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Abstract

Changes in ice volume and the resulting changes in sea level were determined for the late Oligocene (2623 Ma, Astronomical
Timescale, ATS) by applying 6'*0-to-sea-level calibrations to deep-sea d'°0 records from ODP Sites 689, 690, 929, 1090, and
1218. Our results show that maximum global ice volume occurred during two late Oligocene 6'%0 events, Oi2c (24.4 Ma) and Mil
(23.0 Ma) (inferred glacioeustatic lowering), with volumes up to ~25% greater than the present-day East Antarctic Ice Sheet
(EAIS). Ice volume during glacial minima was on the order of about 50% of the present-day EAIS. This is supported by late
Oligocene stratigraphic records from Antarctica that contain evidence of cold climates and repeated episodes of glaciation at sea
level and grounding lines of glacial ice on the Antarctic continental shelf in the Ross Sea and Prydz Bay. In contrast, composite
deep-sea 0'%0 records show a significant decrease (= 1%o) between 26.7 and 23.5 Ma, which have long been interpreted as
bottom-water warming combined with deglaciation of Antarctica. However, a close examination of individual 6'%0 records
indicates a clear divergence after 26.8 Ma between records from Southern Ocean locations (i.e., Ocean Drilling Program Sites 689,
690, 744) and those of other ocean basins. High 680 values (2.9%0-3.3%0) from these Southern Ocean d 80 records are consistent
with an ice sheet on the East Antarctic continent equivalent to present-day values and cold bottom-water temperatures (< 2.0 °C).
These differences suggest a reduction in deep-water produced near the Antarctic continent (i.e., proto-Antarctic Bottom Water,
proto-AABW), which were quickly entrained and mixed with warmer (and presumably more saline) bottom-water originating from
lower latitudes. Expansion of a warmer deep-water mass and the weakening of the proto-AABW may explain the large intra-
basinal isotopic gradients that developed among late Oligocene benthic 6'®0 records. These conclusions are also supported by
ocean modeling suggesting a reduction of deep-water formed in the Southern Ocean, strengthening of deep-water from the northern
hemisphere, and decreasing temperatures in high southern latitudes occurred as the Drake Passage opened to deep-water. Low 6'%0
values reported from deep-sea locations other than the Southern Ocean are shown to bias estimates of Antarctic ice volume, calling
for a re-evaluation of the notion that Antarctic ice volume was significantly reduced during the late Oligocene.
© 2005 Published by Elsevier B.V.
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posite deep-sea records (e.g., Miller et al., 1987; Zachos
et al., 2001), which was generally attributed to deep-sea
warming, combined with a significant decrease in Ant-
arctic ice volume (e.g., Zachos et al., 2001). This
interpretation is supported by the assumption that bot-
tom-water emanated mainly from a Southern Ocean
source (i.e., Southern Component Water, presumably
originating around the Antarctic margin) during the
Oligocene (e.g., Wright and Miller, 1993); thus, serving
as a proxy for palaeoenvironmental conditions on the
Antarctic continent. Isotopic records from recently
cored ODP sites (Sites 1090 and 1218) contain higher
values, but are still near the threshold for requiring the
presence of an ice sheet (2.45%o; Miller et al., 1987).

In contrast, results from recent stratigraphic drilling
of the Antarctic continental margin (e.g., CIROS-1,
Cape Roberts Project) indicate a gradual and steady
Antarctic cooling during the Oligocene, culminating
in near tundra-like conditions by early Miocene (e.g.,
Raine, 1998; Raine and Askin, 2001; Thorn, 2001; Roberts
et al., 2003; Prebble et al., this issue). Palacoenviron-
mental evidence from these terrestrial palynological and
phytolith data, as well as the sedimentary record from
glacigenic sediments recovered in upper Oligocene
strata from the western Ross Sea indicates that Antarc-
tica was sufficiently cold to support the existence of ice
sheets at sea level (e.g., Barrett, 1989; Cape Roberts
Science Team, 1998, 1999, 2000; Naish et al., 2001).
Identification of ice grounding lines near the shelf edge
near Prydz Bay as early as the early Oligocene (Cooper
et al,, 1991; Bartek et al.,, 1997) also suggests the
presence of large continental ice sheets on East Antarc-
tica at this time. Additionally, eustatic estimates from
sequence stratigraphic records (Kominz and Pekar,
2001) indicate repeated sea-level lowerings during the

25 Ma Reconstruction

late Oligocene (25.1-23.0 Ma) consistent with a heavi-
ly glaciated East Antarctic continent (EAC) (Pekar et al.,
2002).

