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Snow occurrence changes over the 
central and eastern United States 
under future warming scenarios
Liang Ning1,2,3 & Raymond S. Bradley2

Changes of snow occurrence across the central and eastern United States under future warming 
for the late 21st century are investigated by applying an empirical hyperbolic tangent function 
to both observed and downscaled high spatial resolution (~12.5 km) daily temperature and 
precipitation, to compare the historical (1981–2000) and future (2081–2100) snow occurrence. The 
observed distributions of snow frequency show that snow-rain transition zones are mainly zonally 
distributed, since they are largely determined by temperature, with slight shifts to the south over 
the Appalachian Mountains. The snow-rain transition zone is located around 38–46°N for November 
and March, and 32–42°N for winter months (DJF). These observed patterns are reproduced well for 
the historical period by an ensemble average of multiple general circulation models (GCMs). The 
probabilistic projections show that the snow-rain transition zone will shift to the north under the 
background of global warming at magnitudes of 2–6 °C, indicating that large areas will experience a 
partial, or even a very large, loss of snow occurrence in the future. The northward shifts are about 2° 
latitude under the representative concentration pathways 4.5 (RCP4.5) scenario and 4° latitude under 
the RCP8.5 scenario. The percentages of the area losing snow occurrence are also assessed.

Increases of global mean surface temperature1 have resulted in significant reductions in Northern 
Hemisphere spring snow cover2–4, snowfall amount and high-snow extremes over the U.S.5,6. in recent 
decades. Declines in snowfall amount and earlier seasonal melting of snowpack have important con-
sequences for the hydrological cycle and ecosystems, particularly in the regions where water supply is 
currently dominated by melting snow or ice7–9. The frequency of snowfall occurrence, which is mainly 
determined by surface air temperature10, will also probably decrease11 given the continued warming pro-
jected by the simulations of General Circulation Models (GCMs) for future emissions scenarios12. Here 
we provide an assessment of future changes of the area where precipitation will mainly occur as rain or 
snow, over the central and eastern U.S. under scenarios of future warming for the late 21st century. These 
changes will present unique challenges for adapting to and mitigating the effects of climate change on 
regional water resources, agriculture, transportation, ecosystems, and the economy.

Results
Long-term historical verification. In a previous study, it was demonstrated that an empirical 
hyperbolic tangent function can be used to describe the relationship between the snow frequency and 
temperature10 (see Methods section). To verify this method for the central and eastern U.S., we com-
pared observed winter (Nov–Mar) snow occurrences with calculated snow occurrences using observed 
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temperature, for ten representative stations (selected for the historical period, 1900–2014, from the United 
States Historical Climatology Network (USHCN) data set13) (Fig. 1). This data set was used in this part of 
our analysis because we wanted to verify the relationship over a long period of time. The locations of the 
ten stations are shown in Fig. S1. These extend across the region affected by seasonal snowfall, and cover 
different landscapes (e.g. coast, mountain, lakeside, etc.) (see Table S1). The figures are displayed from 
low-latitude (38°N) to high-latitude (46.65°N) locations. Most slopes of the linear regressions between 
simulated ratios and observed ratios are close to 1, indicating the empirical hyperbolic tangent function 
can reasonably reproduce the observed ratios of snow frequency quite well. Usually, the slope magnitude 
decreases with latitude, with the highest value 0.879 over the station Hot Springs (38°N) and the lowest 
value 0.492 over the station Presque Isle (46.65°N), indicating slight underestimation.

All equation-calculated snow occurrences can explain more than 40% (p <  0.0001) of the total vari-
ance of the observed snow occurrences, with most larger than 50%. For the historical time period, over 
most of the snow/rain transition zone defined as the zone between the rain-dominated area (< 10% 
snow frequency) and snow-dominated area (> 90% snow frequency)11, the equation-calculated snow 
frequencies derived by the empirical hyperbolic tangent function can capture both the magnitudes and 
temporal variations of the observed snow frequencies (Fig. 2). Therefore, the empirical hyperbolic tan-
gent function is a reasonable method to use in estimating the large-scale snow frequency pattern for 
future climate scenarios.

