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Abstract: Estimates of the spectrum of natural variability are critical to the problem of detecting an anthropo-
genic signal in global climate observations. Without such information it is impossible to say that current climate
change is different or unique from changes that have happened in the past and, therefore, potentially due to
man-induced causes. We have estimated the spectrum of natural variability from a globally distributed set of
palaeo-temperature proxies and compared it with comparable estimates from two long control integrations of
coupled general circulation models ~ the type used to predict anthropogenic change due to greenhouse gases.
None of the three estimates of the natural variability spectrum agree with each other on the low-frequency,
near-global time/space scales. Until this dichotomy is resolved, it will be hard to say, with confidence, that an
anthropogenic climate signal has or has not been detected.
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Introduction_

Recent studies have attempted to detect a human-induced effect
on global climate, relying on numerical model estimates of natural
climate variability as their ‘yardsticks’ for judging the significance
of observed changes in climate (Stouffer et al., 1994; Santer et
al., 1996b; Hegerl et al., 1996; Manabe and Stouffer, 1996; see
also Wigley and Barnett, 1990 and Santer et al., 1996¢c, for'a
recent summary of the detection problem). Indeed, it can be
argued that the key to detecting an anthropogenic signal is quanti-
tative knowledge of the spectrum of natural variability. Without
such information, it is impossible to say if an observed climate
change is different or unique from changes that have happened in
the past and, therefore, potentially due to anthropogenic causes.
The purpose of this paper is to investigate quantitatively how

well the model estimates of natural variability at timescales of

several decades-to-centuries and planetary scales agree with those
obtained from palaeo data. Prior to making such comparisons, it
is important to summarize the potential shortcomings of both
types of noise estimators, as well as the problems associated with
using instrumental observations for the same purpose.

Ideally, one could use instrumental data to estimate the spec-
trum of natural variability. Unfortunately, the instrumental record
is barely a century long for the best-observed of variables (e.g.
near-surface temperatures). Further, it is aimost certain that the
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component of ‘total’ natural variability in this record (i.e. intern-
ally generated variability, plus that due to changes in solar output,
volcanic aerosols etc.) is convolved with some human-induced
signal (e.g. trace gases plus anthropogenic aerosols). There seems
to be no valid empirical way to remove this anthropogenic effect.
Attemnpts to remove such an effect theoretically and/or with
numerical model results requires faith that the underlying model
is itself correct; a considerable assumption for many models. For
these reasons, we cannot directly use the instrumental record to
estimate natural variability and, hence, need to turn to indirect
methods.

Model estimates

The natural variability, or ‘noise’, used in the above-referenced
investigations is the variability simulated by Coupled Atmos-
phere-Ocean General Circulation Model (CGCM) control runs
with fixed levels of greenhouse gases. We refer to this as ‘model’
noise, to distinguish the estimates from ‘observed’ noise. With
increased computer resources, such control runs are now of up to
1000 years in length, thus permitting estimates of internally gener-
ated natural variability on timescales of decades to centuries.
Attention has been devoted to the question of how well current
CGCMs simulate interannual to decadal timescale natural varia-
bility (Stouffer et al., 1994; Latif and Barnett, 1994; 1996; Mehta
and Delworth, 1996; Delworth et al., 1993; Manabe and Stouffer,
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1996). In general, the models appear to perform well in regions
of the North Pacific and North Atlantic, i.e. spatial scales con-
siderably smaller than the greenhouse signal. However, little work
has been done on evaluating the reliability of model noise on
multidecadal time and planetary spatial scales, the crucial scales
for detection. It is well known that the CGCM control runs omit
known aspects of variability important on the interannual to cen-
tury timescales, 5o it is highly likely that the estimate of internally
generated natural variability on these timescales will be low. For
instance, control integrations do not incorporate changes in solar
output or changes in volcanically induced aerosol inputs to the
-atmosphere. In fact, it is not clear how the former could ever be
incorporated, given our limited knowledge of past solar forcing
histories. Thus, the variability that the models capture is due
solely to the complex interactions between the atmosphere, with
its very fast timescales and the ocean and ice with their longer
timescales. Even these sources of variability in the CGCMs are
deficient, since they do not simulate ENSO events adequately (too
weak). So they reproduce only weakly one of the largest known
principal modes of interannual ocean/atmosphere variability. Why
this is so is presently unknown. However, for present purposes,
the 3—5-year ENSO timescale is short compared to the decadal to
century timescales we shall be investigating, and so this omission
may net be critical for present purposes (although the relatively
high frequency forcing could conceivably generate a lower fre-
quency response in analogy to the ideas of Hasselmann, 1976).
In summary, there are known problems with most current
CGCMs. It is exactly for that reason that we want to see how
well they simulate the low-frequency noise that must be known
for the detection problem.

Palaeo noise estimates

It seems reasonable to verify the model estimates of noise with
long (> 300-500 years) palacoclimatic reconstructions that
encompass temperature fluctuations prior to any substantial
human influence on climate. Unfortunately, palaco data are not
perfect for this purpose as we shall see below.

