshold of glacierization; relatively small
decreases in ablation season temperature would initiate large scale
expansion of firn on these uplands (Williams, 1978). Indeed, there is
much evidence that this did occur during the Little Ice Age (17th-19th
centuries) (Locke and Locke 1977; Andrews et al., 1976).

The sensitivity of Baffin Island is also closely related to the
regional circulation patterns. A major feature of the northern
hemispheric general circulation is an upper level trough over Baffin
Bay. The precise position of this trough is very important for
large-scale advection of air across Baffin Island. If the trough is
displaced westward, relatively warm southerly and southeasterly winds
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leading to more depressions tracking northward into Baffin Bay. As a
result, cold northerly airflow is drawn over Baffin Island,
accentuating the hemispheric coolong in progress, and leading to
reduced regional ablation and enhanced glacierization,

REGIONAL CLIMATIC GRADIENTS

Climatic conditions across Baffin Bay are by no means uniform (Figs
26.5, 26.6 & 26.7), and these sub-regional scale differences have
significance for paleoclimatic studies. Of particular importance is
the marked contrast in mean annual temperature on opposite sides of
Baffin Bay which is related to oceanic circulation patterns. 1In
eastern Baffin Bay/Davis Strait, the West Greenland Current carries
relatively warm water (and associated warm air) along the west coast of
Greenland. In western Baffin Bay, southward flowing, cold Arctic water
prevails. As a result, although latitudinal temperature gradients are
similar (a decrease of 0.65°C per 1° increase in latitude), mean annual
temperatures on the west Greenland coast are 8°C warmer than at the
same latitude on the east coast of Baffin Island (Fig. 26.5). South of
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Figure 26.5 Latitudinal mean summer temperature gradients along the
western and eastern sides of Baffin Bay and Davis Strait.
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64°N, along the Greenland coast, open water is present throughout the
year (Fig. 26.4{a)). However, on the western side of Baffin Bay,
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mid-winter ice cover extends southward along the Labrador coast as far
as 49°N and even in late summer, considerable ice may remain around the
Cumberland Peninsula and within Foxe Basin (Fig. 26.6(b)). Sea-ice
extent plays an important role in determining the amount of
precipitation which occurs in different parts of the region. As shown
in Figure 26.7, precipitation amounts increase significantly in
southernmost Greenland (south of c. 62°N) where open water occurs
throughout the year. On southeastern Baffin Island, heaviest
precipitation amounts occur where locally extensive open water occurs
year round, as, for example, near Cape Dyer (Fig. 26.6(a) & (b)).
Elsewhere, mean annual precipitation amounts are 9enerally les than 400

mm.

From this consideration of contemporary climatic conditions, it is
apparent that oceanographic conditions play a very important role in
regional climatic differences. More extensive open water in the past
would have been associated with high temperature (though not
necessarily in the ablation season). At the same time, there would
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Figure 26.7 Mean annual precipitation amounts around Baffin Bay/Davis
Strait, in relation to seasonal sea-ice extent, Note marked increase
in precipitation towards zone with open water all year (southern
Greenland). Locations with locally persistent polynas year round
(e.g. Cape Dyer at c. 66°N) have anomalously heavy precipitation.
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have been an even more pronounced increase in precipitation (since the
precipitation/proximity to open water relationship is non-linear).
Conversely, when the West Greenland current was absent due to more
extensive Arctic water, as for example from >20,000 to c. 10,000 BP
(Ruddiman and McIntyre, 1981}, precipitation would have been greatly
reduced and the temperature decrease along the West Greenland coast
would have been much greater than on the coast of eastern Baffin
Island. In short, strong differential changes in climate across Baffin
Bay are likely to have occurred in the past as a result of changes in

large-scale oceanographic conditions.

EVIDENCE USED IN PALEOCLIMATIC STUDIES

The principal lines of evidence used in the reconstruction of
paleoclimates in the Baffin region pertain to temperatures during the
summer, which is the environmentally sensitive period; large changes in
winter temperatures may have taken place in the past, but there are few
means of detecting if such variations occurred. It is possible that
studies of periglacial features (e.g. ice and sand wedges) could
provide a valuable winter season perspective on paleoclimatic

conditions (cf. Hopkins, 1982).

Proxy data (Table 26.1) from the Baffin area are, of course,
subject to the same limitations as similar data from other areas.
data are often of dubious paleoclimatic significance and may be
discontinuous in time and space, providing only episodic information.
On Baffin Island, only peat and lake sediments have provided continuous
paleoclimatic records and pollen studies of these sediments have formed
the basis of several regional quantitative paleoclimatic studies (e.g.
Andrews et al., 1980; Andrews and Diaz, 1981; Diaz and Andrews, 1982).
Not all of the records used in these studies are well dated; in
particular, many lake sediment records from northern Labrador have
dates which are out of sequence stratigraphically (Short and Nichols,
1977; Short, 1978), possibly as a result of disturbance and/or
contamination during the coring operation (removal of lower core
sections). Further lake sediment studies are required to resolve the

many uncertainties in these records.

