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ABSTRACT:  Equilibrium-line altitudes (ELAs) were estimated for 383 reconstructed glaciers across
the Brooks Range, northern Alaska, to investigate their regional pattern during the Last Glacial Max-
imum (LGM). Glacier outlines were delimited based on published field mapping and the original
interpretations of aerial photographs. Glacier margins were digitised from 1:63 360-scale maps into
a geographic information system (GIS) with a digital elevation model on a 60-m grid. ELAs were cal-
culated for each reconstructed glacier using the accumulation area ratio method (AAR =0.58). The
analysis was restricted to relatively simple cirque and valley glaciers that deposited clearly identifi-
able LGM moraines, and that did not merge with the complex transection glacier ice that filled most
troughs of the range. The glaciers used in this analysis had areas ranging from 0.14 to 120 km?. Their
ELAs rose from 470 m a.s.l. in the western Brooks Range to 1860 m a.s.l. in the east, over a distance of
1000 km. The ELAs were fitted with a third-order polynomial trend surface to model their distribution
across the range, and to investigate the source of local-scale variations. The trend surface lowers
toward the west and south, similar to previously derived trends based on glaciation thresholds. In
addition, ELAs in the northeastern part of the range lower northward toward the Beaufort Sea, which
has not been reported as strongly in other studies. Modern glacier ELAs also lower toward the south-
west. The depression of LGM ELAs from modern glacier ELAs is greatest in the central Brooks Range (a
maximum of 700 m), and decreases to the east (200 m). The regional pattern of LGM ELAs points to
the primary source of moisture from the North Pacific, as it is today. The unexpected trend of LGM
ELAs in the northeast part of the range is supported by recent field mapping, where anomalous
ice distribution and ELAs reflect complicated LGM climate patterns and possibly late Quaternary
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Introduction

The equilibrium-line altitude (ELA) of mid- and high-latitude
alpine glaciers is controlled mainly by summer temperatures
and winter precipitation. Reconstructing the ELA of palaeogla-
ciers on the basis of geomorphic evidence provides a quantita-
tive means of interpreting past climate during former intervals
of presumed steady-state conditions. The regional trend of
reconstructed ELAs can be examined to infer past atmospheric
circulation and temperature patterns, because the ELA gradient
lowers toward accumulation-season moisture or cold ablation-
season temperatures. Differences between the ELAs of extant
glaciers and those reconstructed from Pleistocene moraines
reflect differences between present and full-glacial atmo-
spheric conditions. The geometry of the ELA trend surface
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can itself be used to investigate the controls on ELAs. Although
summer temperature and winter precipitation are most impor-
tant, factors such as aspect, slope, shading, size, shape, and
local geography of a glacier may cause an ELA to be above
or below the regional trend. Relationships between the magni-
tude of the deviation of glaciers from the regional trend and
the physiographic characteristics of glaciers can be used to
identify the factors that lead to local-scale perturbation of the
ELA surface.

This study provides a detailed analysis of ELAs across the
Brooks Range of northern Alaska. We focus on the maximum
position of valley and cirque glaciers during the local Last
Glacial Maximum (LGM), for which the morainal evidence is
most clear for delimiting past glacier extent. A total of 383
reconstructed glaciers were digitised and analysed in two geo-
graphic information systems (GIS) to estimate their former
ELAs. A trend surface was fitted to these data to model their spa-
tial variation across the Brooks Range and to interpret the regio-
nal controls on ELAs in northern Alaska during the LGM. This
record of ELAs for the Brooks Range refines the earlier work of
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Porter et al. (1983), whose analysis of glaciation thresholds pro-
vided a general illustration of climate patterns across northern
Alaska during the LGM.

Setting

Except for the Cordilleran Ice Sheet in the south, Alaska during
the LGM was largely unglaciated due to its isolation from major
sources of moisture (Hamilton, 1994; Kaufman and Manley,
2004). Sea-ice cover reduced the moisture available from the
north and west, and the exposure of the Bering/Chukchi Plat-
form increased the continentality across central Alaska. Glacia-
tion during the LGM in most of Alaska was therefore restricted
to alpine areas. lce was more extensive during the early part of
the late Pleistocene when sea level was higher and global ice
volume relatively low (e.g. Kaufman et al., 2001).