Measured tree-ring-width or density series from individual
trees, ice cores and/or coral temperature proxies frequently exhibit
relatively long timescale area-related trends. These trends are
thought to represent properties of the palaeo proxy itself, e.g. the
biological growth function in individual trees. Because such
trends do not represent a response to climate change, they must
be removed before the data are useful. Otherwise, they would bias
the subsequent climate reconstructions. Removing these trends,
however, also removes potential climate information on relatively
long timescales. The extent to which this occurs depends on the
nature of the original data and the chronology construction
methods employed. For instance, some of the tree records will
better reflect multidecadal to century timescale variability than
others (see Briffa et al., 1992a). )

Even when ‘calibrating’ proxy data by regression against instru-
mental records, only part (approximately at most 50-60%; Briffa
and Jones, 1993) of the observed variance is captured. This means
palaco data almost certainly underestimate the magnitude of the
spectrum of natural variability. The real hope for validating the
models with palaeo data thus rests in comparing patterns of spatial
variabiilty and the temporal spectra.

A further problem is ‘scale incompatibility’ (Santer et al.,
1996a) — climate data at a single CGCM grid-point represents
average conditions over a box with sides of several hundred kilo-
metres in length. But a temperature reconstruction from a single
tree-ring site or ice core may record mainly local conditions. This
is partially overcome by calibrating the palacoclimatic series
against regional rather than local temperature series (Jones and
Briffa, 1996). Of equal concern, however, is the fact that the
model noise is an estimate of internally generated variability only,

and not of ‘total’ natural variability (as in palaeo data). A null or
inconclusive result in a comparison of model-generated and
palaeo-derived noise estimates is thus difficult to interpret.

In summary, there are justifiable concerns over the reliability
of both the model-based noise estimates and those obtained from
palaco data. But these concerns do not relieve us of the responsi-
bility of attempting to validate CGCM estimates of multidecadal
noise, if we wish to engage in anthropogenic signal detection. As
we will show in the following section, model-based noise esti-
mates from the two largest CGCM control runs presently available
show quite different partitioning of variance on a wide range of
space scales and timescales. Subsequent sections use palaco data
to see which, if either, of these numerical simulations of natural
variability has any potential validity.

Model natural variability estimates

This section compares the variability of global mean near-surface
air temperature in two control integrations: a 1000-year CGCM
experiment recently performed at the Geophysical Fluid Dyna-
mics Laboratory (GFDL; Stouffer et al., 1994) and the first 600
years of what has eventually extended to a 1000-year integration
carried out at the Max-Planck Institute for Meteorology (MPI;
Cubasch ef al., 1994; von Storch, 1994) in Hamburg. A prelimi-
nary comparison of the variability in these two integrations was
made by Saqter et al. (1995a). Both models were run with compa-
rable horizontal and vertical resolution. Different flux correction
schemes were applied to prevent excessive climate drift (Sausen
et al., 1988), but both models still show nonstationary behaviour
of global-mean, annually averaged temperature (see Santer ef al.,
1996b: Figure B1). The residual drift is relatively small in the
GFDL run (c. 0.1 dg. C/century), but somewhat larger in the MPI
control (¢. 0.2 dg. C/century), primarily due to large changes in
sea-ice in the first two centuries of the integration (Santer et al.,
1996a). Beyond this time, the run has stability comparable to the
GFDL run. In later sections, we investigate sensitivity of the
model estimates of natural variability.

The spectra of the detrended, global-mean, annually averaged
surface temperature from the observations and the two CGCM
integrations are shown in Figure 1. All data sets were detrended
prior to spectral analysis. The spectra were computed using the
autocorrelation function and smoothed with a ‘hanning’ filter. The
spectra was stable for difference choices of lag and smoothing
windows, band widths, etc. The GFDL model spectrum agrees
well with the observed spectrum. Unfortunately, the observed rec-
ord was only 140 years in length, so the observed spectral esti-
mates associated with timescales exceeding 10-20 years are
highly uncertain. GFDL has far greater. variability than MPI
(ECHAM) on timescales less than roughly 65 years, while the
reverse applies on longer timescales. It is not fully understood
why the two models disagree. The discrepancy between the GFDL
and MPI low-frequency power is not attributable to the large
initial climate drift in the first few hundred years of the MPI inte-
gration since the spectrum is computed with data beginning in
year 200, i.e. after the initial drift has ceased and the model has
apparently reached an equilibrium climate.

In addition to mode! differences in variability in global-mean
terms, there are also differences in the dominant patterns of varia-
bility and in the partitioning of total space-time variance. Patterns
of variability were estimated via Empirical Orthogonal Functions
(EOFs) of the gridded GFDL and MPI near-surface, annual aver-
age air-temperature data. The data were area-weighted prior to
calculation of the covariance matrix from which the EOFs were
computed. There are striking differences in the spatial patterns of
the dominant natural variability modes (Figure 2). In the MPI con-
trol run, the variance maxima in the first two spatial EOFs are
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SPECTRAL DENSITY: GFDL, ECHAM CONTROL RUNS AND CRU DATA
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Figure 1 Power spectrum of global mean, annually averaged near-surface air temperature in the long control integrations from coupled general circulation
models of the Geophysical Fluid Dynamics Laboratory (GFDL) and Max Planck Institute (MPI), Hamburg. Also shown is a similar calculation based on
a 140-year (1854-1993) global near-surface annual average air-temperature record from observations (Climate Research Unit, Jones and Briffa, 1992).