This paper addresses the paradox of low §'%0 values
in deep-sea records coeval with proximal Antarctic
records suggesting decreasing and persistent cold tem-
peratures and large-scale ice sheets on East Antarctica.
Here we show that while ice volume may have fluctu-
ated on orbital timescales, Antarctica could have
remained mostly glaciated (equivalent to ~50% to
125% of present-day EAIS) throughout the late Oligo-
cene. We also suggest that the apparent late Oligocene
warming interpreted from deep-sea 3'%0 records could
have been caused by an expansion of warmer deep-
water into most of the world’s ocean basins, with colder
deep-water becoming entrained with and mixed into
this warmer deep-water mass.

2. Methods, definitions, and sites used in this study

Oxygen isotope records from DSDP and ODP Sites
522 (Miller et al., 1988), 529 (Miller et al., 1991), 558
(Miller and Fairbanks, 1983), 563 (Miller and Thomas,
1985), 689 (Kennett and Stott, 1990), 690 (Kennett and
Stott, 1990), 744 (Zachos et al., 2001), 747 (Wright et
al., 1992), 748 (Zachos et al., 1992), 754 (Zachos et al.,
2001), 803 (Barrera et al., 1993), 929 (Zachos et al.,
2001), 1090 (Billups et al., 2002), and 1218 (Lear et al.,
2004) were used in this study (Fig. 1). Chronologies for
these records were previously developed by integrating
biostratigraphy and magnetostratigraphy, which have
been converted to the new Astronomical Time Scale
(ATS) of Laskar et al. (2005). These original age mod-
els vary in their uncertainties, which can affect the
development of time slice isotopic transects. However,
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Fig. 1. Map showing plate tectonic reconstructions at circa 25 Ma (from Hay et al., 1999) with the palaeo-locations of DSDP and ODP sites used in

this study.
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each time slice includes a 400 ky interval across each
0'%0 event, which should be a sufficient length of time
to capture isotopic values representative of the event.

For Sites 689 and 690, which contain two important
isotopic records for the interpretations in this study,
Florindo and Roberts (2005) provided new chronostra-
tigraphic interpretations using u-channel samples for
the upper Oligocene. Although their new age models
do not significantly alter late Oligocene ages for Site
689, ages near the top of the Oligocene section in Site
690 are approximately 0.3 m.y. younger than previous
age models (e.g., Zachos et al., 2001). In Florindo and
Roberts (2005), the top of Chron 8n (25.1 Ma, ATS)
has been assigned to a change from normal to reversed
polarity at 55.0 mbsf. Therefore, an interval of normal
polarity occurring between 54.8 and 53.2 mbsf (Speiss,
1990) is assigned to Chron 7a (25.0-24.8 Ma) and a
short interval of normal polarity that begins immedi-
ately below an unconformity at ~50 mbsf is assigned to
Chron 7n (24.5-24.1 Ma). The last isotope measure-
ment at Site 690 is obtained from a sample taken at
50.75 mbsf, which occurs within the lower portion of
Chron 7n and is therefore assigned an age of ~24.5 Ma.

Deep-sea isotopic values are typically obtained for
a single species, such as Cibicidoides spp. However,
Cibicidoides spp as do most other benthic foraminifers
precipitate their tests out of equilibrium with calcite
(6'%0 values in the tests of Cibicidoides spp. are
offset with respect to calcite by + 0.64%0). All 6'*0
records have been adjusted to represent the isotopic
value of calcite for samples reported either by previ-
ous authors (i.e., Zachos et al., 2001) or in this study
(i.e., Site 1090).

The term apparent sea level (ASL) is used here and
is defined as eustasy plus the water-loading effects on
the crust (eustasy*~1.48; Pekar et al., 2002). The
maximum size of a fully glaciated East Antarctic con-
tinent during the Oligocene is estimated to be equiva-
lent to < 80 m ASL. This is based on 4'*0 to ASL
calibrations (Pekar et al., 2002), coupled 0'%0 and Mg/
Ca ratio records by Lear et al. (2000), and two-dimen-
sional flexural backstripping and stratigraphic studies
(Kominz and Pekar, 2001). This ice volume estimate is
somewhat greater than recent GCM-ice sheet simula-
tions of the Oil event (DeConto and Pollard, 2003a),
which ignored significant ice on West Antarctica and
the seaward expansion of grounding lines beyond the
model shorelines, and is closer to simulations of max-
imum Antarctic ice volume during Quaternary glacial
periods (Ritz et al., 2001), when the total area of
grounded ice on East and West Antarctica was 15%—
25% greater than today (Denton and Hughes, 2002;