The Brooks Range is ca. 1000 km long extending from west
to east across northern Alaska. The range is highest in the east
reaching over ca. 2700 m a.s.l. in elevation (Fig. 1). The north—
south width of the range varies from ca. 180 to 200 km, with a
total area of about 190 000 km?. The western Brooks Range, ca.
90 km inland of the Chukchi Sea, consists of the De Long and
Baird Mountains, while the central and eastern parts of the
range form a single chain of mountains that trends west—east
in the central Brooks Range and trends northeast toward the
Beaufort Sea in the eastern Brooks Range.

The broad expanse and topographic diversity of the Brooks
Range gives rise to a variety of climatic regimes. Because only
a few weather stations are scattered around northern Alaska,
descriptions of the climate of the Brooks Range are mainly
characterised by regional summaries (Fahl, 1975; Péwé,
1975; Daly et al., 1994; Mock et al., 1998), and short-term cli-
mate investigations (Haugen, 1979; Wendler et al., 1974,
1975). In the eastern and central parts of the range, the domi-
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nant temperature and precipitation gradients are from north to
south (Manley and Daley, 2005). South of the divide, the cli-
mate is continental, with large temperature extremes, mean
annual air temperatures (MAT) from —4 to —8°C, and discon-
tinuous permafrost. North of the divide, the climate is arctic,
with MAT from —8 to —12°C, and continuous permafrost
(Péwé, 1975). Temperatures decrease north of the range
toward the Beaufort and Chukchi Seas (Haugen, 1979; Daly
etal., 1994). The western Brooks Range is more maritime, with
temperatures from —7 to —9°C. Mean annual precipitation
generally decreases to the north and east across the range, from
ca. 30cm in the west to ca. 15cm in the northeast, although
gauges on McCall Glacier in the northeast (Wendler et al.,
1974, 1975) recorded mean annual precipitation of ca.
50cm, between 1969 and 1972, much higher than in other
parts of the range.

Modern glaciers are most numerous in the central Brooks
Range, where they occupy the highest north-facing cirques.
The eastern Brooks Range has the largest glaciers, which are
up to 10km in length around Mount Chamberlin and Mount
Michelson (Fig. 1), where the range reaches its peak elevations.
The elevation of modern glaciation thresholds increases from
1700m a.s.l. in the west to 2300m a.s.l. in the east, but
decreases to 2000m a.s.l. in the northeast (Porter et al.,
1983). The trend of modern glacier thresholds is similar to
the trend of precipitation, which indicates that presently, moist-
ure availability strongly influences the distribution of glaciers
across the Brooks Range.

Pleistocene glaciers covered most of the central and eastern
Brooks Range, and parts of the De Long and Baird Mountains in
the west (Fig. 1). Glaciers formed at lower elevations in the
western Brooks Range, and large transection glaciers (intercon-
nected systems of large, low-lying valley glaciers with poorly
defined ice divides) occupied most of the major river valleys
in the central and eastern Brooks Range. Late Wisconsin
glaciation thresholds in the western Brooks Range decreased
in elevation toward the southwest to 900 m a.s.l., and rose to
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Figure 1 Shaded relief map of northern Alaska showing the extent of glacier ice (in red) during the Last Glacial Maximum across the Brooks Range
(Kaufman and Manley, 2004) and the bathymetry (m) of the continental shelves of the Chukchi and Beaufort Seas. Black solid line indicates the extent
of surficial geologic mapping by Hamilton (1978a, 1978b, 1979a, 1979b, 1980, 1981, 1984a, 1984b, 2002a, 2002b, 2003)
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2100 m a.s.l. in the eastern Brooks Range, where the gradient of
the trend shifted to a more southerly orientation (Porter et al.,
1983).

The Pleistocene glacial geology of the Brooks Range is
reviewed by Hamilton (1986, 1994). We rely on his subdivi-
sion of glaciations and age control in this study. In the Brooks
Range, Late Pleistocene glacier advances are nominally
assigned to the Itkillik glaciation, and are divided into the Itkil-
lik I glaciation (early Wisconsin sensu lato), and the Itkillik Il
glaciation, which constitutes the local LGM and is coeval with
the late Wisconsin. During the Itkillik 1l glaciation, glaciers
were less extensive than during the Itkillik | glaciation. Itkillik
Il ice reached only 25 km north of the Brooks Range, compared
to ltkillik I ice that extended 40 km north of the range. The age
of the Itkillik Il glaciation is bracketed between 24 and 15 ka.
[tkillik 11 drift is characterised by topographically irregular
deposits that are steeper, more bouldery, and less vegetated
than drift of Itkillik | age. Moraines have multiple crests and
other primary constructional features and greater relief than
moraines of Itkillik | age. A readvance of Itkillik Il ice occurred
between 13 and 11.5ka (Hamilton, 2003). This advance left
distinctive moraines that are morphologically similar to depos-
its of the Itkillik 11 glacial maximum. Glaciers extended up to
15-20km north of the range front in some valleys and less
extensive moraines in other valleys.

