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relations between melting and other meteorological
parameters, including wind velocity. In general, anabatic
winds are considered to be responsible for producing
lower melt rates than the katabatic (downslope) winds
(Hannah and McGregor, 1997), and they are also less
stronger than katabatic winds. For details see the article
entitled Atmosphere-Snow/Ice Interactions, andKatabatic
Wind: In Relation with Snow and Glaciers.
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ANCHOR ICE
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Definition
Anchor ice is formed on ground stones and other objects at
the bottom of running water and thus remains attached or
anchored to the ground. Ice crystals are formed and may
coalesce or adhere to submerged objects like stones,
marine organisms, rocks, man-made structures, etc.

Anchor ice is most commonly observed in fast-flowing
rivers during periods of extreme cold, in the shallow sub
or inter-tidal during or after storms when the air tempera-
ture is below the freezing point of the water, and in the
sub tidal in the Antarctic along ice shelves or near floating
glacier tongues. The flow of the rivers having anchor ice is
disturbed because it works as a barrier to the flowingwater.

ANDEAN GLACIERS

Mathias Vuille
Department of Atmospheric and Environmental Sciences,
University at Albany, State University of New York,
Albany, NY, USA

Definition
Andean glaciers: All glaciers located in the Andes of
South America.

Introduction
In all Andean countries of South America, the highest
peaks are covered by glaciers. These can be subdivided
into tropical glaciers, located in Venezuela, Colombia,
Ecuador, Peru, Bolivia and northernmost Chile, and
extratropical glaciers, located in central and southern
Chile and Argentina. The latter also include the northern
and southern Patagionian ice fields (Patagonia, qv).
While most Andean glaciers outside of Patagonia are

Anabatic Winds: In Relation with Snow/Glacier Basin, Figure 1 Anabatic winds flowing upslope during daytime. Chhota Shigri
Glacier in the Western Himalaya can be seen on the background. Photo by Umesh Haritashya June 20, 2006.
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fairly small and contain a limited amount of ice, they are
nonetheless very unique and important. The tropical
Andes, for example, are home to more than 99% of all
tropical glaciers (Kaser, 1999) and they provide very
important environmental services, such as freshwater
during the dry season to downstream populations.
Andean glaciers are also unique with regard to their mass
and energy balance and their sensitivity to climate change
(Climate Variability and High Altitude Temperature and
Precipitation, qv), which is very different from glaciers
at mid- and high latitudes.

Tropical Andean glaciers
Glacier evolution over the past centuries and current
extent
The northernmost tropical glaciers are located in Venezu-
ela, but the country has lost more than 95% of its glacier-
covered area since the mid-nineteenth century and the few
remaining glaciers total less than 2 km2 (Vuille et al.,
2008a). In Colombia, six different mountain ranges still
have some glacier coverage, but glaciers are rapidly
retreating there as well. In Ecuador, glaciers are mostly
located on volcanoes along the country’s two mountain
chains, the Cordillera Occidental and the Cordillera Orien-
tal. These glaciers reached a maximum extent during the
Little Ice Age (LIA) and have retreated since, interrupted
by short periods of advance. Peru contains the largest frac-
tion of all tropical glaciers (	70%) and is home to the
world’s most extensively glacier-covered tropical moun-
tain range, the Cordillera Blanca. As in all other Andean

countries, glaciers reached their maximum extent during
the Little Ice Age and have retreated since. In the Cordil-
lera Blanca, for example, the ice coverage decreased from
	850 to 900 km2 during the LIA to 620 km2 in 1990. The
ice coverage at the end of the twentieth century was
slightly less than 600 km2. Glaciers in Bolivia can be
found in two main mountain ranges, the Cordillera Occi-
dental along the western border with Chile and the Cordil-
leras Apolobamba, Real, Tres Cruces, and Nevado Santa
Vera Cruz in the east. The maximum glacier extent in
Bolivia was reached during the second half of the seven-
teenth century (Rabatel et al., 2006). Afterwards glaciers
started to retreat, with recession accelerating after 1940
and especially since the 1980s. In many locations of the
Cordillera Real glaciers have lost between 60% and 80%
of their LIA size and much of the surface and volume loss
occurred over the past 30 years (Rabatel et al., 2006). In
some instances such as on Chacaltaya, glaciers have
disappeared altogether within the past 10 years
(Francou et al., 2003). Chile also has a few glaciers along
the border with Bolivia that can be considered tropical in
the broadest sense (Vuille et al., 2008a). Figure 1 summa-
rizes the retreat of glacier tongues and the reduction of sur-
face area of ten glaciers in the Andes of Peru and Bolivia
(from Vuille et al., 2008a).