Huybrechts, 2002). Calibrations of 6'*0 to ASL ampli-
tudes use detrended ASL estimates from Pekar et al.
(2002) and benthic foraminiferal ¢'%0 amplitudes at
Oi- and Mi-events (Miller et al., 1991; Pekar and
Miller, 1996) from ODP Sites 689, 690, 744, 929,
and 1218 (Fig. 2; Pekar et al., 2002). Detrended ASL
estimates were derived by integrating two-dimensional
flexural backstripping (Kominz and Pekar, 2001) with
two-dimensional palaecoslope modeling of foraminiferal
biofacies and lithofacies (Pekar and Kominz, 2001).
Lowest calibrations are from the Weddell Sea ODP
Sites 690 and 689 (0.12%0/10 m ASL, r*=0.92 and
0.13%0/10 m ASL, *=0.72, respectively), with higher
values for Sites 1218 (0.16%0¢/10 m ASL, »>=.67) and
744 (0.26%0/10 m ASL, *=0.82) (Fig. 2). The calibra-
tions for Sites 929 and 1090 use a single 5'%0 event
(Mil, 23.0 Ma). This results in a calibration ranging
from ~0.2%o to 0.5%o0 (0.35%07+ 0.15%0 mean calibra-
tion) and 0.18%o to 0.46%o (0.32%0 £ 0.14%0 mean cal-
ibration) per 10 m ASL for Sites 929 and 1090,
respectively, based on an ASL estimate of 56 +25 m.
Differences among these calibrations are attributable to
greater variability in deep-sea temperatures between
glacial maxima and minima at the million-year time-
scale. The temperature signal within the observed iso-
topic shifts ranges from 25% at Site 690 to ~75% at Site
929, which is estimated by subtracting the ice volume
contribution (estimated to be 0.091%0/10 m ASL,
DeConto and Pollard, 2003a) from 580 to sea-level
calibrations.

For estimating Oligocene ice volume, 6'*O values of
3.0%o or greater in deep-sea records are consistent with
a fully glaciated EAIS and cold bottom-water tempera-
tures (~2.0 °C). This is based on the following. The
modern Cibicidoides spp. value in ~2.0 °C water is
2.7%o (Shackleton and Kennett, 1975) or 3.34%o adjust-
ed for equilibrium. Of that value, the isotopic contribu-
tion from the present-day ice sheets is estimated to
range from ~0.9%o to 1.2%o (e.g., Miller et al., 1991;
Zachos et al., 2001). In this study, the isotopic contri-
bution of the present-day ice sheets is estimated to be
~1.0%0, based on present-day ice volume estimates
from Williams and Ferrigno (1999) (Table 1), using
both grounded ice and ice below sea level. Of that
1.0%o0 value, 0.13%o is attributed to ice from Greenland
and West Antarctica (Table 1). This value includes
average isotopic values of the present-day West Ant-
arctic and Greenland ice sheets of approximately —
30%0 and — 39%o, respectively (obtained by taking
the average values of 6'®0 records from ice cores for
each area). During the late Oligocene, Greenland and
West Antarctica may not have been glaciated, reducing
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Fig. 2. Oxygen isotope amplitudes from Oi-events identified in ODP Sites 690, 689, 744, 929, 1090, and 1218 (Thomas et al., 1995; Zachos et al.,
2001; Lear et al., 2004) are compared to detrended ASL amplitudes (Pekar et al., 2002). Oxygen isotope amplitudes are the difference between the
maximum value of '%0 event and preceding minimum (or average minimum) 6'%0 value. ASL amplitudes (Pekar et al., 2002) are the difference
between sea-level minimum and the preceding sea-level maximum. Oxygen isotope events and their ages are shown (Miller et al., 1991; Pekar and
Miller, 1996). These correlations suggest that although benthic foraminiferal records are assumed to contain a significant bottom-water temperature
signal, lowering of temperature results in a nearly linear increase in ice volume estimates. The 6'%0 amplitude from Sites 929 and 1090 is calibrated
to ASL with a single '%0 event, which results in a larger uncertainty. It is also uncertain whether these calibrations would remain constant between

high frequency (e.g., obliquity timescales) and million-year timescale (e.g., Oi- and Mi-events of Miller et al., 1991).

this average deep-sea 'O value by 0.13%o. Further-
more, a wet-based, polythermal East Antarctic ice
sheet, such as thought to have existed during the Oli-
gocene, likely had significantly higher 4'%0 values in
the ice sheet (e.g., ~— 35%o) than values today (i.e., —
45%0 to — 55%0). We estimate that this would have
further reduced the isotopic value contribution of ice

Table 1

during the Oligocene by 0.25%0 (Table 1). This in turn
would have resulted in an isotopic value of calcite of
~3.0%o for the Oligocene, which is consistent with 2 °C
bottom-water concomitant with a fully glaciated East
Antarctic continent. Uncertainty in this value includes
the possible effects of salinity. The range in salinity in
the deep-sea today (e.g., North Atlantic Deep Water

Ice volume and resulting isotopic change to mean global ocean if the ice sheet melted