All series were detrended prior to spectral analysis.

closely tied to locations where there are long-term changes in sea-
jce. In contrast, the dominant modes of variability in the GFDL
control run are characterized by largest variability over. high-lati-
tude land areas of the northern hemisphere. The eigenvalue spec-
tra of the two experiments (not shown) are also very different,
with MPI partitioning twice as much of the total space-time vari-
ance in the first two modes than the GFDL model.

These large model-model differences in estimates of the spec-
trum of natural variability, both in terms of variance levels and
large-scale spatial patterns, imply considerable uncertainties in our
ability to specify the spectrum of patural variability and sub-
sequently to detect any greenhouse warming signal — even if the
space time-evolution of such a signal were perfectly known.
Clearly, both models cannot be correct in their estimates of the
spectrum of natural variability.

Natural variability in palaeo data

The palaco data used in this study are those described by Bradley
and Jones (1993) and consist mainly of tree-ring reconstructions,
historical documentary records (from China and central Europe),
ice-melt records, and ice cores. The Bradley and Jones set was
angmented with tree-ring data from Tasmania (Cook et al., 1992)
and coral data from the Great Barrier Reef (Lough et al., 1996)
and the Galapagos (Dunbar et al.,, 1994). These palaeo proxies
are described in Table 1. In the following discussion the data ser-
ies have been trimmed to cover the common period 1600-1950,
or ignored if not of sufficient length. A general description of the
eigenstructure of a detailed version of this data set has been made
by Mann et al. (1994) and the reader is referred to that work for
a description. of the space-time variability of the palaco data,
results we confirmed by re-analysis.

Several items regarding the data shown in Table 1 and their
utility in this study need to be summarized before proceeding with
the palaco-model data intercomparison. :

(1) The palaeo records associated with tree-rings had been con-
verted to proxy temperatures by their originators prior to our
use of them. These temperatures are most generally represen-
tative of the summer season (as assumed by Bradley and
Jones, 1993). However the ‘W, US density’ data are best
related to spring/summer season, while the ‘Northern Tree-
line’ data are associated with an annual average temperature.

(2) The degree to which the palaeo proxies represent instrumental
temperatures was estimated as follows. The observed data
from the grid points (or regions) closest to the palaco proxy
sites were isolated for the appropriate season. These observed
data were converted to decadal anomaly values and cross cor-
related with the decadal palaco data. The results, given in
Table 1, show that in almost cases the palaeo proxies rep-
resent reasonably well the fluctuations in observed tempera-
ture over the last 100 or so years, Detrending both series prior
to cross-correlation reduced the size of the. correlations by
generally small amounts, e.g. 0.10 or less, In some cases, the
detrending improved the correlation by a comparable amount.
The several series that are not representative of nearby
observed temperatures were excluded from the analysis
described below, e.g. the Devon Island Ice Cap series and the
east China documentary series.

(3) Some of the ice-melt, coral and historical documentary data
available to us apparently had not been formally calibrated
against an instrumental record. This calibration was carried
out here using both the observed, globally gridded air-tem-
perature data set described by Eischeid et al. (1996) and that
of Jones and Briffa (1992) or the century-long sea-surface
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Table 1 Palaeo data characteristics

Data type Sampl. interval

Palaeo site (units) Location Data period (Yr) T Source (29)

1. Gt Barrier Reef Coral (iso)  16.7°S, 146.6°E 1615-1982 1 0.66 Lough et al., 1995

2. Galapagos Is. Coral (iso)) 02°S, 87.6°W 1607-1981 1 0.70 Dunbar et al., 1994

3. Svalbard Ice M) 79.0°N, 15.0°E 1400-1985 1 0.55 Tarussov, 1992

4, N. Scandinavia Tree (°C) 68.0°N, 22.0°E 1400-1980 1 0.77 Briffa et al., 1992a

5. N. Urals Tree (°C) 65.0°N, 65.0°E 14001969 1 0.80 Graybill and Shiyatov, 1992
,6. C, England Instrn, (°C) 51.0°N, 2.0°W 17231987 1 0.98 Manley, 1959; 1974 .