Methods

Our investigation of ELAs proceeded in four steps. (1) The
extent of Itkillik 1l glaciers were reconstructed on the basis of
glacial geomorphic evidence interpreted from aerial photo-
graphs and observed in the field. (2) Palaeoglacier outlines
were digitised into a GIS to calculate and display spatial varia-
tions of glacier physical attributes. (3) A three-dimensional
trend surface was created to express the variability of ELAs
across the Brooks Range. And (4) the residual values (the devia-
tion of palaeoglacier ELAs from the trend surface) were com-
pared with glacier attributes to infer local factors influencing
ELAs.

Identifying and reconstructing LGM glaciers

Ninety per cent of the 383 palaeoglaciers were reconstructed
by interpretation of aerial photographs, and about 10% were
checked by field observations. All were cirque and valley gla-
ciers situated above or beyond, but not confluent with, the lar-
ger transection ice that filled the valleys within most of the
Brooks Range. These smaller palaeoglaciers provide simpler
systems for which the division between the accumulation
and ablation area is more easily defined, therefore allowing
the ELA to be derived more confidently. The 383 palaeoglaciers
include nearly all of the LGM valley and cirque glaciers that
could be located. Gaps in the spatial distribution of the glaciers
across the range reflect the absence of cirque and valley gla-
ciers during the LGM.

The accuracy of the ELA analysis depends on the ability to
identify confidently LGM glacial landforms, and on the consis-
tency of techniques used to map palaeoglacier outlines. The
location of LGM moraines used to reconstruct the former gla-
ciers began with Hamilton’s 1:250 000-scale surficial-geologic
maps, which cover most of the central Brooks Range (Fig. 1)
(Hamilton, 1978a, 1978b, 1979a, 1979b, 1980, 1981,
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1984a, 1984b, 2002a, 2002b, 2003). LGM glaciers in the wes-
tern and eastern Brooks Range, not covered by Hamilton’s
mapping, were mapped for this study from aerial photographs
and field observations (Balascio, 2003; Balascio et al., in press).
All reconstructed palaeoglacier outlines were then plotted onto
1:63 360-scale topographic maps.

Glacial erosional and depositional features ascribed to the
Itkillik Il glaciation are typically well expressed in aerial photo-
graphs. Cirques last occupied by ltkillik Il glaciers are backed
by fresh, steep headwalls, and relatively level cirque floors, and
moraines exhibit sharp crests and hummocks. The outlines of
palaeoglaciers were reconstructed using these cirque and mor-
aine morphologies as well as trimlines, when visible, to infer
ice thickness. Consistency among palaeoglacier reconstruc-
tions was maintained by assuming uniform up-glacier ice thick-
ness, and that cirques were completely filled with ice by
drawing the upper limit generally following the highest most
continuous contour of the cirque headwall. Although some
subjectivity is involved from cirque-to-cirque, the accuracy of
this measurement has little effect on the area of the glacier
because of the steepness of cirque headwalls. Because mor-
aines of late Itkillik Il and maximum ltkillik Il are morphologi-
cally similar, the two might have been confused in some
valleys, which would result in erroneously high ELAs. How-
ever, Hamilton distinguishes between late Itkillik Il and LGM
moraines in most areas, and our interpretations generally fol-
low his extensive field-based work.

The spatial density of the 383 palaeoglaciers used in this
study is somewhat less than has been used in previous studies.
For the Brooks Range, the density is approximately two palaeo-
glaciers per 1000 km? in an area of ca. 190000 km?, with 47
palaeoglaciers in the eastern, 228 paleoglaciers in the central,
and 108 palaeoglaciers in the western Brooks Range. Similar
studies in other mountain ranges were based on slightly higher
concentrations of data points (glacier ELAs or glaciation thresh-
old elevations). For example, Hawkins’ (1985) study of the
Merchants Bay area, Baffin Island, was based on 14 points
per 1000 km? in an area of 2500 km?, Leonard’s (1984) study
of the San Juan Mountains, Colorado, was based on four points
per 1000 km? in an area of 22 500 km? area, and Locke’s (1990)
study of western Montana was based on three points per
1000 km? in an area of 176 000 km?.