Ice sheet Volume (km?) Water volume km® Isotopic change (%o)
Present-day Isotopic value if Isotopic value if
isotopic values all ice is — 35%o all ice is — 50%o
Greenland 2,600,000 2,340,000 — 0.07 — 0.06 — 0.09
East Antarcite Ice sheet 26,039,200 23,435,280 —0.85 — 0.60 —0.85
West Antarcitc ice sheet 3,262,000 2,935,800 — 0.06 —0.07 —0.11
Other Antarctic ice 808,600 727,740 —0.02 —0.02 —0.03
Other ice 180,000 162,000 0.00 0.00 — 0.01
Total 32,889,800 29,600,820 — 1.00 —0.75 — 1.08
5'80 value of calcite with present-day ice volume and a bottom-water temperature of 2.0 °C. 3.34
Isotopic increase to oceans from Greenland and WIAS only —0.13
3'80 value of deep-sea calcite with EAIS present and a bottom-water temperature of 2.0 °C. 3.21
Difference between present-day and Oligocene ice sheet isotopic contribution to ocean —0.25
3'80 value of calcite an Oligocene EAIS and a bottom-water temperature of 2.0 °C. 2.96

Note: that the following data are used here: the surface area of the ocean=~362,000,000 km?, the average ocean depth=~3.8 km, and ocean

volume=~1,375,600,000 km?> .
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[34.95%0] and Antarctic Bottom Water [34.65%¢]) is
about 0.3%o, resulting in uncertainty in 6'*O of approx-
imately = 0.1%0. A warmer water mass with higher
salinity would have a higher 6'®0, resulting in an
over-estimate in ice volume. In contrast, a colder
deep-water mass with lower salinity, such as a proto-
AABW, would have had a lower 6'%0, resulting in an
under-estimate of the ice volume. Recent studies have
suggested that West Antarctica and perhaps even north-
ern hemisphere continents may have been glaciated
during the Oligocene (e.g., Coxall et al., 2005). How-
ever, if a West Antarctic Ice Sheet (WAIS) existed
during the Oligocene, its isotopic contribution would
be minor (0.06%o), and the presence of northern hemi-
sphere ice sheets during the Palacogene has little evi-
dence from the northern hemisphere fauna, flora, or
lithological studies to support it (e.g., Wolfe, 1978;
Wolfe and Poore, 1982; Axelrod and Raven, 1985;
Tiffney, 1985). Even so, a fully developed Greenland
ice sheet would increase the isotopic value of the global
oceans by 0.07%o0 and combined with a WAIS could be
invoked to explain a small fraction of the larger ice
volume estimates recently proposed for the Oligocene
(equivalent to 80 m ASL, Kominz and Pekar, 2001; 90
m ASL Lear et al., 2004; 100 to 160 m ASL, Coxall et
al., 2005).

Apparent sea-level estimates were calculated using
the 6'°0 to ASL calibrations for Sites 689, 690, 744,
929, and 1218 (Pekar et al., 2002; this study; Fig. 2).
Isotopic values of > 3%, which occur at each late
Oligocene isotopic event, are used to indicate an ice
sheet equivalent in size to the present-day EAIS. The
calibrations are further refined at each isotopic event by
comparing isotopic offsets among the ¢'*O records,
which is ascribed to temperature variability between
ocean basins. For example, at Mil, Sites 929 and
1218 are ~0.4%o lighter than Sites 1090, which is
assumed to be due to cooler bottom-water bathing
Site 1090.

Although previous calibrations indicate that temper-
ature scales linearly with respect to ice volume, uncer-
tainties in temperature variability still may exist. For
example, bottom-water temperature changes could
occur outside the variability suggested by the calibra-
tions for a given site owing to long or short-term
changes in deep-sea circulation patterns. Additionally,
apparent sea-level/ice volume estimates from high §'%0
values (= 3%o) are considered more robust, because
these values are consistent with a fully glaciated East
Antarctic continent and cold bottom-water tempera-
tures, while lower 6'%0 values could have a wider
range of possible ice volume and bottom-water tem-

peratures. For example, the highest values at Site 1090
are consistent with an ice sheet up to 25% larger than
the present-day EAIS and bottom-water temperatures
near or slightly colder than water temperatures currently
bathing Site 1090 (Billups et al., 2002). In fact, to
invoke a smaller ice volume would require the unlikely
scenario of colder bottom-water occurring during the
late Oligocene, a time with a warmer climate and a
polythermal ice sheet, in contrast to the extreme cold
polar conditions that exist in Antarctica today.