7. C. Europe Doc (°C) 46.5°N, 8.0°B 1550-1979 1 0.93 Pfister, 1985

8. Agassiz Ice Cap Tee (M) 80.0°N, 75.0°W 1401-1966 5 0.74 Koemer, 1977

9. Devon Is. Ice Cap* Ice-(M) 70.0°N, 82.0°W 1401-1971 5 0.17 Koemner and Fisher, 1990
10. S. Greenland Ice (°C) 65.0°N, 45.0°W 1545-1988 i 0.40 Kameda et al., 1992

11, N. Tree-line Tree (°C) 58.0°N, 95.0°W 1601-1974 1 0.76 D’Armrigo and Jacoby, 1992
12. W. US widths* Tree (°C) 400°N, 112.0°W  1602-1961 1 0.42 Fritts, 1991; Schweingruber et al.,
13. W. US density Tree (°C) 40.0°N, 112.0°W 16001982 1 0.85 1991; Briffa er al., 1992b
14. E. China* Doc 25.0°N, 115.0°E 1400-1980 10 0.13 Wang and Wang, 1990

15. N. China Doc (°C) 39.0°N, 115.0°E 1400-1980 10 0.86 Wang, 1991a; 1991b

16. S.E. China Doc (°C) 26.0°N, 118.0°E 1470-1970 10 0.72 Wang et al., 1991

17. Argentina 37-39°S Tree (°C) 38.0°S, 69.0°W 1500-1974 1 0.59 Villaba, 1990

18. Argentina 41°S Tree (°C) 41.0°S, 69.0°W 1400-1983 1 0.572 Boninsegna, 1992

19. Lake Johnston Tree (°C) 42.0°S, 146.5°E 1400-1991 1 0473 Cook et al., 1991; 1992
20. N. Zealand S. Is.* Tree (°C) 44.0°S, 171.0°E 1760-1978 1 0.26 Norton and Palmer, 1992

M = ice melt index; doc = documentary; tree = tree-ring; ice = ice core; iso = isotope.

An * following the site name indicates the data were not used in this study. Correlation (r) is between the decadal palaco data and decadal summer
(annual) temperature anomalies from the obesrved, globally gridded near-surface air-temperature data sets (18).

In most cases, the correlations are computed over the last 100 years, ! correlation over 1921-74, ? correlation over 1931--83, 3 correlation over 1920-89.

temperature data from the COADS (Slutz et al., 1985) in the
following manner: we assumed the three palaeo data types
were representative of summer, annual and summer con-
ditions, respectively. Each palaeo time series was normalized
to bave unit variance over the period 1860-1959. The 100-
year record of observed data (for the appropriate season) for
the data grid point closest to each palaeo site was isolated,
and converted to decadal anomalies of summer or annual tem-
perature, as appropriate for the proxy under consideration.
The. standard deviations of these time series were computed
and used to renormalize the associated palaeo time series such
that they now had units of degrees Celsius. This procedure
assumes the variability during the period of palacodata is the
same as that during the period of observation. The series were
then scaled by the correlation (r) between palaeo and observed
data, so that the final palaco series accounted for 100 2 %
of the variance of the observed data. This, again, assumes a
stationary character for both the palaco and observed data.
Bradley and Jones (1993) show an analogous, but slightly dif-
ferent, scaling scheme yields palaco temperature proxy time
series that are an excellent reproduction of observations (see
their Figure 7).

(4) Inspection of Table 1 shows that the proxies generally account
for only 20-60% of the variance. Hence, the palaco data
apparently underestimates the true levels of natural variability
by a factor of 2-5 or more.

Natural variability: models versus
palaeo

We have investigated the correspondence between the models and
palaco data in a number of ways. These are summarized briefly
below.

(i) Standard deviation ratios

The standard deviations (sigma) of the 350-year, decadal palaeo
time series and their counterparts for the first 350 years of the
decadal model data for summer (annual average) were computed.
The choice of a decadal timescale was driven by the need to maxi-
mize the amount of palaeo data available for study; cf. the data
sampling intervals shown in Table 1. The ratio of palaeo sigma
divided by mode!l sigma was computed pext and shown on Figure
3 for the first 350-year segments from the models (essentially the
same results were obtained using the second 350-year segment of
the model data). In the case of the MP], the data set was only
600 years and we used the first and last 350 years of this sequence
giving 100 years overlap between the two epochs. The ratios are
often within a factor of two which suggests roughly the same level
of variability between model and data, i.e. the models underesti-
mate the true levels of variability as do the palaco data. The grand
averages of the ratios show the models generally underestimate
the palaeo variability by an average factor of 1.5 (GFDL) to 2.1
(MPI) and, hence, underestimate the variance by a factor of about
3-4, The discrepancy is particularly large in the tropical Pacific
(Galapagos), since neither model produces a credible ENSO sig-
nal, and in southeast China near the Himalayas. The large ratios
are due to the models’ having very small varability at. these
locations. :

This result is in stark contrast to Figure 1 where the GFDL
model seems to reproduce well the spectrum of global mean tem-
perature. It is clear that getting a global integral of temperature
correct does not imply that the spatial structure of the signal is
also correct. Indeed, the opposite seems to be the case in the cur-
rent study. The act of integration (to get a global mean) apparently
suppresses model limitations. This is yet another demonstration
that global mean temperature is not a particularly useful parameter
for model validation/climate change detection.
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Figure 3 Ratio of the standard deviations from the palaeo temperature
time series over the standard deviations from the model data at the
same sites.