The

THE PALEOCLIMATIC RECORD

In this section we compare the various proxy data records which bear on
paleoclimatic conditions in the Baffin Island region. Particular
attention is given to events over a few decades (for the more recent

y area.
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records) to a few centuries, Of course, dating uncertainty and
differing responses of different proxy climatic indicators make
comparisons on these time scales difficult. However, some knowledge of
short-term paleoclimatic variations would be useful, for comparison
with similar changes in other regions, and with the short-term
fluctuations of atmospheric C-14 (revealed by the departure of
radiocarbon ages from dendrochronological ages), which may have been
caused by solar varlations (Denton and Karlen, 1973),

In view of the scarcity of information and dating uncertainty
prior to the postglacial period, consideration is confined to the last
12,000 C-14 years. This period subdivides naturally, on the basis of
records of comparable detail, into three nested intervals: (1) the last
12,000 C-14 years BP*, (2) 4000 BC to present, and (3) AD 600 to
present. It many not be possible to identify short-term climatic
changes in the earlier part of this period, the glacial to interglacial
transition, for the evidence must reflect such things as changes in
oceanic circulation, rates of glacier calving, and floral/faunal
succession, as well as climatic varfations. Even later evidence does
not necessarily permit a simple climatic interpretion. Changes in
vegetation, as measured by pollen assemblages, are probably indicative
of summer temperature changes, although molsture conditions may also
have been important (Andrews et al., 1980), In this regard, it should
be noted that temperature may also control surface-water availability,
at least locally, by its effect on thawing of frozen ground and the
depth of the active layer in summer. Glaciler fluctuations may be
related to summer temperature, but could also be caused by changes in
snowfall or even by non-climatic factors. The amount of refrozen
meltwater in ice cores (Fisher and Koerner, 1981; Herron et al, 1981)
can be directly attributed to summer temperature changes, although even
this may be complicated by local factors such as radiatlon climate,

In general, we can only assume that most of the proxy climatic
evidence considered (at least in the two later intervals) are
indicative of summer temperature variations, with the understanding
that some of the discrepancies observed may be due to violations of the
various assumptions. Oxygen 1sotope variations in ice cores are
problematical as whatever climatic information they contain is related
to conditions on precipitation days, most of which occur in the months
of May and September to November (Bradley, 1983). However, two records

* 'BP' is to be understood to mean conventional C-14& years before

present,
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of 0-18 maxima (i.e. maxima in the annual cycles) are included from
cores for which data on intra-annual variations are available, and also
two mean annual 0-18 records for comparison with meltwater records from
the same sites.

The locations from which the data were obtained are shown in
Figure 26.8. Some information from locations in the Canadian Arctic
outside the Baffin Bay region is included in this study for comparison.
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Figure 26.8 Location of places from which data have been used in this
study.

THE LAST 12,000 C-14 YEARS

Figure 26.9 compares events during the last 12,000 C-14 years, arranged
roughly from northwest at the top to southeast at the bottom. At the
beginning of this period, it appears that there was a great difference
in climatic conditions between the Baffin Bay region and the western
Canadian Arctic. The first postglacial appearance of open water in
western Parry Channel about 11,500 BP (Fig. 26.9a) coincided with the
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advent of spruce on the Mackenzie River delta, which is north of the
present tree line (Ritchie and Hare, 1971; Ritchie et al., 1983). The
northwestern margin of the Laurentide ice sheet may have been
retreating at the rate of ‘about 200 m per year between 12,000 and
10,000 BP (Bryson et al., 1969; Prest, 1970). 1In contrast, the retreat
rate of part of the ice sheet in southwestern Greenland during this
time was only 10 m per year (Fig. 26.9k) and the ice margin in eastern
Baffin Island appears to have been stable (Andrews, 1975).

By 10,000-9000 BP, there was open water throughout Parry Channel
and in northern Baffin Bay (Fig. 26.9a). The correspondence between
radiocarbon dates and actual (calendar) dates is not definitely known
before 7000 BP, but at that time the C-14 dates are about 1000 years
too young, and if such is also true of dates 10,000-9000 BP, then the
advent of open water in northern Baffin Bay roughly coincided with the
very abrupt rise of 0-18 values in the Camp Century ice core (Hammer et
al., 1978). Meanwhile, in the southern part of the Baffin Bay region,
there seems to have been a rapid retreat of the ice margin in Frobisher
Bay (Fig. 26.91) between 10,500 and 8800 BP (and also after c. 10,300
BP in Merchants Bay, not shown in Fig. 26.9). This may have been due
partly to increased rates of calving as relative sea level rose (cf.
Fig. 2 in Andrews, 1982), but it may also have been partly climatic, as
suggested by exotic pollen influx on southwestern Cumberland Peninsula,
10,000-8700 BP (Fig. 26.9g; see Short et al., this volume), and the
intrusion of subarctic species of molluscs in Frobisher Bay about 9700
BP (Fig. 26.9%).