3. Deep-sea §'%0 records from the late Oligocene

Deep-sea 6'*0 records in most oceanic basins show
a significant (> 1.0%0) decrease after the 'O event
(Oi2b) at 26.8 Ma, reaching their lowest values of the
Oligocene by ~24.5 Ma (Fig. 3). For example, low-
resolution 6'®0 records from Atlantic Sites 522, 529,
558, 563 (Miller et al., 1987, 1991) all indicate a
decrease between 26.6 and 23.5 Ma, culminating with
low 6'%0 values between ~2.0%0 and 1.2%o0 (Fig. 3).
Low values in the high-resolution tropical Atlantic
Ocean ODP Site 929 record extend from 25.2 Ma to
immediately before the Mil event. A similar trend
occurs in’ 0'®0 record from tropical Pacific Ocean
ODP Site 1218, with high 6'%0 values (i.e., glacial
maxima) decreasing by ~1%o0 (Lear et al., 2004).
These values are heavier than Site 929 on average by
0.5%0 to 0.8%o, during 6'®0 maxima and minima,
respectively. Other Pacific Ocean ODP Sites 77 and
803 show a decrease in 6'%0 values of ~1%o during the
late Oligocene. These low 6'®0 values have been used
to suggest a warming event occurred during the late
Oligocene coupled with a collapse of the Antarctic ice
sheet (e.g., Zachos et al., 2001). These isotopic values
are similar to middle Eocene values, a time usually
considered to be mainly ice free (Zachos et al., 2001).
Slightly higher values 6'*0 (1.8%0 to 2.6%0) are
recorded in South Atlantic Site 1090 (Billups et al.,
2002) between 23.8 and 23.0 Ma, with the highest
values just above the threshold requiring the presence
of ice sheets (2.45%o; Miller et al., 1991).

Unlike the low 6'®0 values observed in records in
the Atlantic and Pacific Ocean basins, 430 values from
Southern Ocean ODP Sites 689, 690, and 744 remain
high (~3%o). In the case of Site 690, they increase to
3.1%0-3.3%0 in the upper portion of the record (25.2—
24.5 Ma), with 6'®0 records from Sites 744 and 689
also containing relatively high values (2.9%0—3.0%0) at
the top of their records (24.9 and 25.4 Ma, respective-
ly). In contrast, between ~26.0 and 24.5 Ma, an isotopic
gradient of ~0.6%o to 1.6%0 developed between Site 690
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Fig. 3. (A) Oligocene benthic foraminiferal 580 records are from Barrera et al. (1993) and modified from Zachos et al. (2001). Blue circles are
from Southern Ocean sites, green circles are from mid-latitude sites, and pink and red circles are from low latitude sites. The abrupt 3'*0 decrease at
circa 25.5 Ma is due to a change in the source of data from high latitude to low latitude sites, with Southern Ocean sites below and mainly western
equatorial Atlantic Site 929 above (Pekar et al., 2002). (B) Oxygen isotope records for the late Oligocene showing the divergence in the records
(from Barrera et al., 1993; modified from Zachos et al., 2001; Billups et al., 2002; Lear et al., 2004). Isotopic values of > 3%o are consistent with
carbonate that formed in water of 2.0 °C concomitant with a fully glaciated Antarctic continent during the late Oligocene. Oxygen isotope values
from Cibicidoides spp. are depleted relative to isotope equilibrium and were adjusted accordingly by 0.64%o (Graham et al., 1981). On the left are
3'80 events from Miller et al. (1991) and Pekar and Miller (1996). (C) Apparent sea-level (ASL) estimates are derived from application of 6'%0 to
ASL calibrations to 6'%0 records from Sites 689, 690, 744, 929, 1090, and 1218. The upper x-axis is the percent of the present-day EAIS
(equivalent to ~60 m ASL). The lower x-axis is apparent sea-level change, with zero representing sea level resulting from ice volume equivalent to
the present-day EAIS, with increasing values representing sea-level rise and negative numbers representing ice volume greater than the present-day
EAIS volume.

(2.9%0-3.3%0) and North Atlantic Sites 529, 558, and Lear et al., 2004). Additionally, a significant gradient

563 (2.3%0 and 1.7%o), with the highest gradient (1.0%o
to 2.0%o) occurring between Site 690 and Site 929
between 25.0 and 24.5 Ma. Therefore, most of the
abrupt late Oligocene 6'%0 shift at ~25 Ma in the
composite record of Zachos et al. (2001) is due to a
change in the location of the data source, with values
younger than 25 Ma being mainly from Atlantic Ocean
Site 929 and values older than 25 Ma being from mid-
latitude and Southern Ocean sites (Pekar et al., 2002;

also develops between Sites 690 and the only high-
resolution record that extends throughout the late Oli-
gocene, tropical Pacific Ocean Site 1218, ranging from
~0.5%0 to 1.2%o near the top of the record at Site 690.
Furthermore, no significant changes in isotopic values
occur in the Site 1218 record above the top of the Site
690 record (24.5 Ma), supporting the idea that a large
gradient (> 1%o0) developed between the Weddell Sea
(i.e., Site 690) and sites located in the Atlantic Basin. In

