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Observational Evidence for EDW 4 

There have been numerous global and regional studies of EDW. Table S1 provides a 5 

summary, including the number of stations, time period and other useful metadata.  A study of 6 

maximum and minimum temperatures at 126 mountain stations from different regions of the 7 

world by Diaz and Bradley (1997) found that trends in minimum temperatures (1951-1989) 8 

generally increased with elevation, but maximum temperatures were less consistent, with the 9 

strongest warming at 500-1000m, showing that different mechanisms may be of importance in 10 

each case.  Another study by Pepin & Lundquist (2008) of trends in mean annual temperature for 11 

1948-2002 at 1084 high elevation stations found no significant correlation between trend 12 

magnitude and elevation on a global scale, but there was a strong relationship between mean 13 

annual temperature and warming rate, with the strongest warming centered around the 0ºC 14 

isotherm. They argued that cryospheric feedbacks (melting snow and ice, and changing albedo) 15 

controlled the observed pattern of temperature change.  They also demonstrated that topography 16 

and exposure to the free atmosphere also influenced the warming signal, with mountain summits 17 

showing more consistent warming rates (and more similar to the free atmosphere).  Decoupled 18 

mountain valleys on the other hand showed highly variable warming rates.  Ohmura (2012) 19 

found observational evidence of EDW in 13 out of 18 regions in spring or summer during the 20 

last 40 years. Wang et al (2014) examined trends in mean annual temperatures (1961-2010) at 21 

2367 stations around the globe, extracting the elevational warming component from the overall 22 

warming rate at individual stations over each high-elevation region. A significant warming 23 

amplification with elevation was found for many regions including the Tibetan Plateau, the 24 

European Alps and the United States Rockies.  Yan & Liu (2014) showed a clear elevational 25 

dependency of warming over the Tibetan plateau region over the last 50 years, and an increase in 26 

both the magnitude of warming and the elevational dependency in recent decades.  There are also 27 

numerous other regional studies, where transects or small numbers of surface stations in a 28 

particular region have been examined (e.g. Liu and Chen, 2000, Vuille and Bradley 2000, Liu et 29 

al. 2009, You et al. 2010, Li et al. 2012).   30 
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Future Needs 32 

In this section we outline in more detail the requirements needed to fully investigate the 33 

phenomenon of EDW. The three main approaches are surface observations, satellite data and 34 

modelling. 35 

a) Surface in-situ observations 36 

To fully document and understand EDW, air temperature measurements at ground 37 

stations are essential.  Since the current network is skewed towards low elevations, this requires 38 

the establishment of a considerable number of high elevation stations, particularly in areas 39 

currently under-represented, such as the tropics. Station siting is critical and the influence of 40 

topography is of particular concern; isolated summits are much more representative of larger 41 

scale climate changes. Although the minimum data requirement would be daily maximum and 42 

minimum temperature at screen level (2m), at selected sites (close to locations where the driving 43 

mechanisms are expected to be focused, e.g. near the 0°C isotherm) energy balance stations 44 

should be established, with all sky cameras to monitor cloud cover and changes in surface 45 

conditions such as snow cover.  Such sites also offer “ground truth” information to calibrate and 46 

verify satellite-derived data (see below).  Detailed transects across tree-lines and snow-lines, in 47 

areas affected by the Asian Brown Cloud, and in areas such as tropical cloud forests where 48 

changes in water balance are likely to be equally important, are suggested for intensive case-49 

studies into the mechanisms driving EDW. 50 

 As well as expanding the current observational network, which should involve a long-51 

term commitment to maintain high quality measurements, an attempt should also be made to 52 

retrieve, collate and homogenize existing mountain station data, in order to create the most 53 

comprehensive, freely available dataset.  This has been done for the European Alps (HISTALP - 54 

see Auer et al., 2007), but this example needs to be extended and combined with other regions 55 

(through initiatives such as GEO/GEOSS and its component GEO-GNOME, the Global Network 56 

for Observations and Information in Mountain Environments, see 57 

https://www.earthobservations.org/ts.php?id=224). Metadata information would add 58 

considerable value to the data, archiving information on operational procedures, including 59 

observational practices or data conversion algorithms that might have changed over time, as well 60 

as information on observed parameters, instrument maintenance routines, corrections applied to 61 

the data, and other information. Within certain regions such as the Tibetan Plateau, a systematic 62 

https://www.earthobservations.org/ts.php?id=224


assessment of high-elevation meteorological data quality, as influenced by issues such as the 63 

replacement of manual by automatic stations, is urgently needed.  64 

For a better understanding of the mechanisms behind EDW, supplementary station 65 