In contrast, there was an advance or stillstand of the ice margin
in southwestern Greenland between 10,000 and 9500 BP (Fig. 26.9x).
However, another period of advance of the southwestern Greenland ice
margin between 8800 and 8100 BP (although interrupted by a rapid
retreat) does coincide with an extensive advance of the Laurentide ice
margin on Baffin Island (the 'moraines of Cockburn age'; Andrews and

Figure 26.9 Some events of the last 12,000 C-14 years in the region.
(a) Inferences made by Blake (1972) on the basis of fossil molluscs and
driftwood in the Queen Elizabeth Island. (b,c,e,f,i,k) Relative rates
of ice margin retreat (up) or advance (down) estimated on Baffin Island
by Andrews (1982) and on southwestern Greenland by Ten Brink and
Weidick (1974). (d,g,h,k,1,m,n,p) Relative changes in summer
temperature inferred from pollen assemblages on Baffin Island (Short et
al., this volume) and in southwestern Greenland (Fredskild, this
volume). (J) Changes in mollusc assemblages on the coasts of Baffin
Isla?d (Andrews, 1972; Miller, 1980) and West Greenland (Laursen,

197¢) .
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Ives, 1978). Pollen assemblages from Godthaabsfjord and Tunugliarfik
(Figs 26.91 & n) indicate that this was a relatively cold period. The
pollen record from Kap Farvel (Fig. 26.9p) disagrees in part, but would
correlate well with the other evidence if its time scale was a few
centuries older.

The glacial records from Clyde, Home Bay, Frobisher Bay, and
Sondre Stromfjord (Figs 26.9c, e, 1, & k) all agree on the termination
date of this glacial stage at 8300-8000 BP. This coincides with the
first appearance of driftwood on southern Ellesmere Island (Fig. 26.9a)
(which suggested to Blake, 1972 the opening of Davis Strait) and with
the (probably related) intrusion of subarctic species of molluscs on
the east coast of Baffin Island (Fig. 26.9j). It also coincldes with
the beginning of a long period of warmth-indicating pollen assemblages
in southwestern Greenland (again, with Kap Farvel slightly later).

The evidence from Cumberland Sound on glacier retreat (Fig. 26.9f)
and pollen (Fig. 26.9g) appears to be contradictory, both with each
other and with the other records. There, ice margin retreat seems to
have commenced with the onset of a cold period about 8700 BP which
lasted through most of the following three millenia., Another apparent
contradiction to climatic amelioration about 8000 BP is the continued
presence of high arctic mollusc species in the Disko Bay (West
Greenland) area until about 7000 BP (horizons C and D, Fig. 26.9j).
This may be a matter of succession rather than climate as both Laursen
(1976) and Miller (1980) have noted the time-transgressive spread of
subarctic molluscs on the coasts of West Greenland and Baffin Island,
respectively (see Fig. 26.9}; see Fig. 26.8 for the locations).
Curiously, the subarctic species seem to have arrived first on the
Baffin Island coasts, although today they are restricted in this region
to the warm West Greenland Current (Andrews, 1972).

Andrews and Ives (1972) suggested that ice margin advance (or
stillstand) on Baffin Island in the Cockburn Stade might be attributed
to increased snowfall due to the incursion of warmer water into Davis
Strait while the land remained cold. Given the dating uncertainty,
this is certainly a possibility, but an alternative explanation could
be that ice margin advance (or stillstand) was associated with a cold
period, which was terminated upon incursion of warmer water into Davis
Strait about 8300-8000 BP. Although not necessarily associated, it
should be noted that this was also about the time of the breakup of the
Laurentide ice sheet over Hudson Bay (Andrews and Falconer, 1969).

The middle Holocene records from the Baffin Bay region are
difficult to characterize. The greatest concentration of driftwood in
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the Queen Elizabeth Islands, presumably implying the most open water,
occurred between 6500 and 4200 BP (Fig. 26.9a; Stewart and England,
1983). The climatic optimum in the Clyde (Patricia Bay) pollen record
at 6800-5700 BP is in partial agreement (Fig. 26.9d), but also
coincides with ice margin advance, or at least reduced retreat rate, in
central Baffin Island (Figs 26.9b, ¢, & e). The latter may perhaps be
explained as a response of the ice sheet to the cessation of calving
when it became wholly land-based (Andrews, 1973, 1982).

A readvance of the ice on Cumberland Peninsula at 5000-4500 BP
(Fig. 26.9f), and reduced retreat rate in the Home Bay area at
5600-4100 BP (Fig. 26.9e), may be related to the severe cold period
(Short et al., this volume) indicated by the Patricia Bay pollen record
between 5700 and 4500 BP (Fig. 26.9d) though there is considerable
uncertainty in the dating of the lower part of this core. By contrast
the pollen evidence from Iglutalik Lake (Fig. 26.9g) is entirely
contrary to the Patricia Lake record during this period and other
evidence points to relatively mild conditions in Baffin Bay and
southwestern Greenland at this time. For example, subarctic species of
molluscs flourished on the east coast of Baffin Island between 5500 and
3500 BP (Fig. 26.9j; Andrews, 1972), and the climatic optimum in the
pollen record from Frederikshab covers nearly the same interval,
5800-3200 BP (Fig. 26.9m). Other pollen records from southwestern
Greenland indicate a generally warm climate from c. 8000 BP to at least
4000 BP. Eigenvector analysis of pollen-based temperature records from
Baffin sland, Labrador and Keewatin also indicate relatively warm
conditions from 5500 to 3500 BP (Andrews and Diaz, 1981).

