SYLLABUS
GEO-SCI 587
Spring 2008

Instructor: David Boutt
dboutt@geo.umass.edu
545-2724, 138B Morrill II
Office Hours: M 1:10-3:00
or by appointment

Class hours:
MWF: 10:10-11:00 161 Morrill IV
Lab hours:
Wednesdays 2:30-5:30 161 Morrill IV

Text: Fundamentals of Groundwater,
Schwartz and Zhang (2003)

Class Website: http://www.geo.umass.edu/courses/587/index.html

General:
This course serves as an introduction to hydrogeology with extensive homework sets, laboratory exercises, and a field trip or two. We will explore the origin and distribution of groundwater, including the physical mechanisms responsible for these distributions. This will be an intensely quantitative course that will draw on your mathematical skills. Knowledge of differential and integral calculus will better help you understand certain concepts, but is not crucial. The last portion of the course will explore aspects of numerical modeling of groundwater flow as well as basic components of contaminant transport. Upon completing this course you should be well equipped to analyze various hydrogeological datasets as well understand the foundations upon which the analyses have been built. We will have two exams that test topics covered in class that will encourage you to pull ideas and concepts from various parts of the course to solve challenging problems. In addition, we will have occasional paper discussions which I expect each student to lead the class through the important aspects and concepts. More information will follow on this. I expect you to attend each class and contribute in class discussions.

Labs:
We will have approximately 12-14 labs. Labs will meet on Wednesdays and we will take field trips, have labs at Amherst College, and in the computer labs as necessary. These locations will be announced in class with ample warning. Labs will emphasize concepts introduced in class and bring a physical hands-on experience to hydrogeology. The first 8 or so labs will held indoors while the remaining labs will be in the field. See the additional information sheets for lab details.

Course grading:
Midterm = 20 %, Final = 20 %, Homework = 30 %, Laboratory = 25 %, Paper Discussion = 5%

Late homework and lab reports will not be tolerated. My policy is to deduct 10 pts (on a 100 point scale) for every day a homework or laboratory report is late.

Approximate Date Topic S&Z chapter
(M) January 28th Hydrogeology and the Water Cycle 1
(W) January 20th Surface water hydrology 2
(F) February 1st Darcy's Law/ Hydraulic Head 3
(M) February 4th Darcy's Law/ Hydraulic Head 3
(W) February 6th Porosity/ Hydraulic Conductivity 3
(F) February 8th Hydraulic Conductivity 3
(M) February 11th Storage Coefficient 4.1-4.2

Last Day to Add/Drop with no record
(W) February 13th Storage Coefficient 4.1-4.2
(F) February 15th Groundwater in Sediments 4.3-4.5
Note: Monday February 18th is Presidents Day, Tuesday the 19th will follow Monday Schedule
(Tu) February 19th Groundwater in Sediments 4.3-4.5
(W) February 20th Groundwater in Crystalline and Fractured Rocks 4.3-4.5
(F) February 22nd Groundwater in Crystalline and Fractured Rocks 4.3-4.5
(M) February 25th Continuity Equation /Laplace’s Equation 5.1-5.5
(W) February 27th Laplace’ Equation / Flow Nets 5.4-5.5
(F) February 29th Flow Nets 5.4-5.5
(M) March 3rd Steady-State Well Hydraulics 9.1-9.2
(W) March 5th Steady-State Well Hydraulics 9.1-9.2
(F) March 7th Transient Well Hydraulics 9.3-9.8
(M) March 10th Transient Well Hydraulics 9.3-9.8
(W) March 12th Transient Well Hydraulics 9.3-9.8
(F) March 14th Midterm Exam
(M) March 17th NO CLASS - SPRING BREAK!!
(W) March 19th NO CLASS - SPRING BREAK!!
(F) March 21st NO CLASS - SPRING BREAK!!
(M) March 24th Superposition, Image Well Theory 13
(W) March 26th Drawdown Hydrographs 4.3-4.5
(F) March 28th Groundwater Exploitation 15.1-15.2
(M) March 31st Water-Level Fluctuations
(M) April 3rd Well Drilling
(F) April 4th Unsaturated Flow 6.1-6.5
(M) April 7th Unsaturated Flow / Infiltration 6.1-6.5
(W) April 9th Infiltration
(F) April 11th Regional Groundwater Flow 8.1-8.5
(M) April 14th Regional Groundwater Flow 8.1-8.5
(W) April 16th Aqueous Geochemistry 16.1-16.5, 17.1
(F) April 18th Aqueous Geochemistry 16.1-16.5, 17.1
Note: April 21st is Patriot’s Day and is a Holiday - No Class, Wednesday follows Monday schedule
(M) April 21st NO CLASS
(W) April 23rd Groundwater Contamination 19.1-19.6
(F) April 25th Groundwater Contamination 19.1-19.6
(M) April 28th Groundwater Contamination 19.1-19.6
(W) April 30th Salt Water Intrusion 8.7
(F) May 2nd Simulation Methods 15.3-15.6
(M) May 5th Simulation Methods 15.3-15.6
(W) May 7th Simulation Methods 15.3-15.6
(F) May 9th Isotopes in GW 20.1-20.6
(M) May 12th Isotopes in GW 20.1-20.6
(W) May 14th READING DAY
(Th) May 15th FINAL EXAMS BEGIN