Tropical Andean glacier mass and energy balance
In tropical locations, temperature stays more or less the
same throughout the year but the Hydrologic Cycle and
Snow (qv) shows a pronounced separation into wet and
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dry seasons. Therefore, the mass and Surface Energy Bal-
ance (qv) of tropical glaciers is fundamentally different
from mid- and high-latitude glaciers (Kaser, 2001). While
at mid- and high latitudes winter represents the accumula-
tion and summer the ablation season, ablation and accu-
mulation occur at the same time on tropical glaciers.
Also, because temperature does not changemuch through-
out the year, ablation occurs predominantly in the ablation
zone below the Equilibrium Line Altitude (ELA), and
accumulation is restricted to regions above the snow-rain
line that remains at a more or less constant altitude
throughout the year (Vuille et al., 2008a). Actual mass
and energy balance studies on Andean glaciers are fairly
limited because they have to be restricted to glaciers that
are easily accessible and safe to work. The longest contin-
uous mass balance measurements with stake networks are
located on Zongo and Chacaltaya glaciers in Bolivia
(Francou et al., 2003). These studies reveal that the largest
mass loss and gain occurs during the wet seasons, while
mass balance is almost always near equilibrium during
the dry and cold months. On interannual timescales, the
El Niño-Southern Oscillation phenomenon (ENSO)
appears to play a prominent role, dictating mass balance
variability, with El Niño years featuring a strongly nega-
tive mass balance and La Niña events producing a nearly
balanced or even slightly positive mass balance on gla-
ciers in Bolivia (Wagnon et al., 2001; Francou et al.,
2003), Peru (Vuille et al., 2008b), and Ecuador (Francou
et al., 2004). These results can be explained by the domi-
nant influence of ENSO on climate in the tropical Andes
with La Niña years tending to be cold andwet, while warm
and dry conditions usually prevail during El Niño years.
Energy balance studies on several tropical Andean gla-
ciers indicate a strong sensitivity to changes in atmo-
spheric humidity, which governs sublimation, but also to
the timing, amount and phase of Precipitation (qv), as this
determines the glacier reflectance or albedo, and hence the
amount of absorbed shortwave radiation. Net radiation
receipts at the glacier surface are further affected by cloud-
iness, which controls the incoming long-wave radiation.
Hence, the sensitive heat flux does not appear to play an
equally important role as on mid- and high-latitude gla-
ciers (Wagnon et al., 2001).

Tropical Andean glaciers, climate change, and water
resources
The observed glacier retreat in the tropical Andes may
soon lead to water shortages in many parts of the tropical
Andes, especially in Bolivia and Peru (Vuille et al.,
2008a). Studies show that temperature has increased sig-
nificantly throughout the region (Vuille et al., 2003) and
projections of future climate change indicate a significant
rise in freezing levels (Global Warming and its Effect on
Snow/Ice/Glaciers, qv) and hence the Equilibrium Line
Altitude over the course of the twenty-first century (Brad-
ley et al., 2006; Urrutia and Vuille, 2009).

This situation is of grave concern as Andean glacier
Discharge/Streamflow (qv) provides water for human
consumption, agriculture, hydropower production, etc.,
and is also crucial to maintain the integrity of threatened
Andean ecosystems. On the Pacific side of Peru, most of
the water resources originate from snow and ice in the
Andes. Many large cities in the Andes are located above
2,500 m and thus depend almost entirely on high altitude
water stocks to complement rainfall during the dry season.
In addition, as glaciers retreat and lose mass, they add to
a temporary increase in runoff (Runoff Observations, qv)
to which downstream users quickly adapt, even though
this increase is temporary and not sustainable once the gla-
ciers become too small to sustain dry season runoff.
Indeed it is estimated that in rivers draining the western
side of the Cordillera Blanca 10–20% of the water is from
nonrenewed glacier melt and that during the dry season
this value jumps up to 	40% (Mark and Seltzer, 2003).
Simulations with a tropical glacier-climate model suggest
that glaciers will continue to retreat in the twenty-first
century and in some cases (depending on location and cli-
mate change scenario considered) completely disappear
(Juen et al., 2007). As a result dry season runoff will be
significantly reduced, while wet season runoff may actu-
ally be higher due to the larger glacier-free areas and the
enhanced direct runoff (Juen et al., 2007; Vuille et al.,
2008a). Hence, while the overall discharge may not
change very much, water availability during the dry sea-
son, when it is the most needed, will be significantly
reduced.