information such as land-cover characterization, local topography (as measured by terrain factors 66 

such as topographic exposure, aspect, slope gradient), surface roughness, distance to centers of 67 

population etc, is also extremely useful. This will allow analysis of EDW for subsets of stations 68 

for which known mechanisms are likely to be enhanced.  Finally, further research is needed to 69 

address the multi-collinearity factors, acknowledging that large-scale position (latitude and 70 

longitude) and local scale factors (aspect, exposure, land-use, local hydrology) also influence 71 

warming through regional heterogeneity, which complicates the isolation of any EDW signal.  72 

b) Satellite Data 73 

Operating meteorological stations in mountain regions is expensive, and so remotely-74 

sensed land surface temperature (LST) data may partly overcome some of the drawbacks of the 75 

in-situ network. LST data are generated with high frequency (roughly twice daily for instruments 76 

on polar orbiting satellites and at 3-hour intervals or shorter for instruments on geostationary 77 

satellites) for most points on the Earth’s surface. These instruments generate snapshots or 78 

individual scenes over large areas covering up to thousands of square kilometers, within which 79 

all points are observed simultaneously. Thus by providing regular observations of poorly 80 

monitored high-elevation areas, remotely sensed data could complement existing in-situ station 81 

data. However, the advantages of frequency and spatial coverage of LST observations for 82 

supplementing in-situ data are subject to the caveats of differences between respective variables 83 

observed, i.e. LST and near surface air temperature, in terms of their physical nature and levels 84 

of uncertainty inherent in the measurement of each parameter. With regards to uncertainty, an 85 

observation campaign (Guillevic et al. 2012) to establish validation methodology for the Visible 86 

Infrared Imaging Radiometer Suite (VIIRS) instrument – successor to the MODIS instrument – 87 

found, “Using ground-based data without scaling, the accuracy and precision of MODIS LST 88 

products ... are −0.3 K and 3.0 K, respectively. ... However, the product accuracy and precision 89 

calculated using scaled-up ground data are around 0 K and 2 K, respectively." With regards to 90 

the physical differences between near surface air temperature and LST, the variables are linked 91 

via the sensible heat flux component of the surface energy balance. Beyond this physical 92 

mechanism, a study (Gallo et al., 2011), carried out using in-situ LST observations from 93 



radiometers installed at U.S. Climate Reference Network (USCRN) stations, tested prediction of 94 

LST using near surface air temperature (Tair) under both clear sky and cloudy conditions. Gallo 95 

et al. (2011) found not only that prediction of Tair from LST was feasible, but also that even 96 

under cloudy conditions each variable accounts for 90% or more of the variance in the other.  97 

 Imagery from successive generations of the Advanced Very High Resolution Radiometer 98 

(AVHRR) instrument flown on NOAA Polar-orbiting Environmental Satellites (POES) provides 99 

a promising option for producing time-series of remotely sensed land surface temperature (LST) 100 

over high-elevation regions. AVHRR-derived LST, with spatial resolutions of 1km to 4km, has 101 

been used to calculate temperature trends for periods of twenty years or more in studies of the 102 

Tibetan Plateau (Zhong et al, 2011) and Northern Siberia (Urban et al, 2013), although both of 103 

these limited their published findings to regional averages. Urban et al (2013) found negative 104 

correlations between trends in albedo and LST suggestive of shortwave radiative feedbacks due 105 

to changes in snow cover.  Zhong et al (2011) also presented results showing increasing LST and 106 

decreasing surface albedo. 107 

 The use of AVHRR-derived LST datasets for trend assessment presents a number of 108 

obstacles. The first is the issue of data homogeneity. AVHRR homogeneity is primarily degraded 109 

by the problem of “orbital drift,” as the local equatorial crossing time, and hence time of imagery 110 

acquisition at any given location, gradually moves later during the operational life-time of the 111 

satellite platform (Price 1991). A number of numerical approaches have been proposed to 112 

overcome this issue and create temporally-consistent time-series (Gutman 1999, Jin and Treadon 113 

2003, Julien and Sobrino 2012).  Another challenge is that the “split-window” algorithm used to 114 

calculate LST values (Li and Becker, 1993) is dependent on “clear-sky” conditions, i.e. it cannot 115 

be applied to pixels containing cloud cover, which presents particular problems for mountain 116 

regions. A number of cloud detection methods have been developed for AVHRR imagery 117 

including the CLAVR-I (Stowe et al., 1999), CASPR (Key 2000, Di Vittorio and Emery 2002) 118 

and ASMC (Simpson and Gobat, 1996) algorithms. An alternative to direct cloud filtering, the 119 