GIS analysis

The GIS made it possible to easily calculate a variety of physi-
cal characteristics for many glaciers and provided a means of
clearly illustrating spatial data across a broad area. Two soft-
ware packages were used: ArcGIS and MFWorks. GIS proce-
dures were developed to calculate former ELAs and glacier
attributes from mapped glacier outlines using 60-m grid digital
elevation models (DEMs), ArcGIS commands, and the
MFWorks scripting language. The surfaces of the former gla-
ciers were interpolated from the digitised glacier outlines and
used to calculate the ELA, area, slope, aspect, perimeter, and
volume for each palaeoglacier. Compactness was also calcu-
lated (47A/P?, where A=area and P= perimeter), and is a
non-dimensional measure of circularity ranging from 0.0 for
a straight line to 1.0 for a circle (Allen, 1998). Similar geospatial
analyses of glaciers are presented in Manley (in press).

Errors are associated with the transfer of palaeoglacier out-
lines to digital format and the interpolation of palaeoglacier
surface elevations used to derive the ELA. Errors with the use
of GIS stem from the DEMs, which are the basis for calculating
the physical characteristics of glaciers. The United States
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Geological Survey standards for the DEMs used in this study
have root-mean-squared (RMS) errors of less than one-half of
the contour interval (RMS ca. 10-15m). Greater uncertainty
is probably associated with the subjectivity of reconstructing
glacier outlines, which was minimised by applying consistent
techniques to outlining former glaciers.

The variety of methods used to reconstruct former ELAs was
recently summarised by Benn et al. (2005). In this study,
palaeo-ELAs were estimated on the basis of the accumulation
area ratio method (AAR), which has been shown to produce
consistent results (Porter, 2001). This method assumes a fixed
ratio between the accumulation and ablation areas of a glacier.
Different ratios have been applied, ranging from 0.5 to 0.8,
although most use 0.60-0.65. We used a recently derived ratio
of 0.58, which is based on a global analysis of average AARs for
steady-state mass balance of modern glaciers (Dyurgerov, pers.
comm.; see Dyurgerov, 2002). To determine how much the
choice of an AAR affects the estimated ELA, we applied a range
of AAR values in a sensitivity analysis. The results from the
Brooks Range glaciers analysed in this study show that, by
changing the inferred AAR by £0.1, the average ELA changes
by only &+ 35m (Balascio, 2003), which is small compared to
the overall ELA gradient, and the LGM ELA depression. Simi-
larly, if the inferred AAR varied with climate across the region,
we argue that the influence would be secondary to the overall
trend of ELAs, and to more important local factors involving
debris cover and topographic shielding. Regardless of the accu-
racy of the ELA value, the choice of an AAR does not impact the
first-order spatial trends that are the focus of this study.

The map of ELAs was then used to create three-dimensional
surfaces to represent the ELA distribution across the Brooks
Range. In the GIS, each glacier was represented by its ELA at
a single point. These single points, or ‘centroids’, were located
by GIS scripting at the approximate midpoint of the glacier’s
long and short axes. ELAs were then contoured and fit with
first through fourth order polynomials to examine the good-
ness-of-fit of progressively higher-order polynomials. Residual
values were calculated for each glacier to statistically compare

the trend surfaces. The residual values were regressed against
each glacier characteristic to identify significant relationships.

Results and discussion

Palaeo-ELAs

The distribution of the 383 reconstructed glaciers is not uniform
across the range (Fig. 2). LGM cirque and valley glaciers in the
Brooks Range were clustered on the edge of the range, espe-
cially in the south where snowline intersected the landscape,
but where ice did not smother the mountains as it did near
the crest of the range. In addition, there is a gap in former cir-
que and valley glaciers between the central and northeastern
Brooks Range in the Philip Smith Mountains. The north-to-
south distribution of data points is also limited in the east,
where the mountains held extensive transection glaciers.

Reconstructed LGM cirque and valley glaciers vary in size,
shape, and elevation (Table 1), with areas ranging from 0.14
to 120 km?, compactness from 0.03 to 0.71, slope from 4° to
30°, and volume from 0.002 to 17 km?>. Glacier aspects range
in all directions, although 93% are north-facing between 280 °
and 80 °, with only 26 glaciers facing more southerly. The loca-
tions and physical characteristics of all of the glaciers recon-
structed in this study are listed in the Appendix.