336
337
338
339
340
341
342
343
344
345



346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

366
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

S.E Pekar et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xx (2005) xxx—xxx 7

summary, while aliasing is always a factor when com-
paring low-resolution records, it is clear that a signifi-
cant 6'®0 gradient developed during the late Oligocene
between the Weddell Sea Sites and from the Atlantic
(from 1.0%o0 up to 2.0%o, equivalent to 4-8 °C) and to a
lesser extent from the Pacific Ocean (~0.6%o to ~1.0%o,
equivalent to ~2—4 °C). This gradient is at least partly
responsible for the significant decrease seen in other
composite records (Miller et al., 1987; Abreu and
Anderson, 1998), owing to that these composite records
were biased to isotopic records from Atlantic Ocean
Sites. These large 5'%0 gradients allowed an evaluation
of changing deep-sea water masses through the late
Oligocene. In contrast, identifying deep-water masses
using 6'°C records during the late Oligocene and early
Miocene is difficult because basin-to-basin gradients
were small (e.g., Woodruff and Savin, 1989; Wright
et al., 1992; Wright and Miller, 1993). These small
gradients have been ascribed to low mean ocean nutri-
ent levels (Billups et al., 2002).

4. Deep-sea water mass distribution changes during
the late Oligocene

Construction of three 6'*0 transects for Oi-events
0i2b (27.0-26.6 Ma), Oi2c (25.2-24.8 Ma), and Mil
(23.2-22.8 Ma) indicates that a significant water mass
redistribution occurred during the late Oligocene (Fig.
4). A 400 ky time slice is used here to ensure that the
maximum isotopic value of the §'*0 event is captured.
The maximum 6'®0 value from each site is used for the
time slices as it should be the most representative of the
5'80 event. Although, low-resolution records often
may not capture the highest value at an isotopic
event, these isotopic transects do provide an indication
of the broad changes that occurred at each event. Each
of the time slices contains isotopic values of = 3.0%o,
which are consistent with carbonate forming in cold
bottom-water (< 2.0 °C) concomitant with a fully gla-
ciated EAC. At 26.8 Ma, the highest 0'%0 values are
found at the Weddell Sea Sites (> 3%o), with slightly
lower values in the Pacific and Indian basins (2.6%0—
2.9%o0) and Atlantic basin (2.3%0—3.0%0). Using 6'%0 to
ASL calibrations, a bottom-water temperature of 1.0—
2.0 °C is estimated for the Weddell Sea (based on ¢'%0
values 3.0%0-3.6%0), with 2—4 °C in the Pacific and
Indian Oceans and 2-5 °C at the Atlantic Sites. In
contrast, during the Oi2c event, 580 values in the
Southern Ocean (i.e., Sites 689, 690, and 744) remain
high (2.9%0-3.3%0), while values in the Atlantic basin
decreased by 0.5%o to 1.0%o (Fig. 4). This results in an
isotopic gradient between the Southern and Atlantic

Oceans of 1.0%o to 1.2%o (equivalent to ~4 to 5 °C, if
the entire increase was due to temperature). This sug-
gests that a second deep-water mass developed during
the late Oligocene and replaced the colder deep-water
in much of the ocean basins as suggested by the heavy
isotopic values observed at Oi-event Oi2b. However,
warmer water without increased salinity would have
insufficient density to become a deep-water mass and
compete with a colder dense water mass originating
from Antarctica. If a bottom-water mass near Antarctic
during the Oligocene were ~2 °C, with similar salinities
as the present-day Antarctic Bottom Water (34.65%o;
Wright and Colling, 1995), a bottom-water with a
temperature of ~7 °C would require a salinity ~0.6%o
higher to have a similar density as the deep-water near
Antarctica (based on Wright and Colling, 1995). This
would result in an isotopic increase of ~0.2%o (using
1.0%0 salinity=0.3%0 6'*0), which would offset the
temperature increase by 0.8 °C. Therefore, a large
portion of deep-water temperatures in the Atlantic
basin could have been ~7 °C or greater, based on a
bottom-water temperature of 2.0 °C (based on values of
2.9%0 and 3.2%0) in the deep-water at Sites 690 and
744. These bottom-water temperatures are warmer than
at any other time during the Oligocene and are similar
to temperatures estimated during the middle Eocene
(e.g., Miller et al., 1987; Zachos et al., 2001). It should
also be noted that 9'%0 values from Site 744 decrease
slightly (2.7%0—2.3%0) and diverge by ~0.5%o (equiva-
lent to ~2 °C) from records from the Weddell Sea
between 25.6 and 25.1 Ma before returning to similarly
high values (~3%o) at 25.0 Ma. This suggests that
slightly warmer deep-water may also have briefly
bathed this region of the Southern Ocean during this
time. During the Mil event, increasing 'O values
indicate colder water once again filled most of the
Atlantic basin, with the highest values (3.0%0—3.3%o0)
(and presumably coldest water) being found in the
deepest part of the basin at Southern Atlantic Site
1090 and Southern Indian Ocean Site 704 (Fig. 4).
Hiatuses at Sites 689, 690, and 744 prevented us
from evaluating the spatial extent of colder Southern
Component Water during this time interval. In contrast
to the Oi2c event, warmer water at the Oligocene/
Miocene boundary became restricted to intermediate
water depths in the Indian and Atlantic Oceans.