Maximum Value Composite (MVC, Holben, 1986) consists of selecting the highest geo-120 

referenced pixel value for a 10-day temporal composite.  The MVC approach selects the warmest 121 

conditions observed in the compositing period. For a temporal mixture of clear and cloudy 122 

conditions during repeated observations, the value retained for an individual pixel will represent 123 

clear sky conditions. This method assumes that the compositing period is long enough that at 124 



least one clear observation will be made for each pixel in the geographic zone of interest. For 125 

regions and terrain with very frequent cloud cover, this assumption may be questionable. Zhong 126 

et al (2011) used the MVC approach in their study, while Urban et al (2013) opted to apply the 127 

CASPR algorithm. Beyond the technical difficulties of cloud filtering, the “clear sky” 128 

dependency of remotely-sensed LST raises questions about the interpretation of overall trends 129 

(which use all days) compared to those calculated for LST using only cloud-free conditions. 130 

Context for this interpretation could be provided by cloud climatology and occurrence-frequency 131 

trend estimates from the aforementioned cloud algorithms.  In summary, the multi-decadal 132 

record length and good spatial resolution of AVHRR combined with established algorithms for 133 

cloud-filtering and LST calculation, whose outputs can be tested (for the post-2000 time period) 134 

against comparable MODIS data products, offer an exciting potential to assess elevation 135 

dependency of surface temperature change over the past three decades. Given the affordability of 136 

data storage and processing capacity, this potential can be realized with relatively modest 137 

investments of research staff time and equipment. 138 

 One study has been conducted on Elevation Dependent Warming (EDW) using the 139 

Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST), 140 

demonstrating significant potential to use this sensor for EDW related questions.  Qin et al.  141 

(2009) show that the warming rate on the Tibetan Plateau increased from 3,000 to 4,800m by 142 

approximately 0.04 K per year between 2000 and 2006.  Above 4,800m the warming stabilized, 143 

with a small decrease toward the highest elevations (~6,600m).  The MODIS sensor is on two 144 

space-borne platforms, Terra and Aqua.  These platforms are in near-polar orbits, which display 145 

a swath overlap at latitudes greater than 30°.  The overlap produces progressively more daily 146 

observations toward each pole and every other day observations at the equator.  MODIS data are 147 

available from February 2000 (from Terra) and July 2002 (from Aqua).  Two methods are used 148 

to produce LST products, the split window technique which produces LST at a 1 km grid cell or 149 

the day-night technique which produces LST at a 5km grid cell (Wan et al., 2002).  MODIS LST 150 

products are determined from the thermal infrared portion of the electromagnetic spectrum and 151 

therefore require clear skies.  Undetected cloud contamination is a persistent issue, even though 152 

MODIS uses 14 spectral band radiance values to evaluate atmospheric contamination and 153 

determine whether scenes are affected by cloud shadow (Ackerman et al. 2008).  The MODIS 154 

Collection-5 unidentified cloud contamination is approximately 15% of grid cells (Ackerman et 155 



al., 2008; Williamson et al., 2013).  Radiance-based validation of MODIS LST indicates that 156 

over land cover which is not arid, LST errors are within ±1 K (Wan et al., 2002), although 157 

validation has not been carried out for elevations greater than ~4000 m.  Air temperature and 158 

infrared surface temperature are separate physical entities that respond to the same forcing over 159 

different time scales (Jin & Dickensen, 2010). Thus there is a strong linear correlation between 160 

MODIS infrared surface temperature and air temperature for many land cover types, with a 161 

typical range of differences between LST and air temperature of approximately 2-3 °C (Zaksek 162 

et al., 2009) irrespective of the methodology, spatial or temporal resolutions.  Over permanent 163 

snow and ice, the discrepancy between air temperature and infrared temperature should be nearer 164 

to ±1 °C, regardless of the clear sky bias in infrared surface temperature acquisition (Comiso, 165 

2003). However, temporal averaging of winter LST causes a cold bias of approximately 3 K 166 

because clear sky values of LST are colder than in-situ values measured under cloudy conditions 167 

(Westermann et al., 2012). The variable differences between LST and air temperature require 168 

much further investigation and certainly poor understanding of these differences is a current 169 

limitation to documenting EDW using satellite data.  170 

c) Models 171 

Our understanding of climate change in mountainous regions, and of EDW in particular, 172 

is quite limited, not only because of inadequacies in observations but also in climate model 173 

simulations (Rangwala and Miller 2012). Global climate models (GCMs) are the only viable 174 

tools for capturing the main physical aspects of the global climate system, the effects of large-175 

scale circulation and teleconnection patterns, and the feedbacks and inter-relationships between 176 

different variables required for large-scale projections of future climate.  However, due to the 177 

limited capability of GCMs to resolve climate phenomena at small scales, the climate variations 178 

predicted for a specific location, particularly at high altitudes where strong spatial and temporal 179 

gradients in climate elements are common, are usually affected by systematic errors and 180 

significant uncertainties.  181 

An approach for obtaining higher resolution output starting from coarse scale models is 182 

based on the concept of climate downscaling and uses both dynamical and statistical techniques. 183 