THE LAST 6000 YEARS

Figures 26.10 and 26.11 show records covering the last 6000 and 1400
calendar years, respectively. For comparison with ice-core and
tree-ring records, radiocarbon dates and the time scales of C-14-dated
records have been converted to calendar years according to the
dendrochronological calibration of Stuiver (1982), which covers the
last 2000 years, and Ralph et al. (1973) for older dates. The
calibration of Stuiver (1982) is probably very accurate, but another
recent calibration by Klein et al. (1982) indicates that some of the
earlier BC dates used here (i.e. according to the Ralph et al. 1973
curve) are about a century too old at times. However, the Klein et
al. (1982) data are presented in a form which is not easy to use, and
since no ice-core records before 300 BC are considered anyway, the
older calibration is used. The radiocarbon date list and conversions
are given in Appendix A.
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Eight different klnds of paleoclimatic evidence are presented in
Figures 26.10 and 26.11: (1) Wood (charcoal) north of present tree
line, (2) transfer function reconstructions of summer temperature based
on pollen assemblages, (3) lichenometric dates on moraines, (4)
radiocarbon dates on various deposits which suggest climatic change,
(5) proglacial sediment stratigraphy, (6) tree-ring width, (7) percent
refrozen meltwater in ice cores, and (8) oxygen isotope ratios (0-18)
in ice cores (cf. Table 26.1).

For the sake of comparability, and also for smoothing, the time
series in Figure 26.10 have been reduced to approximate 120-year
running means, 120 years being the approximate sampling interval of two
of the records (Figs 26.10c and the upper part of 26.10b). At the top
of Figure 26.10, two kinds of evidence from a location outside the
Baffin Bay region, the vicinity of Ennadai Lake in Keewatin, are shown
for comparison, both with each other and with the records from the
Baffin Bay region. Back to about 1000 BC there is very good agreement
between dates on fossil wood (charcoal) north of present tree line
(Fig. 26.10a) and the pollen transfer function reconstruction of July
temperature at Ennadai Lake (26.10b). However, the dates on the
farthest northward extension of forest, at around 2000 BC, coincide
with a relative low in the July temperature reconstruction, although it
was still warmer than most of the post-1000 BC part of the record. The
lifetime of this forest is unknown, but it may have existed through the
long warm period before about 2200 BC indicated by the pollen record,
and survived the subsequent cooling, until destroyed by fire. No wood
from north of present tree line in this region has been reported which
dates from later in the 2nd millennium BC (for which the transfer
function also gives high temperatures), but there are several dates on
spruce above present tree-line altitude in the Yukon from 3380-3050
C-14 years BP (c. 1900-1400 BC) (Rampton, 1971; Denton and Karlen,
1973).

The Keewatin records provide a well-dated and reasonably
consistent climatic history with which to compare the data from the
Baffin Bay region. The episode of relatively cool summers about
2100-1700 BC, which interrupted very warm intervals, is also found in
the Baffin Island pollen transfer function results from Iglutalik Lake
(Fig. 26.10c) and Windy Lake (Fig. 26.10d). However, the Baffin Island
transfer function results show little resemblance after 1000 BP, other
than long-term climatic deterioration. Their dating is uncertain to
some degree, but it seems impossible to reconcile them entirely by any
reasonable shift of their time scales. The part of the Iglutalik Lake
profile (Fig. 26.10c) which has been analyzed by transfer function is
not at all well-dated (Appendix A); the top of the section is assumed
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to be modern (Davis, 1980), but the long climatic quiescence after 900
AD which this implies, makes the assumption seem questionable, The
Windy Lake record (Fig. 26.10d) has breaks where sand layers in the
section were not sampled, which are interpreted by Andrews et al.
(1980) as representing cold intervals. This section has many C-14
dates, but there is a fair amount of scatter in the depth-age data, and
we have derived a time scale simply by a linear least-squares fit (see
Appendix A).

The Maktak Fiord record (Fig. 26.10e) 1Is well-dated, with four
very consistent dates within 1300 years. However, much of the
veriation in the Maktak series (even in the non-smoothed data) is about
the same as the standard error of estimate (about 1°C) of the transfer
function used to derive it (Table 7 in Andrews et al., 1980). Indeed,
this is true of much of the post-1000 BC variation in all three Baffin
Island transfer function temperature reconstructions (note the
difference in scales on Figs 26.10b, ¢, d, & e).

Some indication of climatic change on Baffin Island may perhaps be
gained from lichenometric dates on moraines (Fig. 26.10f) and
radiocarbon dates on various kinds of deposits which suggest transition
from warmer to colder conditions or the converse (Fig. 26.10g). these
data are drawn as triangles with the points toward the colder episodes
(except for one date marked W which indicates warm conditions, and the
lichenometric dates after 1700 AD, which are too numerous to portray in
this way). The lichenometric dates from the vicinity of the Barnes Ice
Cap and from Cumberland Peninsula are plotted together in Figure
26.10f, for they fall in similar clusters, using the same lichen growth
curve for both (as suggested by Andrews and Barnett, 1979).