Palaeo-ELAs rise from west to east across the Brooks Range
(Fig. 2). The rise appears to occur in two major steps, one with a
slope of 3.8mkm™" at ca. 155° W longitude, and the other
with a slope of 3.3mkm™" at 144° W. Alternatively, the lack
of ELA change in the area separating these steps might result
from the sparse data coverage in this zone. LGM ELAs increase
from 470 m a.s.l. in the De Long Mountains to 1860 m a.s.l. in
the Romanzof Mountains. Generally, ELAs tend to be higher
over the highest massifs and lower over the Noatak Basin and
along the southern range front. The palaeo-ELAs decrease in
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Figure 2 Contoured equilibrium-line altitudes for 383 Last Glacial Maximum valley glaciers across the Brooks Range. Black dots show the location
of reconstructed glaciers. Contours were generated using a geographic information system interpolation method (Balascio, 2003). Contour interval is

100m
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Table 1 Summary of physical characteristics of reconstructed Last
Glacial Maximum valley glacier (n=383)

Minimum  Maximum Median Average+1 o
Slope (°) 4 30 11 12+4.4
Area (km?) 0.14 120 0.84 2.3£6.9
Volume (km?) 0.002 17 0.05  0.19+0.89
Compactness® 0.03 0.71 0.43 0.41+0.14
Length (km) 0.40 12.7 1.4 1.9£1.5
ELA (m) 468 1859 854 963 +325

Measure of circularity ( 4wA/P*, where A= area and P= perimeter).

the northeasternmost part of the range, from 1600 to 1700 m
a.s.l. over the Mount Michelson and Mount Chamberlin areas,
to 1500m a.s.l. in the eastern Romanzof Mountains. Locally
anomalous palaeo-ELAs result in isolated high contours, espe-
cially in the western Brooks Range, whereas analogous areas of
isolated low contours are not seen.

Trend surfaces

Statistically fit trend surfaces were calculated for palaeo-ELAs
across the Brooks Range to find the surface that best represents
the regional variability of ELAs. Regional-scale changes refer to
trends on the order of hundreds of kilometres that reflect the
broad pattern of climate that controls ELAs, as opposed to
local-scale changes that reflect topographic, or geographic
effects at scales of tens of kilometres. Four trend surfaces were
calculated (Balascio, 2003). A first-order fit created a planar
surface that slopes to the southwest (230°) from 1700 to
600m a.s.l., at 1.1 mkm™". The second-order polynomial cre-
ated a surface that ranges in elevation from 500 to 1800 m
a.s.l., with a broad ridge dividing the southwestern dip of the
palaeo-ELA surface in the central and western Brooks Range
from the northwestern dip of the palaeo-ELA surface in the east-
ern Brooks Range. The surface slopes gently (ca. 1.3mkm™")
along the north flank of the western and central Brooks Range
and steeper (ca. 2.6-4.0mkm™") along the southern flank of
the range. The trend surface maintains a southwestern dip from
west to east along the southern flank of the range. In the north-
eastern Brooks Range the surface slopes uniformly at ca.
3.3mkm™". The third-order polynomial (Fig. 3) exhibits a shar-
per ridge that more closely follows the crest of the range. Along
the southern flank of the range, this surface forms a trough
extending from west to east, more closely following the actual
palaeo-ELA values. ELA gradients range from ca. 1.4 to
13mkm™', with the steepest portion of the surface dipping
north in the northeastern Brooks Range. In the western Brooks
Range the surface faces southward, similar to the second-order
fit, but exhibits a progression to a southern dip eastward across
the range. In the northwest corner of the range, the surface dips
north, but this trend is supported by few data points. A fourth-
order surface was created and infers even greater changes
between palaeo-ELAs of closely spaced glaciers, with slopes
ranging up to 13.5mkm ™",

The contoured palaeo-ELA data together with goodness-of-fit
statistics were used to determine which modelled surface best
represents the regional variability of ELAs across the Brooks
Range. Visual comparison of the contoured palaeoELA data
shows that the third-order trend surface best coincides with
the major (100-km-scale) trends in the ELAs across the Brooks
Range. RMS and chi-squared statistics show that increasing
polynomial orders yields diminishing benefits (Table 2). At
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orders higher than third order, differences in RMS and chi-
squared values between the surfaces are minor. We therefore
elect to represent the regional palaeo-ELA across the Brooks
Range using a third-order trend surface.