Dynamical downscaling consists of nesting Regional Climate Models (RCMs) into the low-184 

resolution GCMs, where the ratio of GCM/RCM resolutions is of the order of 100-200 km/10-50 185 

km. In the framework of EDW, the recent projections of surface temperature change in 186 



mountainous regions under high-end emission scenarios, such as RCP4.5 or RCP8.5, produced 187 

within the Coupled Model Intercomparison Project phase 5 (CMIP5) and the Coordinated 188 

Regional Climate Downscaling Experiment (CORDEX) can be exploited. In particular, the use 189 

of global and regional model outputs from the CMIP5 and CORDEX experiments would allow 190 

investigation of the links between temperature and the other model variables representing the 191 

expected EDW mechanisms discussed in the main paper: snow cover and albedo, cloud radiative 192 

effects and thermodynamics, downward longwave forcing from water vapor, and aerosols.  193 

Moreover, the use of GCMs would allow EDW to be examined in relation to large scale 194 

atmospheric modes and teleconnection patterns (e.g. ENSO and NAO) in different parts of the 195 

world. On the other hand, extracting and assessing the output of the hydrostatic RCMs (e.g., 196 

from the CORDEX database) would allow a focus on the relevant sub-domains nested into 197 

continental scale dynamics.  The implementation of non-hydrostatic equations for the 198 

atmosphere has allowed handling of finer scales (down to 1-3 km). While this approach has been 199 

widely used over meteorological timescales, it is still in its infancy for climatic applications, 200 

since the computational effort required is rather formidable (Kendon et al., 2014; Maussion et al., 201 

2014). Climate change experiments with a very high-resolution model typically used for weather 202 

forecasting, (1.5 km grid spacing), have been performed by Kendon et al. (2014) for a small 203 

region of the United Kingdom, to simulate rainfall extremes and characteristics at very high 204 

spatial and temporal scales. Rasmussen et al. (2014) used a regional model at 4km horizontal 205 

grid spacing to both validate the hydrological processes in the Colorado Rocky Mountains and to 206 

study the changes in the hydrological/cryospheric response under climate change. 207 

Statistical/stochastic downscaling methods represent a further approach to increase the 208 

resolution of global and regional models, to reduce their systematic errors, to generate 209 

probabilistic information at a small scale and to extend the set of predictions to other climate-210 

derived quantities e.g. Kettle and Thompson (2004), Fowler et al. (2007), Hashmi et al. (2013), 211 

Forsythe et al. (2014). Stochastic downscaling models, in particular, can be used to produce 212 

ensembles of possible realizations of high-resolution fields from the GCM and RCM data. 213 

D’Onofrio et al. (2014), for example, discussed the results of a downscaling chain in which the 214 

~50-yr long precipitation output of one RCM at 30 km resolution is stochastically downscaled 215 

down to 1 km resolution over the mountainous regions of northwestern Italy.  The statistical 216 

properties of the downscaled precipitation were compared with rain gauge measurements over 217 



the same time period and region.  Stochastic downscaling has the advantage that it can be applied 218 

to the outputs of an ensemble of climate models and therefore used to compare the large-scale 219 

uncertainty represented by the climate model ensemble with that modelled by the use of 220 

stochastic downscaling at small scales (e.g., von Hardenberg et al., 2007), thus allowing an 221 

assessment of the propagation of uncertainties through the modeling chain. Downscaling, in its 222 

various forms, has the potential of adding considerable value to global and regional projections, 223 

by increasing the spatial and temporal resolution of the climate picture they provide. 224 

Downscaling represents also a necessary step to develop climate and environmental change 225 

scenarios specifically designed for mountain regions, whose complex orography, extreme 226 

environmental conditions, steep spatial and temporal gradients in variables, and low density of 227 

in-situ observational data make reliable predictions difficult to obtain. Development of 228 

techniques that combine statistical/stochastic downscaling and regional process models with 229 

observations as a basis for providing quantitative information on EDW (that can then be 230 

propagated to impact/assessment models) is strongly recommended.  231 

 232 
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Table S1 370 

Table  S1: Metadata describing studies (observations and models), which have investigated the 371 

evidence for EDW. References are listed in the reference list for the main paper. 372 
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