Figure 26.10 Data (and derived data) from the last 6000 calendar
years., (a) Radiocarbon dates on fossil wood (charcoal) north of
present tree line in Keewatin (Bryson et al., 1965; Bender et al.,
1965, 1966, 1967). (b,c,d,e) Transfer function reconstructions of mean
July temperature based on pollen assemblages in Keewatin and Baffin
Island (Andrews et al., 1980; Andrews and Nichols, 1981; data supplied
by J.T. Andrews). Reduced to approximate 120-year running means,
except where the sampling Interval is about 120 years. Arrows denote
C-14 dates, (f) Lichenometric dates on Baffin Island moraines (Miller,
1973; Andrews and Barnett, 1979; Davis, 1980). Minimum dates for
glacier advance. (g) Radiocarbon dates on deposits suggestive of
climatic change, Cumberland Peninsula, Baffin Island (Miller, 1973;
Dyke, 1977). Triangles point toward colder episodes. See Appendix B.
(h) Percent refrozen meltwater in an ice core from southern Greenland
(Herron et al., 1981), 120-year running mean.
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The oldest dates are widely scattered, and the lichenometric dates
may be considerably in error, for the lichen growth curve is
extrapolated from a control date at 500 BC. A cluster of lichenometric
dates after 1500 BC indicates termination of a glacial advance which is
probably related to the relatively cold period of 2100-1700 BC shown by
the Windy Lake pollen data (the mean July temperature of about 6°C
obtained for this interval by the transfer function is just below the
6.5°C it predicts from the modern pollen rain). Scattered
lichenometric dates and C-14 dates on basal peat during the early 1st
millennium BC are not clearly associated with the pollen transfer
function results, )

The cluster of lichenometric dates about 2000 years ago may be
related to the cooling episode 4#00-100 BC in the Maktak (Fig. 26.10c)
record (which amounts to 1.4°C in the non-smoothed data, and is
therefore probably significant). The Dye-3 meltwater record (Fig.
26.10h) is also compatible with these lichenometric dates. The other
Baffin Island data (Figs 26.10c, d, & g) are contradictory; however,
C-14 dates (Fig. 26.10g) are on soils underlying eolian deposits (which
Dyke, 1977, interpreted as a change to cold, dry conditions), and
radiocarbon dates on soils can be centuries too old (Stuckenrath et
al., 1979; Matthews, 1980). It is likely that the lichens grew on
moraines deposited 200-100 BC, and the eolian sands were deposited
during a later cold episode,

A large cluster of lichenometric dates after 500 AD (with a peak
at 650 AD), together with two 5th century C-14 dates on glacial outwash
(Fig. 26.10g; Appendix B), indicate a glacial advance sometime around
the 5th century AD., This agrees very well with the low at that time in

Figure 26.11 The last 1400 years. (a) As Figure 26.10, but for
individual samples at 40-year intervals. (b) As Figure 26.10f.

(c) As Figure 26.10g. (d) Sediment stratigraphy in front of a Baffin
Island glacier (Miller, 1973). Dashed - silt; fine stipple - fine
sand; coarse stipple - coarse sand, gravel, cobbles; shaded - organic
horizon. See text for interpretation. (e) Tree-ring width indices
from vicinity of Fort Chimo, northern Quebec (Cropper and Fritts,
1981), 30-year running means. (f) Percent refrozen meltwater in two
cores from the Devon Island ice cap (Fisher and Koerner, 1981), 30-year
running means. (g) As Figure 26.10h, but 20-year means (up to AD 1300)
and 30-year running means (after AD 1300). (h,1i) 30-year running means
of annual maxima of 0-18 in Greenland ice cores, from (h) Milcent, and
(i) Crete (data supplied by World Data Center A for Glaciology). (j,k)
30-year running means of mean annual 0-18 in ice cores from (j) Devon
Island (Paterson et al., 1977), and (k) Dye-3 Greenland (Herron et al.,
1981).
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the Dye-3 meltwater record (Fig. 26.10h), and with the interpretation
that the contemporaneous sand layer in the Windy lake section (Fig.
26.10d) represents a cold period. Variations in the Iglutalik Lake and
Maktak Fiord records (Fig. 26.10c, e) during this period are not
significant, The timing of this cold episode is worthy of some
consideration, for if it occurred in the 5th century in the Baffin Bay
region, then it was clearly opposite to climatic change in Keewatin
(Figs 26.10a & b).

600 AD TO PRESENT

The records for the last 1400 years (Fig. 26.10) may be considered in
somewhat more detail than the previous sets. The points on the Windy
Lake transfer function results (Fig. 26.11a) represent individual
samples at about 40-year intevals. As noted previously, this record is
ambiguously dated, and this is especially so in the upper part of the
section (Appendix A). However, the concentration of lichenometric
dates (Fig., 26.11b) around the 7th century AD does imply a warming at
that time, In agreement with the Windy Lake result (see previous
section).

The set of C-14 dates on deposits indicative of climatic change
(Fig. 26.11c and Appendix B), together with the sediment stratigraphy
in front of a glacier (Fig. 26.11d), provide a consistent and fairly
detailed history of climatic change on the Cumberland Peninsula of
Baffin Island between the 7th and 16th centuries AD. The proglacial
sediment stratigraphy is interpreted by assuming that gravel was
deposited when the glacier was close to the site, and fine sediment or
organic material when it was withdrawn. This differs from the original
interpretaiton of Miller (1973), but agrees with most of the
radiocarbon-dated deposits (Fig. 26.11c), and follows the
interpretation of Patzelt (1974) for a similar proglacial sediment
section in the Alps. It also agrees very well with the meltwater
record from the Devon Island ice cores (Fig. 26.11f).