The contoured trend surface of the LGM ELAs is broadly
similar to Porter et al.’s (1983; their Fig. 4-4) contoured LGM
glaciation threshold altitudes for the Brooks Range. As
expected, the ELAs (600-1800m a.s.l.) are systematically
lower than glacial thresholds (900-2100 m a.s.l.), because gla-
ciation thresholds are commonly 100-200m above ELAs
(Meierding, 1982). Both the glaciation threshold and the ELA
surfaces decrease toward the southwest in the western part
of the range. In the central Brooks Range, glaciation thresholds
dip toward the south whereas the ELA trend surface maintains a
southwestern dip across the range. In the northeastern Brooks
Range, ELAs decline toward the north and slightly to the east, a
trend that is incongruent with the rest of the range and that is
not exhibited as strongly from glaciation threshold interpreta-
tions. Porter et al. (1983) show a slight lowering to the north,
indicated by their single-dashed contour just west of Mount
Chamberlin.

The palaeo-ELAs in the northeastern Brooks Range are sup-
ported by detailed, on-the-ground, glacial-geologic field map-
ping (Balascio, 2003; Balascio et al., in press). They are
unexpected because ELAs typically rise in the lee side of a
mountain range in response to precipitation shadows. The
lower ELAs reconstructed for the northeasternmost glaciers
probably reflects their proximity to the Beaufort Sea, where
summer temperatures are lower in response to a shorter dura-
tion of seasonally open water.

Residual values

Residual values were used to explore relationships between the
physical characteristics of the palaeoglaciers and their devia-
tion from the trend surface. Residuals were calculated as the
difference between the palaeo-ELA derived from the AARs
and the modelled value derived using the coordinates for each
glacier centroid and the third-order polynomial. The spatial
and frequency distributions were studied to identify the factors
that may influence the residual values. The frequency of resi-
dual values is evenly distributed above and below the trend
surface (Fig. 4). Furthermore, there are no systematic regional
trends in residual values, indicating that either our choice of a
single AAR value across the range was appropriate or, if not,
then at least the residual values are not biased by the assump-
tion of a uniform AAR. The average of the absolute value of the
residuals is 91 77 m, similar to the RMS. Spatially, the highest
residuals coincide with the highest massifs (Balascio, 2003).
This relation is also expressed by the tendency (p < 0.01; Table
3) for residual values to be higher for glaciers at higher eleva-
tions. High ELAs in the tallest massifs of a range have also been
found by others (Leonard, 1984; Locke, 1990), and interpreted
to represent moisture diversion around the highest parts of the
ranges.

Palaeoglacier ELAs also deviate from the regional trend as a
function of glacier size, perhaps for the same reason. Although
most mapped glaciers were small (ca. 60% with areas less than
1 km?; ca. 70% with volumes less than 0.1 km?; ca. 65% with
lengths less than 2 km), the inverse relations of area and volume
to residual value, and the positive relations of slope and com-
pactness to residual value demonstrate a significant (p < 0.01)
relationship between glacier size and residual value (Table 3).
These four characteristics all relate to the size of a glacier and
covary (e.g. area and volume). In most cases, the slope of a
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Figure 3 Reconstructed equilibrium-line altitude (ELA) surface for the Last Glacial Maximum across the Brooks Range. (A) Relief map of the Brooks
Range showing contours of the third-order trend surface and the location of glaciers used to create the surface (black dots). (B) Topographic profile
from C to C’ across the crest of the Brooks Range showing the ELA surface in relation to local relief and the modern glacier ELA third-order trend

surface

glacier is related to the size of a glacier because smaller glaciers
(less than ca. 2km?) occupy the heads of valleys within the
steep peaks of mountains. Larger glaciers extend farther
down-valley and flow onto and erode troughs with lower
slopes. Compactness is a measure of a glacier’s circularity,
and clearly distinguishes between long, linear valley glaciers
and more rounded cirque glaciers. Regressions of these charac-
teristics show that smaller LGM glaciers tend to lie above the
regional ELA trend surface. This is somewhat unexpected
because previous work has shown that small glaciers sheltered
in deeply eroded cirques, shaded by steep headwalls typically

Copyright © 2005 John Wiley & Sons, Ltd.

persist at lower altitudes than their larger neighbours (Clark
et al., 1994). Similarly, the ELA would have been lower for
debris-covered glaciers, which might have been more preva-
lent at higher elevations. The tendency for small glaciers to
lie above the ELA trend surface may reflect the drying of air
masses at higher elevation. The effect of orographic uplift of
air on limiting glacier size may be stronger than the beneficial
shading effects of deep cirques. Although this trend may repre-
sent a local-scale climate effect, the relation between residual
value and glacier size is not strong, as indicated by the low R?
values.
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Table 2 Summary statistics for equilibrium-line altitude trend-surface
fits of four different polynomial orders

Order® RMSP (m) x>

1st 157 9.39E+ 06
2nd 133 6.75E+ 06
3rd 119 5.41E+4 06
4th 115 5.03E+ 06

y=b+xi+x=T

y=Ti+x° +x%+x" =T,

y=To+ x> +xi2x+x1x° + x> =T

y=Ts+x* +x7% +x200 +xx0° +x0t =T,
PRMS = root mean squared.