Future changes. The observed snow occurrence frequency over the central and eastern U.S. for the 
period 1981–2000 was estimated by using a high spatial resolution (12.5 km) surface temperature and 
precipitation data set14. The observed spatial patterns of snow frequency for the period 1981–2000 are 
shown in Fig. 2. For each of the five months with snow (Nov–Mar), there is a transition zone between 
a snow-dominated region and rain-dominated region. The transition zones are almost zonal, with slight 
shifts to the south over the western U.S. and Appalachian Mountains, indicating that lower temperatures 
over the high-elevation region results in larger snow frequencies. For example, during January (Fig. 2c), 
the transition zone is located around 32–40°N, with a tilt (southerly shift) over the western part and 
Appalachian Mountains. The location of the transition zones shifts latitudinally during different months, 
since they are mainly controlled by temperature10. January has the coldest temperature, the southern-
most location of the transition zone and the largest spatial distribution of snowfall probability; during 
February (Fig. 2d) and December (Fig. 2b) the transition zone is about 34–42°N, and for March (Fig. 2e) 
and November (Fig. 2a) it is about 38–46°N. Over the region south of transition zone, there are still some 
snow occurrences (based on observations), however, since there is very little snow over this region15, 
the biases relative to the application of the empirical function in the current study should be very small.

The simulated snow frequency distributions based on the ensemble averages of 10 GCMs (Table 
S2) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive for the same period 
(1981–2000) under the historical run16 downscaled by Bias-Correction Constructed Analogues (BCCA) 
method17, are similar to observations. In particular, the locations and widths of snow-rain transition 
zones between the snow-dominated region over the northern part and the rain-dominant region over 
the southern part are very similar (Fig.  2f–j). The main difference is that the simulated southern tilt 
during January and February are larger (Fig. 2h,i), and the simulated transition zone during November 
is wider (Fig. 2f).

By the end of the 21st century (2081–2100) under the representative concentration pathways 4.5 
(RCP4.5) and RCP8.5 scenarios16, because of warming (Figs S2–S4), the transition zone uniformly shifts 
to the north during all five months under both scenarios (Fig. 2k–t), indicating that large areas that are 
currently snow-dominated become rain-dominated in the future. Under representative concentration 
pathways 4.5 (RCP4.5) scenario, the northern shift of the transition zones is about 2° latitude during 
December (Fig. 2l), January (Fig. 2m), and February (Fig. 2n), and about 4° latitude during November 
(Fig. 2k) and March (Fig. 2o). The magnitude of these northern shifts increases to about 5° under the 
RCP8.5 scenario (Fig. 2p–t). In the future, there will be some areas within the transition zone, or even 
in the snow-dominated zone of the historical period, that will change to a rain-dominated area, and 
some snow-dominated areas that change to a mix phase zone, consistent with the observed decreased 
ratio of snow to precipitation found in previous studies15,18,19. This is because of the northerly shift in 
the transition zone, especially under RCP8.5, during which most of the central and eastern U.S. becomes 
rain-dominated. However, it is worth noting that the results shown in Fig.  2 represent climatological 
averages (20-year means) for future scenarios and so do not exclude the possibility of occasional snow 
occurrence under scenarios of future warming in the rain-dominated region.

Moreover, since the increases of the daily minimum temperature (Fig. S4) are usually larger than 
the increases of the daily average temperature (Fig. S2) and daily maximum temperature (Fig. S3), the 
changes of maximum possible snow occurrences (Fig. S6) are also larger than the changes of minimum 
possible snow occurrences (Fig. S5) and averaged snow occurrences (Fig.  2). This indicates that the 
future changes of probability distributions of the snow occurrences are not simply uniform shifts to lower 
values, but also involve skewness changes towards the lower values.