Later, in the 17th to 20th centuries, the Devon Island meltwater
record is remarkably similar to the Fort Chimo (northern Quebec)
tree-ring series (Fig. 26.11e). The Baffin Island lichenometric dates
(Fig. 26.11b) are fairly consistent with the Devon Island record (Fig.
26,11f) after 1680. However, the scattered lichen dates in the
preceding few centuries show no clear association with the other
evidence from the eastern Canadian Arctic.
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The 'Littlé Ice Age' minima in the Devon Island meltwater record
at around 1600 AD, the late 17th century, and the early 19th century,
are very similar in timing to those in many other proxy paleoclimate
records from North America and Europe (Lamb 1977; Williams and Wigley,
1983). Prior to the late 16th century, however, there appear to be
some important differences between climatic change in the eastern
Canadian Arctic and the rest of North America and Europe.

Many proxy climate records from North America and Europe show a
major transition from a cold episode in the 9th - 10th centuries (in
places comparable in severity to the Little Ice Age) to a very warm
episode in the 11th - 12th centuries or later (Williams and Wigley,
1983). In Europe, the latter is known as the 'Medieval Warm Period'
(Lamb, 1977). The Windy Lake temperature reconstruction (Fig. 26.11a)
and our interpretation of the proglacial sediment section (Fig. 26.11d)
do imply warming from the 10th to the 11th century. However, the
temperature increase at Windy Lake was less than the standard error of
th transfer function used to derive it. Also, interpretation of the
C-14-dated deposits (Fig. 26.11c and Appendix B) in the early 11th
century 1s ambiguous, and only one moraine on Baffin Island has been
lichenometrically dated to the 10th or 11th century. Thus, there may
have been a slight climatic amelioration on Baffin Island at the time,
but it appears to have been far less of a change than that implied by
records from elsewhere in North America and Europe. Similarly, there
was only a slight increase in snowmelt at Dye-3 (Greenland) at the time
(Figs 26.10h, & 26.11g).

Summer climate in the eastern Canadian Arctic seems to have been
even more anomalous in the 15th to early 16th centuries (Williams and
Wigley, 1983). 1In the western United States, ring-widths of
high-altitude, summer temperature-sensitive trees indicate a major cold
period in the late 15th century, locally perhaps the most severe of the
Little Ice Age (LaMarche, 1974; LaMarche and Stockton, 1974), and
well-dated glacier advances occurred at the same time in the Yukon
(Denton and Stuiver, 1966). Proxy climatic data from Europe also
indicate a period of relatively cold summers in the 15th century (e.g.
Schweingruber et al., 1978). 1In contrast, evidence from the esatern
Canadian Arctic (Fig. 26.11c, d, & f) indicates that summers were
relatively warm in the 15th and early 16th centuries, following a cold
period in the 13th - 14th centuries. However, it must be noted that
this evidence, although strong, does not receive support from
lichenometric dates (Fig. 26.11b).

The date (1490) marked 'W' in Figure 26.11c is on organic material
at the bottom of 'an ice wedge on Baffin Island, which implies seasonal
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thawing of ground perennially frozen at present. This was also the
case in southern Greenland at the time, for material from burials of
Norse settlers dating up to at least the late 15th century have been
recovered from ground which was perennially frozen at the time of
excavation in the early 20th century (NBrlund, 1924; Hovgaard, 1925).
The good state of preservation of these materials suggested that the
ground became perennially frozen not long after burial, and remained so
until excavation,

These burials give general support to the meltwater record from
the nearby Dye-3 ice core (Fig. 26.11g), which has high values during
the time of Norse settlement from the late 10th century until the early
16th century, and generally low values thereafter. However, the Dye-3
meltwater record shows very little agreement with that from Devon
Island (Fig. 26.11f); in fact the differences between the two in the
14th and 16th centuries are astounding. The two sites are a fair
distance apart (Fig. 26.8) so it is possible that local climatic
changes were quite different. Some difference is even perhaps to be
expected, considering that melting on the Devon Island ice cap is
strongly dependent on synoptic climate, especially on the frequency of
Baffin Bay lows (Alt, 1978), which might have an opposite effect on
melting at Dye-3. Yet we found that the Devon Island meltwater series
bears a strong resemblance to the tree-ring series from distant Fort
Chimo (Fig. 26.8) during the last few centuries, and the minima in the
Dye-3 meltwater record (Fig. 26.10h) seem to be closely associated with
clusters of lichenometric dates on Baffin Island moraines (Fig.
26.10f)., The question of synchrony of climatic change even within the
eastern Canadian Arctic - southern Greenland region remains unresolved,
much less that over the entire Northern Hemisphere or globally (cf.
Denton and Karlen, 1973).

An attempt has been made here to relate oxygen isotope data from
two Greenland ice cores to summer temperature, by taking only the
maximum 0-18 values in an annual cycle. This was done for the Milcent
(Fig. 26.11h) and Crete (Fig. 26.11i) cores, for the period of record
since about 1200 AD when data on annual variations are available (date
provided by P.K. MacKinnon, World Data Center A for Glaciology, 1981).
As seen in Figures 26.11h & 1, the exercise was not partlcularly
informative, as the two records generally disagree with each other and
with the Dye-3 meltwater record, except perhaps for some similarity
between the Dye-3 and Milcent series (Figs 26.11g & h) from 1400 to
1700 AD.

Finally, the mean annual 0-18 records from the Devon Island and
Dye-3 ice cores (Figs 26.11j & k) are shown for comparison with the
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summer melt records from the same locations (Figs 26.11f & g). In the
case of Devon Island, there is a fair correspondence between the two
curves after about 1650, and around 1300. However, between 1350 and
1600 the two curves show little resemblance. The mean annual 0-18
record and melt record from Dye-3 (Figs 26.11g & k) are even less in
agreement.