5. Estimates of ice volume changes during the late
Oligocene

Late Oligocene (26-23 Ma) ice volume estimates
are equivalent to ~50% to 125% of present-day EAIS,
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Fig. 4. Oxygen isotope transects for the Atlantic Ocean, Indian Ocean, and Pacific Oceans are constructed at three oxygen isotope events: (A) Oi2b
(26.8 Ma), (B) Oi2c (25.1 Ma), and (C) Mil (23.0 Ma). DSDP and ODP sites used for each transect are labeled in the upper portion of each transect.
Paleodepths for each site are indicated next to circles. Oxygen isotopic values shown next to the circles represent the maximum values within the
400-ky time slice. In each of the isotopic transects, cold deep-water (= 3.0%o) is generally restricted to the Southern Ocean. In contrast, warmer
water (< 2.0%o) becomes an important water mass in the Atlantic and Indian Oceans during Oi-event Oi2c (circa 25.1 Ma). Note that the top of the
record from Site 689 ends ~200 ky below the time slice for Oi2c event.

during glacial minima and maxima, respectively. High
5"%0 values (2.9%0-3.3%0) consistent with a heavily
glaciated EAC occurred at the top of the records at all
three Southern Ocean sites (ODP Sites 689, 690, and
744) between 25.4 and 24.5 Ma (Fig. 3B). Between
25.0 and 24.5 Ma, an offset of ~1.2%0 exists between
average 0'°0 values from Site 690 and maximum
values from Site 929. The new chronology by Flor-
indo and Roberts (2004) provides a much higher
confidence that the average values at Site 690 between
25.0 and 24.5 Ma correlate to the maximum values at
Site 929, therefore permitting ice volume during the

latest Oligocene to be constrained using the calibrated
record from Site 929. A 1.0%0 decrease occurs be-
tween the high (glacial periods) and lowest 8'%0
values (interglacial periods) from Site 929 from 25.0
to 24.0 Ma, which is equivalent to an ice volume
decrease of 50% of the present-day EAIS. During
the Mil event, the record from Site 1090 contains
values (3.3%o; Billups et al., 2002) consistent with a
return to a fully glaciated EAC, being perhaps 15%
larger than the present-day EAIS. Therefore, increas-
ing 6'®0 values at Sites 929 and 1218 between 23.5
and 23.0 Ma are attributed to mainly bottom-water
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cooling concomitant with an increase in ice volume
equivalent to ~40 m ASL fall.

The resolution of the 3'®0 record from Site 929
(Zachos et al., 2001) is sufficiently high to resolve
cycles that have been attributed to the 41 ky obliquity
cycle. This permitted evaluation of Antarctic ice vol-
ume variability at the 10* yr timescale. Variability in the
0'80 record attributed to obliquity-forcing suggests
changes in ice volume from 80% of the modern EAIS
during glacial periods to 50% during interglacial peri-
ods. This range in variability is equivalent to ~20 m
change in ASL and is generally consistent with orbitally
forced ice sheet simulations under higher than present
atmospheric CO, (DeConto and Pollard, 2003b).