The region with snow frequency reductions is also a zonally-distributed, with a tilt to the south over 
the western part of the region and in the Appalachian Mountains (similar to the transition zone) usually 
starting from the southern border of the historical transition zone and extending 10° latitude to the 
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Figure 1. The observed and simulated ratios of snow occurrences over the ten representative stations 
(blue dots) and the corresponding linear regression (red lines), based on the period 1900–2014. 
The green lines indicate the 95% confidence intervals. The titles show the sample sizes, slopes of linear 
regressions, and coefficients of determination.
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north for December (Fig. 3b), January (Fig. 3c), February (Fig. 3d), under the RCP4.5 scenario, and 12° 
for November (Fig. 3a) and March (Fig. 3e). The magnitudes of snow frequency reductions range from 
zero in the north (snow-dominated regions) and the south (rain-dominated regions) to about 80% in the 
middle, indicating that those previously snow-dominated regions will change to rain-dominated regions. 
The situations under the RCP8.5 scenario (Fig. 3f–j) are similar, with wider regions of snow frequency 
reductions (extending 3–4° further north than in the RCP4.5 scenario). The areas of regions with large 
snow frequency reductions (> 80%) are also larger than in the RCP4.5 scenario, indicating more previous 
snow-dominated regions will change to rain-dominated regions during the higher emission scenario. The 
magnitudes of snow frequency reductions are also larger under the RCP8.5 scenario over the same area 
(the region surrounding Chicago shown in Fig. S7 as an example).

To quantitatively evaluate the reductions of area with snow occurrence, the percentages of area with 
snow frequency > 10% and > 90% under three scenarios are compared in Fig. 4. These two thresholds are 
chosen because a snow frequency < 10% is considered as rain-dominated and a snow frequency > 90% is 
considered as snow-dominated, after taking the biases of empirical equations shown in Fig. 1 into con-
sideration. Under the historical scenario, the region with obvious snow frequency (> 10%) accounts for 
about 37.5%, 67.5%, 72.5%, 67.5%, and 47.5% of the whole central and eastern U.S. for the five months 

Figure 2. The distributions of ensemble averaged snow frequency from observations (1981-2000) (left 
column), the simulations under historical (1981–2000) (middle left column), RCP4.5 (2081–2100) 
(middle right column), and RCP8.5 (2081–2100) (right column) emission scenarios (Unit: %). Maps were 
generated by NCAR Command Language (NCL).
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Figure 3. The changes of ensemble averaged snow frequency (RCP scenarios relative to historical 
simulation) for the RCP4.5 (left column), and RCP8.5 (right column) emission scenarios for the five 
months (Unit: %). Maps were generated by NCAR Command Language (NCL).
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Nov-Mar. These numbers drop to about 22.5%, 50%, 65%, 55%, and 35% under the RCP4.5 scenario, 
and about 10%, 40%, 52.5%, 45%, and 22.5% under the RCP8.5 scenario (Fig. 4a). On the other hand, 
under the historical scenario, the region with the largest snow frequency (> 90%) accounts for about 1%, 
22.5%, 30%, 20%, and 1% of the whole central and eastern U.S. for the five months, and these numbers 
drop to about 0%, 7.5%, 17.5%, 7.5%, and 0% under the RCP4.5 scenario, and about 0%, 2%, 7.5%, 2%, 
and 0% under the RCP8.5 scenario (Fig. 4b).

The uncertainties in the changes of area with snow occurrence due to the scenarios, defined as the 
differences between the two RCP scenarios, are about 10% of the total study region for the main snow 
season (Fig. 4). These are consistent with the uncertainties in the northern shifts of the transition zone, 
which have a magnitude about 3° latitude (Fig. 2). For the changes of area with obvious snow frequency 
(> 10%), the inter-GCM uncertainties defined as the standard deviations of changes from all GCMs, 
are less than 3% of total study region for Nov-Jan and 5–6% for Feb-Mar under the RCP4.5 scenario 
(Fig. S8a). For the RCP8.5 scenario, the inter-GCM uncertainties are 3% for November, and 3–10% for 
Dec-Mar. For the changes of area with large snow frequency (> 90%), the inter-GCM uncertainties are 
~2–5% for mid-winter months in both RCP scenarios (Fig. S8b).