(ii) Spatial similarity

The decadal mean data from the two models was subsampled

spatially at the grid points nearest the palaco proxy sites. Thus,

the model and palaeo data series are now as representative of the

same space-time region as we can make them. The EOFs of the

covariance matrix of each data set were computed and compared.
The leading EQF of the palaco data is shown in Figure 4a and

accounted for 39% of the palaeo data variance. This eigenmode .

is statistically distinct from the second and lower modes using
the criterion of North et al. (1982). It does not replicate well the
comparable patterns found for the GFDL and MPI models (Figure
4, b and ¢; see below). For instance, the MPI model puts the
largest variations in the polar latitudes while GFDL favours Eur-
ope. However, the explained variance in the first palaco EOF is
about the same as that obtained from the leading EOF of the mod-
els. The higher order palaeo EOFs (not shown) agree no better
with those obtained from the models. According to (4) above,
these results suggest the models are accounting for only 20-60%
of the actual natural variability. Since our goal here is to compare
the palaeo-model data sets, we refer the reader to the work by
Mann et al. (1994) for a detailed description of space-time varia-
bility of the pataeo data themselves.

The dot products of either of the palaco-grid model EOFs with
the palaco EOFs is a measure of the similarity of the spatial struc-
ture of the data fields. A value of 1.0 would mean an identical
spatial structure. The value of the dot products was low, generally
less than 0.50 for all combinations of the first ten modes. This
means that the spatial structure of the decade to century variability
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Figure 4 (a) Leading EOF of the 350-year, decadal palaco data (39.3%
of the variance). (b) Ditto for the GFDL data (22.4% of the variance). (c)
Ditto for the MPI data (39.1% of the variance}. The eigen components
have been multiplied by 100 and are positioned at the palaco site locations.

represented in the palaeo data did not closely resemble that pro-
duced by either of the models (but see below). Thus detection
methods that rely on pattern recognition techniques (all the mod-
ern approaches) have no reliable estimates of the patterns associ-
ated with natural varigbility against which to test for an anthro-
pogenic signal.

(i) Common basis set

The model summer, or annual, temperature data sets, as appropri-
ate to the particular proxy, were projected onto the palaco EOFs
so that all the data could be compared in a common coordinate



T.P. Barnett et al,: Low frequency natural variability in air temperature 261

system (cf. Barnett and Jones, 1992), thereby overcoming one of
the objections to the methodology of (ii) above. Again, decadal
data were used to maximize the number of proxies available for
analysis and the model data fields were subsampled at the grid
points corresponding to the proxy locations. The palaeo principal
component for the first EOF is shown in Figure 5. Also shown
are the pseudo-principal components obtained by projecting the
first 350 years model data onto the leading palaco EOF. The lower
level of variability in the models is obvious and was replicated
using the second, independent section of model data. Due to the
lack of correlation between model and palaeo EOFs, this situation
was found also for all higher modes.

PRINCIPAL COMPONENTS
IN PALAEO BASIS SET
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Figure 5 The first principal component (PC) of the palaco data (lighter
line) and the pseudo-principal components (heavy line) of the GFDL
(upper) and MPI (lower) obtained by dotting the first 350 years of model
data with the leading palaeo EOF. The low amplitude of the pseudo-
principal components relative to the palaco PC shows the models project
poorly onto the palaco EOF. This means the spatial patterns of variability
in the models do not resemble well those found in the palaco data.

The power spectra of these principal components are shown in
Figure 6. The spectral analyses were performed on the detrended
time series using a Fast Fourier Transform technique with fre-
quency space smoothing via a ‘*hanning’ window applied twice in
succession. The general properties of the spectra were essentially
unchanged for different reasonable choices of smoothing and
effective bandwidths. The spectrum of the palaeo data has a shape
that compares favourably with that found by Kutzbach and Bryson
(1974). The model spectra demonstrate the reduced variability in
the projected models’ data sets exists at all frequencies. But the
difference becomes largef_ with decreasing frequency, suggesting
a low frequency damping mechanism in the models (e.g. the
strong flux correction terms used in both runs, Pierce et al., 1996)
or exclusion of some low-frequency physics (e.g. inadequate rep-
resentation of the global thermohaline circulation). Note, also, in
Figure 6 the spectra of the pseudoprincipal components computed
from the last 350 years of the model runs carry the same message
found from the first 350 years of the runms. The larger low-
frequency behaviour of the MPI spectrum for the first 350 years
(MPI1) is due to the transient, nonlinear drift mentioned above.

(iv) Sensitivity tests
We tested the robustness of the results obtained in the ‘spatial
similarity’ study — (ii) above — in two ways, as follows.

(a) The palaco data from the Galapagos and SE China were
omitted and the EQOF analysis redone on both models and the
palaeo proxies. The conclusions regarding the dissimilarity
between spatial structures in the palaco data and the GFDL model
did not change. However, the MPI model now demonstrated good
EOF pattern correlations with the palaco EOFS amongst the first
three modes (r = 0.67 to 0.76). Inspection of the PCs showed that
this agreement was due entirely to the initial (nonlinear) drift of
the GCM. The apparent good agreement in model-palaeco spatial
patterns disappeared when the analysis was repeated on the last
350 years of the MPI control run, a period for which the drift was
represented by a simple linear trend.