6. Resolving the conundrum of warm deep-water
concomitant with a glaciated Antarctica

The conundrum of low 6'®0 values and a large ice
sheet on Antarctica can be resolved by inferring the
existence of at least two deep-water masses during the
late Oligocene, one originating from near Antarctica
and typically described as proto-Antarctic Bottom
Water (proto-AABW) and a second warmer (and pre-
sumably more saline) water mass that strengthened after
27 Ma. It appears from 6'®0 records from the Weddell
Sea and other ocean basins that most of the time the
colder proto-AABW was not the dominant deep-water
mass outside the Weddell Sea. This suggests that this
deep-water became entrained into and mixed with the
warmer deep-water mass as it moved away from the
Weddell Sea. The only exceptions occurred during Oi-
events, Oi2b and Mil, when colder deep-water filled
the deep ocean basins (Fig. 4). During these glacial
events, the expansion of the Antarctic ice sheet near the
coastlines would have contributed to colder surface
water temperatures and expanded sea ice cover, which
likely impacted deep-water formation around Antarc-
tica. This could have resulted in the strengthening of a
proto-AABW during periods when the ice was at its
maximum. In contrast, during glacial minima, retreat of
the ice sheet into the continental interior would have
resulted in a reduction of sea ice and warmer water
temperatures along the coastline, leading to a reduction
in proto-AABW production. Furthermore, additional
runoff from a retreating ice sheet during interglacials
would result in a freshening of the coastal water around
Antarctic, further weakening proto-AABW production.
This suggests that the large temperature gradient among
deep-sea sites during the late Oligocene was the result
of decreased production of proto-AABW and perhaps
an increase in the production of warmer deep-water,

and not a cooling of proto-AABW as a result of the
opening of the Drake Passage and subsequent isolation
of the Southern Ocean as previously suggested (Billups
et al., 2002).

A number of numerical modeling simulation studies
that tested the effects of open versus closed Southern
Ocean gateways on ocean circulation and climate have
yielded results that support the idea that as the Drake
Passage opened, Southern Ocean deep-water formation
(i.e., proto-AABW) decreased, high southern latitude
temperatures decreased, and a warmer deep-water mass
developed in the northern hemisphere (i.e., proto-North
Atlantic Deep Water, proto-NADW) (Mikolajewicz et
al., 1993; Toggweiler and Samuels, 1995; Nong et al.,
2000; Toggweiler and Bjornsson, 2000; Huber et al.,
2004; Sijp and England, 2004). The Drake Passage was
likely the final barrier to circum-Antarctic circulation,
opening in the early Oligocene (Lawver and Gahagan,
1998), and began providing a deep-water passage
somewhat later in the Oligocene (Livermore et al.,
2004). Sijp and England (2004), using an ocean general
circulation model coupled to a simple climate model,
showed that while high Southern Latitude SSTs cooled
by several degrees when the Drake Passage opened,
Southern Hemisphere deep-water formation (i.e., proto-
AABW) slowed by ~75%, with little or no NADW until
the passage opened, with significant NADW production
beginning only after a deep circum-Antarctic passage
was established. The simulations indicate that the turn-
ing on of NADW warmed the intermediate and deep
ocean north of 30° South by ~2 °C. In the model, North
Atlantic sea surface salinity also increased by ~1 psu,
mostly in response to ocean circulation, rather than
fresh water forcing at the surface. These results support
the conclusions in this paper of reduced proto-AABW
formation, strengthening of a warmer deep-water mass,
and a cold and heavily glaciated East Antarctic conti-
nent occurring during the late Oligocene.

The Tethys has been suggested as a possible source
of warmer water during the early Miocene (e.g., Brass
et al., 1982; Woodruff and Savin, 1989). Isotopic evi-
dence suggests that during the early Miocene, warmer
deep to intermediate water formed in the Tethys and
then entered the Indian Ocean (Woodruff and Savin,
1989; Wright and Miller, 1993). Warmer deep-water
inferred by the low 6'®0 values from Atlantic Ocean
sites during the late Oligocene may represent the initi-
ation of a warmer (and presumably more saline) deep-
water mass, which may be analogous to the warmer
water postulated to have originated from the Tethys in
the early Miocene by Woodruff and Savin (1989).
However, during the Oligocene, warm water appears
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572 to have originated in the Atlantic and not the Indian
573 Ocean, as in the early Miocene.

574  Furthermore, high 6'*0 values from Weddell Sea
575 sites (3.0%0—3.3%0) occurred at times when most ocean
576 basins contained 6'*0 values that were similar to the
577 low early Miocene 'O values. This suggests that the
578 late Oligocene model of a spatially restricted proto-
579 AABW, an expanded warmer deep-water mass, and a
580 heavily glaciated East Antarctica may have also been
581 true for the early Miocene (Pekar and DeConto, this
582 issue). This may explain the evidence for cold, tundra-
583 like conditions on the Ross Sea margin and continental
584 glaciation, as inferred from proximal Antarctic records
585 during this time interval (Raine, 1998; CRST, 1998;
586 Roberts et al., 2003) as well as ice grounding lines
587 across the Antarctic shelf in areas such as the Ross
588 Sea and Prydz Bay (Cooper et al., 1991; Bartek et al.,
589 1997). This contrasts with previous interpretations of
590 Antarctic warming during the early Miocene based on
591 6'®0 records and is also consistent with recent numer-
592 ical modeling studies (DeConto and Pollard, 2003a,b),
593 which showed how significant Antarctic ice can exist
594 during times with warmer-than-present-day global
595 mean temperatures, and poleward ocean heat transport.
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