Conclusions
Future changes of snow occurrences over the central and eastern U.S. under two emission scenarios were 
investigated using high spatial resolution downscaled ensemble averages from ten GCMs. By the end of 
this century, due to the increases of surface air temperature, the snow-rain transition zone will shift north 
by 2–5° latitude, indicating that large areas will have a significant reduction in snowfall occurrence (~15% 
of the total domain for RCP4.5 scenario and ~25% for RCP8.5 scenario). During November and March, 
non-negligible snow occurrence (> 10%), disappears across most of the region, except for the extreme 
northern and northwestern areas. This means the snow season over most of the region will become 
shorter, from five to about three months, consistent with observed shortening of the snow season dura-
tion over recent decades20. Therefore, the observed reductions of snow cover2,3 and snowfall amount5,6 
will continue and even amplify through this century. This shortening of the winter snow season and early 
melting of the snowpack will have serious impacts on water resources, ecosystems, and the economy of 
this region, especially over the Great Lakes Region21. For the region within the transition-zones, e.g., the 
center of the study region, these results can be used to estimate future influences of snow occurrences 
(especially night-time snowfall events) with implications for municipal administration (e.g., school 

Figure 4.  The percentages of area with snow frequency larger than 10% (a) and 90% (b) under the 
historical (green), RCP4.5 (blue), and RCP8.5 (red) emission scenarios for the five months (Unit: %).
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closure and traffic interruptions), and the corresponding future planning strategies. These results will 
also help improve the predictability of future changes of regional water resources, ecosystems, agricul-
ture, and winter recreation activities over the central and eastern U.S., and also help resource-managers 
and decision-makers prepare corresponding adaptation plans for future warming.

Methods
The observed and simulated snow frequencies were calculated using the empirical tangent function10:

( ) = ( ( − )) − ( )F Ts a b Ts c d[tanh ] 1

which is based on a larger sample size of global weather stations, updated with longer observations 
compared with earlier studies22,23. In equation (1), a, b, c, and d are parameters estimated, based on a 
larger sample size of global weather stations, and in this study, a =  − 48.2292, b =  0.7205, c =  1.1662, 
d =  1.022310.

To verify the empirical hyperbolic tangent function using the long-term USHCN data, the monthly 
maximum temperature, minimum temperature, and average temperature on days with precipitation, for 
each of the five months (Nov-Mar) was first calculated. Then, the corresponding snow frequencies were 
calculated using the empirical hyperbolic tangent function. In this step, to limit the influence of missing 
values, only those years with at least three months that include more than five days with precipitation 
were used.

Snow frequency for the period 1981–2000 was estimated by using a high spatial resolution (12.5 km) 
surface temperature and precipitation data set14, (this data set was recently improved to a new version, 
with a higher spatial resolution (1/16°) and longer time period24). The simulated historical and future 
snow occurrence frequencies were calculated using downscaled temperature and precipitation data with 
the same resolution based on 10 GCMs (Table S2) from the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) archive for the period 1981–2000 under the historical scenario, and 2081–2100 under 
the representative concentration pathways 4.5 (RCP4.5) and RCP8.5 scenarios15. The daily maximum 
temperature and minimum temperature were used to generate the lower limits and upper limits of the 
snow occurrence distributions, separately. Then, average values of snow occurrences were calculated as 
weighted averages of snow occurrences related to daily maximum temperature, minimum temperature 
and average temperature. In this step, since there are only a few missing days, the threshold of picking a 
month was changed to two days with precipitation.
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