(b) The analysis described in (iii) above was repeated using
palaeo data for the period 1600-1850 to eliminate possible con-
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tamination of the resuits by potential anthropogenic sources. The
conclusions were identical to those stated above: the spatial pat-
terns of variability in the palaeco data are substantially different
from those produced by the models.

Conclusions

Most of the measures used to compare the model and palaeo data
suggest the models are underestimating the levels of decadal-scale
natural variability in summer (annual) palaeo temperature proxies.
This result is largely driven by a few geographic locations where
the models have a particularly low level of decadal variability.
Their locations 'suggest model problems in representing ENSO
events, climate conditions around mountain ranges and around
large ice concentrations. The discrepancy between the models and
the palaeco data is smallest at timescales of two decades (the
reciprocal Nyquist frequency of this analysis), but increases sub-
stantially with decreasing frequency (increasing timescale). More
importantly for the detection problem is the fact that the spatial
patterns of natural variability found in regions from which the
palaeo data come do not resemble those produced by either model
in the same regions.

Perhaps it is not surprising that the models underestimate the
natural variability, for they do not include effects of volcanoes,
possible changes in the solar constant, etc. They also have in com-
mon a strong flux correction which may have a stabilizing effect
on the model performance (Pierce et al., 1996; Neelin and Dijk-
stra, 1996). But the palaeo data also substantially underestimate
the observed variability of the last 100 years. So the fact that the
level of variability is within a factor of two between the two types
of data is certainly no validation of the model’s estimates of natu-
ral variability; in fact, just the opposite seems true.

The key message of this paper is that, if the palaco data are
reasonably correct and representative of large regions of the
planet, then the current model estimates of natural variability can-
not be used in rigorous tests aimed at detecting anthropogenic
signals in the real world. The lack of similarity between the spatial
patterns of variability means that simple scaling of the model data
will not cure this problem. If the model estimates are used, they
are likely to inflate the statistical significance of typical detection
metrics by under-representing the air-temperature variance that
one should expect in nature. The models also apparently can tell
us little about the spatial patterns of climate variability that occur
naturally. This result is particularly worrying since the most mod-
ern sophisticated detection methods (Hasselmann, 1993; Santer et
al., 1996b) try to find predicted spatial patterns of change. All
these facts make it difficult to say if observed spatial changes in
climate are ‘normal’ or due to anthropogenic effects. One, or both,
of these model flaws might bias the results of an objective detec-
tion study and lead us to believe confidently that an anthropogenic
signal has been found when, in fact, that may not be the case.
Expanded, better analyzed palaeco data sets, while containing
numerous problems themselves, offer a potential way around
these problems.

In closing, it is important to list two major shortcomings of our
work. The long CGCM control runs were made with models that

were state-of-the-art about five years ago, e.g. the MPI run was

done with a first-generation version of the ECHAM model. They
are currently running the fourth generation of ECHAM and it is
much improved over the earlier version. Another weakness of our
study is the small amount of palaeo data available for analysis
and the degree to which it is representative of large-scale spatial
variability in the surface temperature field. But this situation is
changing rapidly with the advent of both national and inter-
national efforts to build collections of well-docimented palaco
data.

This study clearly needs to be repeated with the newest models
and a greatly expanded palaeo data set. Until that time, however,
our results should serve as a warning to those anxious rigorously
to pursue the detection of anthropogenic effects in observed cli-
mate data: the spectrum of natural variability against which detec-
tion claims, positive or negative, are made is not well known and
apparently not well represented in early CGCM control runs.

Acknowledgements

This work was supported by the US Department of Energy
(DOE), Atmospheric and Climatic Research Division, under grant
no. DE-FG02-86ER60397 (PDJ), grant no. DE-GF02-89ER69017
(RSB), the National Science Foundation grant no. ATM93-14485
(TPB), DOE Environmental Sciences Division grant no. W-7405-
ENG-48 (BDS), by the European Community under grant no.
EV5V-CT94-0500 (KRB) and NOAA’s Office of Global Pro-
grams’ Climate Change, Data and Detection program element

(TPB).

References

Barnett, T.P. and Jones, P.D. 1992: Intercomparison of two different
Southern Hemisphere sea level pressure data sets. Journal of Climate 5,
93-99, -
Boninsegna, J.A. 1992: South American dendroclimatological records. In
Bradley, R.S. and Jones, P.D., editors, Climate since ap 1500, London:
Routledge, 446-462.

Bradley, R. and Jones, P.D. 1993: ‘Little Ice Age’ summer temperature
variations: their nature and relevance to recent warming trends. The Holo-
cene 3, 367-76.

Briffa, K.R. and Jones, P.D. 1993: Global surface air temperature vari-
ations over the twentieth century: Part 2, Implications for large-scale high-
frequency palaeoclimatic studies. The Holocene 3, 82-93.