SUMMARY

There is little coherence in the pattern of early- to mid-Holocene
climatic change in the Baffin Bay region when various records of
ice-margin retreat, pollen, and mollusc assemblages are compared. The
period of ice margin readvance on Baffin Island (and to some extent, in
southwest Greenland) sometime between 8000 and 9000 C-14 years BP may
have terminated synchronously with the opening of Davis Strait, the
influx of subarctic species of molluscs on the east coast of Baffin
Island, and the start of a long period of relatively warm-climate
pollen assemblages in southwestern Greenland. Subsequently, a climatic
optimum seems to have prevailed in most of the Baffin Bay region until
about 3000 C-14 years BP, although interrupted in places by colder
episodes.

For the period 4000 BP to present, pollen transfer function
reconstructions of summer temperatures in Keewatin and Baffin Island
indicate generally warm conditions up to the first millennium BC, and
generally colder thereafter, although they differ greatly in detail.
They do agree on a relatively cold interval within the earlier period,
from about 2100-1700 BC, and this is supported by a cluster of
lichenometric dates on Baffin Island moraines. However, a
far-northward extension of treeline in Keewatin is also dated within
the period 2100-1700 BC. After 100 BC, dates on wood north of the
present treeline in Keewatin compare well with temperature peaks based
on palynological (transfer function) reconstruction for the same
vicinity at about 900 BC, 500-300 BC, 400-600 AD, and 1000-1200 AD. On
Baffin Island, two episodes of glacier expansion, dated
lichenometrically, compare very well with minima in a southern
Greenland ice-core meltwater record at around 200 BC and 400-500 AD.
The latter contrasts with the warm episode in Keewatin at that time,

Various kinds of evidence for climatic change in the eastern
Canadian Arctic during the last 1400 years are reasonably consistent,
but those from the Greenland ice cores disagree. The combined evidence
from the eastern Canadian Arctic suggests that after a relatively warm
7th century AD, the climate deteriorated into the 10th century. Warmer
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conditions then prevailed in the 11th and 12th centuries (as in
Keewatin, and indeed elsewhere in North America and Europe), followed
by a cooling to the 14th century. The 15th and early 16th centuries
were warm; at times, at least as warm as at present. This contrasts
with evidence (tree-ring and glacial) for a cold episode in western
North America and Europe in the 15th century. The Devon Island
ice-core meltwater record indicates a sharp cooling in the late 16th
century. This record, the northern Quebec tree-ring record, and the
Baffin Island lichenometric dates on moraines all show very good
agreement from 1650 to the present. These indicate cold periods in the
late 17th century and early 19th century, with warming during the 18th
century and late 19th to 20th century (the latter interrupted by

cooling around 1900),

It would be naive to suppose that the few cases discussed, in
which two or more kinds of paleoclimatic evidence agree, provide a
definitive history of climatic change in the region. Some may be
fortuitous, and there are many other cases in which there is
disagreement among different records. The inconsistencies may be due
to misinterpretation, dating uncertainty, or differing responses to
climatic change, as well as the possibility of local anomalies
Paleoclimatic interpretation is only made possible by aggregation of
different kinds of supporting evidence, and this survey shows that
there is a need for much additional information to be collected in the

Baffin Bay region.
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APPENDIX A
SOURCES OF DATA, AND CONVERSION OF RADIOCARBON DATES TO CALENDAR YEARS

Flgure Reference
No.,
26.,9a Blake (1972)
gg.gb, c, e, f, i Andrews (1982)
26.9d, g, h Short et al, (this volume)
.93 Andrews (1972), Laursen
26.9K (1976), Miller (1980)
26.91 Ten Brink and Weidick (1974)
_.:._,_?1‘2, p Fredskild (this volume)
Fig. Calendar C-14 age Ea;.— T —R—f ——————————————
No. AD/BC BP No. ererence
26.10a AD 1160 880 180 wis-S Bender et al. (1965)
1050 180

AD 980 1140 90 WIS-17 "
:g 600 1450 90 WIis-15 "
540 1530 80 WIS-96 Bender et al, (1966
AD 430 1590 80 WIS-37 Bender et al. E1965;
220-360 BC 2140 80 WIS-136 Bender et al. (1967)
400 BC 2210 160 Wis-29 Bender et al. (1965)
890 BC 2670 105 WwIS-93 Bender et al. (1966)
1790-1890 BC 3430 110 wis-12 Bender et al. (1965)
2060 BC 3540 110 Wis-52 Bender et al. (1966)
2140 BC 3650 100 ¥1S-80 Bender et al. (1966)
2620 BC 4000 160 WIS-7 Bender et al. (1965)
26.10b  AD 1160 870 60 Gak-5062 Nichols (1975)
1020 BC 2790 100 Gak-5061 "
1270 BC 2960 100  Gak-5060 "
1660 BC 3340 120  Gak-5059 "
3350 BC 4520 110  Gak-5057 "
3500 BC 4690 140 GSC-1781 "
26.10c 795 BC 2565 190 GX-6292 Davis (1980)
3610 BC 4765 200 GX-5625 "
26.10d  AD 1300 640 155 Gak-5449 Davis (1980) (mean depth 2.5 cm)
]