Extratropical Andean glaciers
South of	18�S glaciers are absent along the Andean cor-
dillera due to the extreme aridity, with the snow line
reaching above 6,000 m, before they reappear as small
ice caps in the central Andes of Chile and Argentina south
of the “South American Arid Diagonal” at 	29�S. Due to
the enhanced winter Precipitation (qv) and high topogra-
phy (including the highest elevation in the Southern
Hemisphere, Aconcagua at 6,954 m), glaciers to the south
of 31�S rapidly increase in size and form true valley gla-
ciers. The total area covered by glaciers south of the arid
diagonal but north of 35�S was estimated to be about
2,200 km2 in 1998 (Lliboutry, 1998). Between 	35�S
and the northernmost limit of the Patagonian ice fields
(Patagonia, qv) at 	46�S more than 35 isolated volca-
noes, many of them active, have elevations high enough
to support glacier ice (Lliboutry, 1998). Glaciers in this
region are famous for their penitents, east-west oriented
formations of ice in the shape of blades, tilting toward
the sun, and created by intense solar radiation and differ-
ential ice sublimation rates.

Snow and ice from this part of the Andes helps sustains
some of the richest agriculture and large population cen-
ters on both sides of the Andes. Despite their importance
for regional water supply, little is known about glacier
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mass balance in this region. Consistent with the meridio-
nal gradient in precipitation both accumulation and abla-
tion values increase southward, with the net balance in
the accumulation zone reaching values as low as 30 cm
water equivalent (w. eq.) at Cerro Tapado (29�S) to
a record value of 1,540 cm w. eq. at glacier Tyndall in
Patagonia (Casassa et al., 2006). Mass balance also
shows a clear east-west gradient, in particular south of
33�S, due the prevailing westerly circulation, which leads
to higher accumulation on the western, windward side of
the Andes. On interannual timescales, mass balance is
closely related to ENSO events, with dry La Niña years
and wet El Niño years (Casassa et al., 2006).

Glacier monitoring on the Chilean side of the central
Andes between 32�S and 41�S has revealed a significant
tongue retreat, area shrinkage and ice thinning (Thinning
of Glaciers, qv) over the past decades, with the trend
accelerating over the most recent period (Rivera et al.,
2006). A glacier inventory (Inventory of Glaciers, qv) of
nearly 1,600 glaciers with a total ice area of ca.
1,300 km2 shows a total volume loss due to thinning
(Thinning of Glaciers, qv) and retreat of 46 � 17 km3 of
water equivalent between 1945 and 1996 (Rivera et al.,
2006), most likely attributable to a combination of atmo-
spheric warming (Global Warming and its Effect on
Snow/Ice/Glaciers, qv) and a significant reduction in Pre-
cipitation (qv) (Bown and Rivera, 2007).

Summary
Glaciers exist in all Andean countries and can be
subdivided into tropical glaciers, located in Venezuela,
Colombia, Ecuador, Peru, Bolivia, and northernmost
Chile and extratropical glaciers, located in central and
southern Chile and Argentina. They are mostly fairly
small in size and contain a limited amount of ice, but pro-
vide important environmental services, such as freshwater
during the dry season to downstream populations. Gla-
ciers in the tropical Andes are also unique in terms of their
mass and energy balance (Surface Energy Balance, qv),
which is fundamentally different from mid- and high-
latitude glaciers, as accumulation and ablation seasons
are not separated into distinct seasons, but occur at the
same time. Andean glaciers have been in retreat over the
past few decades and many are projected to completely
disappear in the twenty-first century.
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