Aspect also covaries with residual value, although only
weakly (Table 3). The relationship between glacier aspect
and deviation from the regional ELA trend is expected because
glaciers that face toward the north are more shaded from solar
radiation than those facing south, and tend to have lower ELAs.
Generally, the south-facing glaciers have ELAs that are above
the regional trend rather than below it, although there are a
few north-facing glaciers with high residual values and a few
south-facing glaciers with low residual values.

Implications for LGM atmospheric circulation
across Alaska

The ELAs of modern glaciers in the Brooks Range were exam-
ined to compare with the trends from the palaeoglaciers. Mod-
ern ELAs were determined using similar methods to those used
to estimate LGM ELAs. Modern glacier ELAs were estimated
using an AAR of 0.58 applied to 940 glacier outlines taken from
USGS 1:63 360-scale topographic maps and with USGS DEMs

40T

Frequency

30—+

0 3 —

derived from the same maps. The modern glacier ELA data
were also fit with a third-order polynomial trend surface to
represent their regional variation.

The southwest-sloping regional palaeo-ELA trend is similar
to the overall trend of the modern glacier ELAs across the
Brooks Range (Fig. 3). The similarity indicates that, like today,
LGM mountain glaciers in the Brooks Range were strongly
influenced by moisture availability, which was supplied
dominantly from the southwest. A southwest moisture source
is also manifested by modern glacier ELAs that rise on the lee
side of the central Brooks Range. In detail, the trend surface of
modern glacier ELAs is lowest, and relatively horizontal at ca.
1600 m a.s.l. in the central Brooks Range. Modern ELAs rise to
2100m a.s.l. as summit elevations increase in the eastern
Brooks Range.

The difference between modern and LGM ELAs (= AELA)
was larger in the central Brooks Range (a maximum of ca.
700 m) than in the eastern Brooks Range (ca. 200 m) where gla-
cier elevations are higher (Fig. 3). This minor depression in the
eastern Brooks Range may indicate the influence of postglacial
tectonic uplift that elevated moraines locally (Porter et al.,
1983). The rapidity of uplift would have been remarkable,
however, and without significant geomorphic evidence of post-
glacial tectonic activity. The tendency toward lower AELA
values with increasing glacier elevation has been documented
elsewhere (e.g. Mark et al., 2005), and has been attributed to
the influence of basin morphometry on the response of glaciers
to climatic change. Alternatively, the eastward decrease in
AELA might indicate increased Holocene sea-surface tempera-
tures and reduced sea ice that allow moisture from the Beaufort
Sea to nourish glaciers inland and to lower modern glacier
ELAs (Balascio et al., in press).

The magnitude of LGM ELA lowering in the Brooks Range
is similar to other parts of Alaska where values are typically
ca. 300-600m (Hamilton and Porter, 1975; Kaufman and
Hopkins, 1986; Mann and Peteet, 1994; Stillwell and Kaufman,
1996; Manley et al., 1997; Briner and Kaufman, 2000).

400 3000 -2000 100

0

100 200

Residual (m)

Figure 4 Histogram of residuals above and below the third-order reconstructed equilibrium-line altitude trend surface

Copyright © 2005 John Wiley & Sons, Ltd.

J. Quaternary Sci., Vol. 20(7-8) 821-838 (2005)



828 JOURNAL OF QUATERNARY SCIENCE

Table 3 Least-squares regressions of glacier characteristics against
residual values from the third-order reconstructed equilibrium-line alti-
tude trend surface

Y-intercept ~ Xvalue R? p
Slope (°) 12.0 8.18E-03 0.048 1.43E-05
Area (km?) 2.28 —1.04E-02 0.032 4.63E-04
Volume (km?) 0.19 —9.93E-04 0.017 9.99E-03
cos (aspect) 0.76 —4.60E-04 0.019 7.06E-03
Compactness 0.41 3.35E-04 0.076 3.89E-08
Maximum elevation (m) 1160 7.00E-01 0.049 1.29E-05