AD 1030 960 200 Gak-5450 ! (7.5 cm)
AD 1200 850 65 DIC-327 " (15.5 cm)
AD 560 1500 85 DIC-390 " (62 cm)
AD 10 1990 180 Gak-5411 " (69 cm)

130 BC 2060 85 Gak-5412 " (90 cm)

730 BC 2470 390 DIC-515 n (99 cm)
1060 BC 2825 65 $I1-2950 " (128 cm)
1410 BC 3070 75 DIC-402 " (157.5 cm)
2140 BC 3650 200 SI-2556 " (205 cm)
2050 BC 3525 60 SI-2951 " (217.5 cm)

Least-squares fit: Date (AD) 1273 = 16,545 x depth(r? = ,97
26.10e AD 580 1480 160 Blrm-370  Boulton et 21.((1976) )
AD 25 1970 200 Birm-535 "
410 BC 2240 190 Birm-536 "
26.10¢ H165 8C 2500 170 Birm-380 "
. storical dates Miller and Andrew
Agogzgg 2288 88 Gak-3722  Miller (1973) > (1772)
9 Gak-1992 Miller an
26,10 See Appendix B r and Andrews (1972)
26.11a  See 26.10d
26.1b See 26.10f
26.11d  AD 1435 450 130 Gak-3726 Miller (1973)
AD 1010 1010 100 Gak-3725 "
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Radiocarbon dates on deposits which indicate climatic change, REFERENCES
Cumberland Peninsula, Baffin Island

Alt, B.T., 1978: Synoptic climatic controls of mass-balance variations

- iption of deposit Interpre- on Devon Island ice cap. Arctic and Alpine Research, 10:61-80.

Lab. No. y$s1gp AD/BC  Descrip epo tation Andrews, J.T., 1972: Recent and f0ssil growth rates of marine bivalves,
Canadlan Arctic, and Late-Quaternary arctic marine environments.
Gak-3099 330¢90  AD 1520 Dead moss in area of lichen kill Cold after Palagogeography, Palaeoclimatolo Palaeoecology, 11:157-176,
Gak-2983 350100 1490  Organic debris in bottom of ice wedge  Warm AﬁHFEW5:gUT%T7ET673?—TFE—WTEEEEETﬁg%éﬁ?Eﬁ?THE_TEEggheet: dispersal
Gak-3357  430x90 14480  Soil overlain by peat Warm after? centers, problems of rates of retreat and climatic implications.
Gak~3726 450130 1435 Organic horizon underlain by outwash Cold before Arctic and Alpine Research, 5:185-199.
Gak-3098  680+90 1290 Base of peat section Warming? Andrews, J.T., 1975: Sugport for a stable late Wisconsin ice margin
Gak-2792 73070 1280 Top of peat section Cooling? (14,000 to c. 9000 BP): a test based on glacial rebound. Geolo ,
Qu-305 830£70 1215  Soil overlain by eolian sand Cold after 3:617-620.
Cak-2094  850+110 1190 Top of peat overlain by eolian sand Cold after Andrews, J,T., 1982: Holocene gl§cier variations in the eastern
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Survey — Part V

The chapters in the final section of this volume deal largely with th
history of events during the last 10,000 years. This perliod includes
the retreat of ice sheets and glaciers from the eastern Canadian Arct
and West Greenalnd during early and middle Holocene time, but it also
includes the readvances of local glaciers during the geologic-climate
Interval called the neoglacial. However, it should be noted that
chapters in other sections of this volume deal with glacial, climatic
and oceanographic events during the Holocene. Thus chapters 15, 16,
18, and 19 contribute substantial information to the broad topic of
Holocene glacial and climatic events in the area surrounding Baffin
Bay.

The chapter by Quinlan (Chapter 20) represents a significant
contribution to our attempts to portray the changing character of the
late Quaternary North American ice sheet. The maps and figures
provided by Quinlan represent an important series of hypotheses agains
which field observations can be tested. This in turn will allow a
re-evaluation of the glacial isostatic model that Quinlan and others
have employed. A preliminary test of the model(s) in Frobisher Bay
indicates some areas of disagreement. However, the Frobisher Bay areaj
has largely been worked on during large-scale reconnaissance surveys
where the emphasis has been on mapping of glacial and glacial marine
sediments (see Chapter 18).

Chapters 22, 23, 24, 25, and 26 deal with various aspects of
Holocene climate. The detailed investigation of neoglacial moraines b
Davis (Chapter 24) indicates that the fluctuation of glacier snouts 1nﬂ
southern Cumberland Peninsula has a much higher frequency content than
the proposed 2500 year cycle. However, the pollen records from both
the eastern Canadian Arctic and West Greenland (Chapters 22 and 23)
illustrate broader amplitude oscillations of climate.

A comparison of these two chapters indicates a substantial
difference in the degree to which palynology has been used as a tool
for reconstructing Holocene vegetation and climate histories. In
Greenland there has been a long tradition of palynological studies and
the reader must be impressed by the wealth of detail in Fredskild's
chapter. This detail extends to a recognition of local pollen taxa
that is virtually unparalleled in North American studies. In contrast,
the beginning of palynological studies in the Eastern Canadian Arctic
have tended to focus more on the climatic implication of the pollen
record and less on the history of vegetation succession. However, a
theme that miaht Tial amd ~eeoo - AR