Briffa, K.R., Jones, P.D., Bartholin, T.S., Eckstein, D., Schweingruaber,
F.H., Karlen, W., Zetterberg, P. and Eronen, M. 1992a; Fennoscandian
summers from Ap 500: temperature changes on short and long time scales.
Climate Dynamics 7, 111-119.

Briffa, K.R., Jones, P.D. and Schweingruber, F.H. 1992b: Tree-ring
density reconstructions of summer temperature patterns across western
North America since 1600. Journal of Climate 5, 735-54.

Cook, E., Bird, T., Peterson, M., Barbetti, M., Buckley, B., D’Arrigo,
R, and Francey, R. 1992: Climate change over the last millenium in Tas-
mania reconstructed from tree rings. The Holocene 2, 205-17.

Cook, E., Bird, T., Peterson, M., Barbetti, M. Buckley, B., D’Arrigo,
R., Francey, R. and Tans, P. 1991: Climatic change in Tasmania inferred
from a 1089-year tree ring chronology of Huon Pine. Science 253,
1266-68.

Cubasch, U., Santer, B.D., Hellbach, A., Hegerl, G.C., Hock, H.,
Maier-Reimer, H., Mikolajewicz, U., Stossel, A. and Voss, R. 1994:
Monte Carlo climate forecasts with a global coupled ocean-atmosphere
model. Climate Dynamics 10, 1-19, ‘

D’Arrigo, R.D, and Jacoby, G.C. Jr. .1992: Dendroclimatic evidence
from northern North America. In Bradley, R.S. and Jones, P.D., editors,
Climate since Ap 1500, London: Routledge, 296-311.

Delworth, T., Manabe, S. and Stouffer, R.J. 1993: Interdecadal vari-
ations of the thermohaline circulation in a coupled ocean atmosphere
model. Journal of Climate 6, 1993-2011.

Dunbar, R.B., Wellington, G.M., Colgan, M. and Ward Glynn, P.W.
1994: Eastern Pacific sea surface temperatures since AD 1600. The §' O
record climate variability in the Galapagos corals. Palaecoceanography
9, 291-315. ’

Eischeid, Baker, Karl, T. and Diaz, H. 1996;: The quality control of
long term climatological data using objective analysis. Journal of Applied
Meteorology, in press.

Fritts, H.C. 1991: Reconstructing large-scale climatic patterns from tree-
ring data. Tucson: University of Arizona Press.

Graybill, D.A., and Shiyatov, S.G. 1992: Dendroclimatic evidence from



T.P. Barnett et al.: Low frequency natural variability in air temperature 263

the northern Soviet Union. In R.S. Bradley and P.D. Jones, editors, Cli-
mate since AD 1500, London: Routledge, 393-414.

Hasselmann, K. 1976: Stochastic climate models. Part I, Theory. Tellus
28, 473-485.

——1993: Optimal fingerprints for the detection of time-dependent cli-
mate change. Journal of Climate 6, 1957-71.

Hegerl, G.C., von Storch, H., Hasselmann, K., Santer, B.D., Cubasch,
U. and Jones, P.D, 1996; Detecting anthropogenic climate change with
an optimal fingerprint method. Journal of Climate, in press.

Jones, P. and Briffa, K. 1992: Global surface air temperature variations
over the twentieth century. Part I: Spatial, temporal and seasonal details,
The Holocene 2, 165-79.

——1996: What can instrumental records tell us about longer time scale
palaeoclimatic reconstructions. In Jones, P, Bradley, R. and Jonzel, I,
editors, Climatic variations and forcing mechanisms of the last 2000 years.
NATC meeting summary, Springer-Verlag, in press.

Kameda, T., Narita, H., Shoji, H., Nishio, F. and Watanabe, O. 1992:
450-year summer temperature record from melt feature profile in South
Greenland ice core. In: Mikami, T., editor, Proceedings of the Inter-
national Symposium on the Little Ice Age Climate, Tokyo: Dept. of
Geography, Tokyo Metropolitan University, 101-107. ‘
Koerner, R.M. 1977: Devon Island icecap: core stratigraphy and palaeo-
climate. Science 196, 15-18.

Koerner, RM. and Fisher, D.A. 1990: A record of Holocene summer
climate from a Canadian high-Arctic ice core. Nature 343, 630-31.
Kutzbach, J. and Bryson, R. 1974: Variance spectrum of Holocene cli-
matic fluctuations in the North Atlantic sector. Journal of the Atmospheric
Sciences 8, 1958-1963.

Latif, M. and Barnett, T.P. 1994: Causes of decadal climate vanablhty
over the North Pacific/North American sector. Science 266, 634-37.
—1996; Decadal climate variability over the North Pacific and North
America: Dynamics and predictability. Journal of Climate, in press.
Lough, J.M., Barnes, D.J. and Taylor, R.B. 1996: The potential of Great
Barrier Reef massive corals for the study of higher-resolution climate vari-
ations. In Variations and forcing mechanisms of the last 2000 years,
Springer-Verlag, in press.