Globally, the average ELA lowering was ca. 1000 m (Broecker
and Denton, 1990). The less-than-average AELA for Alaska has
previously been attributed to a deficiency in moisture during
the LGM suggesting drier-than-present conditions (e.g. Porter
et al.,, 1983; Kaufman and Manley, 2004). Relatively gentle
ELA gradients also suggest that continental climate conditions
prevailed during the LGM. The major trends in the LGM ELA
and glaciation thresholds for the Brooks Range, and elsewhere
from Alaska, as well as the distribution of cirque-floor eleva-
tions (Péwé, 1975), show a strong component of southwesterly
moisture flow across the state. In contrast, Pleistocene sand
sheets distributed around central and northern Alaska show
that wind directions were dominantly northeasterly (Lea and
Waythomas, 1990). Evidence from loess deposits also indicates
northeasterly winds during the LGM (Muhs et al., 2003). The
apparent contradiction between glacial and aeolian evidence
may result from differences in surface and upper atmospheric
wind regimes. Episodic surface winds are responsible for mov-
ing sand and silt to form sand dunes and deposit loess, while
perpetual upper-atmospheric, moisture-bearing winds affect
storm tracks and control the accumulation on glaciers. Differ-
ences in the seasonal pattern of atmospheric circulation could
also explain the differences in the proxy records. ELAs are
mostly influenced by winter storms that carry moisture that falls
as snow, as opposed to the formation of loess and dune depos-
its that take place during the summer when sediment is unfro-
zen, snow cover is absent, and barren outwash from summer
ablation is abundant (Muhs et al., 2003).

Conclusions

ELA reconstructions from the Brooks Range provide an impor-
tant proxy for LGM climate trends. LGM ELAs rise from 470 m
a.s.l. in the west to 1860 m a.s.l. in the eastern Brook Range.
Modelled by a third-order trend surface, palaeo-ELAs lower
toward the southwest across most of the range, and toward
the northeast in the eastern Brooks Range. The southwestern
lowering of ELAs across the range is dominant during the
LGM, as it is today, indicating a source of moisture from the
northern Pacific Ocean. This interpretation is similar to pre-
vious observations (e.g. Porter et al., 1983) and highlights the
general stability of the regional atmospheric pressure systems,
despite the impact of the Laurentide Ice Sheet on atmospheric
circulation to the east (e.g. Bartlein et al., 1998). The northward
lowering of LGM ELAs in the northeastern Brooks Range is
probably at least in part the result of the cold temperatures
where the range is farthest north and closest to the Beaufort
Sea.

The residual analysis produced the somewhat unexpected
result that smaller glaciers tend to lie above, rather than below,

Copyright © 2005 John Wiley & Sons, Ltd.

the regional ELA trend surface. Small glaciers might be found at
higher elevations because of the drying of rising air masses, or
the diversion of moisture around higher elevations. This trend
may be a function of an orographic influence on smaller gla-
ciers, although this relationship may not be as strong because
of the small range of glaciers sizes represented by this dataset.

LGM ELA lowering relative to modern glacier ELAs is not uni-
form across the Brooks Range. ELA lowering decreases toward
the east from 700 to 200 m. The small amount of ELA depres-
sion in the northeastern Brooks Range has been attributed to
postglacial uplift (Porter et al., 1983), but might in part be
explained by the relatively low ELAs of modern glaciers that
presently receive moisture from the Beaufort Sea. The average
depression of LGM ELAs in the Brooks Range is similar to other
mountain ranges around Alaska and less than the global aver-
age lowering. LGM aridity in this region has been attributed to
increased sea-ice cover, the exposure of the Bering/Chukchi
platform by eustatic sea-level lowering, colder sea-surface tem-
peratures over the moisture source in the northern Pacific
Ocean in response to lower global temperatures and increased
discharge of glacier ice, and the intensification of the oro-
graphic barrier of the Alaska Range associated with the growth
of the Cordilleran Ice Sheet (Porter et al., 1983). Furthermore,
upper-level wind anomalies simulated for the LGM by general
circulation models show a general anticyclonic curvature over
Alaska, with a greater tendency for enhanced subsidence and
suppression of precipitation (Bartlein et al., 1998).

Apparent contradictions in LGM atmospheric circulation
patterns exist among geologic records. The opposing patterns
of winds recorded from glacial and aeolian evidence are
mostly the result of a difference between upper atmosphere
moisture circulation and the generation of surface winds, but
may also reflect seasonal differences in wind regimes.
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