Manabe, S. and Stouffer, R.J. 1996: Low frequency variability of surface
air temperature in a 1,000 year integration of a coupled ocean-atmosphere
model. Journal of Climate 9, 376-93.

Manley, G. 1959: Mean temperature of Central England 1698-1952.
Quarterly Journal of the Royal Meteorological Society 79, 242-61.
——1974: Central England temperature data 1941-1979. Quarterly Jour-
nal of the Royal Meteorological Society 100, 389-405.

Mann, M.E., Park, J. and Bradley, R. 1994: Global modes of decadal-
to-century-scale climate variability: application of evolutive SVD spectral
analysis to globally distributed high-resolution temperature proxy records.
Eos Supplement 75, 346.

Mehta, V.M. and Delworth, T.L. 1996: Decadal variability of the tropical
Atlantic Ocean in shipboard measurements and in a global ocean-atmos-
phere model. Journal of Climate, in press.

Neelin, J.D. and Dijkstra, H.A. 1996: Ocean-atmosphere interactions and
the tropical climatology. Part I: The dangers of flux-correction. Journal
of Climate, in press.

North, G.R., Bell, T.L., Cahalan, R.F. and Moeng, F.J. 1982; Sampling

Errors in the Estimation of Empirical Orthogonal Functions. Monthly
Weather Review 110, 699-706.

Norton, D.A. and Palmer, J.G. 1992; Dendroclimatic evidence of north-
ern and central European summer temperatures. In Bradley, R.S. and
Jones, P.D,, editors, Climate since Ap 1500, London: Routledge, 463-82.
Pierce, D., Barnett, T. and Mikolajewicz, U. 1996 On the competing
roles of heat and fresh water flux in forcing thermohaline oscillations.
Journal of Physical Oceanography, in press.

Pfister, C. 1985: Das Klima der Schweiz von 1525-1860. Bermn: Aca-
demica Helvetica.

Santer, B.D., Mikolajewicz, U., Bruggemann, W., Cubasch, U., Hassel-
mann, K., Hoeck, H., Maier-Reimer, E. and Wigley, T.M.L. 1996a;
Ocean variability and its influence on the detectability of greenhouse
warming signals. Journal of Geographical Research — Oceans, in press.
Santer, B.D., Taylor, K.E., Wigley, T.M.L., Penner, J.E., Jones, P.D.
and Cubasch, U. 1996b: Towards the detection and attribution of an

" anthropogenic effect on climate. Climate Dynamics, in press.

Santer, B.D., Wigley, T.M.L., Barnett, T.P. and Anyamba, E. 1996c:
In IPCC (Intergovernmental Panel on Climatic Change) Report, Detection
of Climate Change, and Attribution of Causes, in press.

Sausen, R., Barthel, K. and Hasselmann, K. 1988: Coupled ocean-
atmosphere models with flux corrections. Climate Dynamics 2, 145-63.
Schweingruber, F.H., Briffa, K.R. and Jones, P.D. 1991: Yearly maps
of summer temperatures in western Europe from ap 1750 to 1975 and
western North America from 1600 to 1982: Results of a radio-densito-
metrical study on tree rings. Vegetatio 92, 5-71.

Slutz, R., Lubker, S., Hiscoz, J., Woodruff, S., Jenne, R., Joseph, D.,
Steurer, P. and Elms, D.J. 1985: Comprehensive ocean-atmosphere data
set: Release 1. NOAA Environmental Research Laboratories, Climate
Research Program, Boulder, CO (NTIS PB86-105723) 268 pp.

Stouffer, R.J., Manabe, S. and Yinnikov, K.Y. 1994: Model assessment
of the role of natural variability in recent global warming. Narure 367,
634-36.

Tarussov, A. 1992: The Arctic from Svalbard to Severnaya Zemlya: Cli-
matic reconstructions from ice cores. In Bradley, R.S. and Jones, P.D.,
editors, Climate since AD 1500, London: Routledge, 505-16.

Villaba, R. 1990; Climatic fluctuations in northern Patagonia during the
last 1000 years as inferred from tree-ring records. Quarternary Research
34, 346-60.

von Storch, J-S. 1994: Interdecadal variability in a global coupled model.
Tellus 46A, 419-32.

Wang, R., Wang, S. and Fraedrich, K. 1991: An approach to reconstruc-
tion of temperature on a seasonal basis using historical documents from
China. International Journal of Climate 11, 381-92,

Wang, S. 1991a; Reconstruction of palaco-temperature series in China
from the 1380s to the 1980s. Wurzburger Geographische Arbeiten 80,
1-19.

= 1991b: Reconstruction of temperatures'series of North China from
1380s to 1980s. Science in China Series B 34, 751-59.

Wang, S. and Wang, R. 1990: Seasonal and annual temperature variations
since 1470 D in East China. Acta Meteorological Sinica 4, 428-39.
Wigley, T.M.L. and Barnett, T.P. 1990: Detection of the greenhouse
effect in the observations. In Intergovernmental Panel on Climate Change
(IPCC), Scientific Assessment of Climate Change, Report Prepared for
IPCC by Working Group I, WMO/UNEP, June.



