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1 | CURRENT APPLICATIONS

Both basic research and applications of stable isotope hydrology in the

tropics have come a long way since the seminal work by early pioneers

such as Dansgaard (1964), Gat (1996), and Araguas‐Araguas, Froehlich,

and Rozanski (2000). Stable isotopes are now routinely used in tropical

meteorology, contributing to diagnosing a number of synoptic‐scale

atmospheric processes, including cyclone water and energy budgets

(Lawrence & Gedzelman, 1996), boundary‐layer processes (see review

in Galewsky et al., 2016), the role of stratiform versus convective

processes in tropical precipitation (Aggarwal et al., 2016; Zwart,

Munksgaard, Protat, Kurita, & Bird, 2018), intraseasonal (Kurita et al.,

2011) and intra‐storm variability (Cobb, Conroy, Hitta, & Bosma,

2018; Conroy, Noone, Cobb, Moerman, & Konecky, 2016), the role

of raindrop re‐evaporation in convective systems (Lee & Fung, 2008;

Risi, Bony, & Vimeux, 2008) and its contribution to lower tropospheric

humidity (Worden, Noone, & Bowman, 2007), or detection of changes

in moisture source contribution (e.g., Gimeno et al., 2012; Levin,

Zipser, & Cerling, 2009). The advanced use of information on the iso-

topic composition of water vapour may hold potential for improving

operational meteorology and weather forecasting (e.g., Yoshimura,

2015). Galewsky et al. (2016) give an excellent review on current

stable isotopic applications in studies of atmospheric circulation and

the hydrologic cycle.

Stable isotopic mixing models are commonly applied to determine

the contribution of plant transpiration versus soil and open

water evaporation to the isotopic composition of the lower tropo-

sphere (e.g., Moreira et al., 1997). Such isotopic studies of bio‐

meteorological processes are important to understand changes in tran-

spiration associated with deforestation and land use change and can

pinpoint the relevance of plant transpiration to the overall

atmospheric water budget in tropical catchments and at a global scale
Hydrological Processes. 2018;32:1313–1317. wileyonlinelibrary.com/jo
(e.g., Good, Noone, & Bowen, 2015; Jasechko et al., 2013; Wang,

Good, Caylor, & Cernusak, 2012).

In surface and groundwater hydrology, d‐excess is often analysed

as an indicator of the degree of local recycling and evaporation in sur-

face water (lakes, rivers), subsequently also affecting groundwater.

Indeed, stable water isotopologues have long been used to analyse

the run‐off contribution of individual storms through hydrograph

separation (see reviews by Buttle & McDonnell, 2004 and Klaus &

McDonnell, 2013). On longer timescales, isotopic mixing and mass

balance models also are often used to estimate water recharge to aqui-

fers but also contributions of groundwater to river base flow (Vianna

Batista et al., 2018) or the relevance of glacier melt to river run‐off

(Mark & McKenzie, 2007). These results can have important

implications for groundwater use, informing and guiding regulations

on the optimal management of water resources (e.g., Madrigal‐Solís,

Fonseca‐Sánchez, Núñez‐Solís, & Vadillo, 2018).

Maybe the most significant contribution of stable isotope hydrol-

ogy has been in advancing our understanding of climate variability on

longer timescales, ranging from interannual to millennia and beyond.

The realization that the stable isotopic composition of precipitation is

sensitive to variations in atmospheric circulation through transport,

mixing, and phase changes has led to significant progress in our under-

standing of tropical modes of coupled ocean–atmosphere variability,

such as El Nino ‐ Southern Oscilation (ENSO) (Tan, 2014; Vuille &Wer-

ner, 2005; see also Kurita, Ichiyanagi, Matsumoto, & Yamanaka, 2018),

the Indian Ocean Dipole (Konecky, Russell, Vuille, & Rehfeld, 2014), or

the global monsoon (Araguas‐Araguas, Froehlich, & Rozanski, 1998;

Gao, Dai, Yao, & Risi, 2018; Tian, Masson‐Delmotte, Stievenard, Yao,

& Jouzel, 2001; Vuille et al., 2012; Vuille, Werner, Bradley, & Keimig,

2005) and its onset and demise (Yu et al., 2016). A large number of

tropical archives contain long records of past variations in the isotopic

composition of meteoric waters, facilitating the reconstruction of such
Copyright © 2018 John Wiley & Sons, Ltd.urnal/hyp 1313
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modes from tropical ice cores (Thompson & Davis, 2005), speleothems

in monsoon regions (Cheng, Sinha, Wang, Cruz, & Edwards, 2012; Cruz

Jr. et al., 2005; Fleitmann et al., 2003; Lachniet, 2009; Wang et al.,

2001), calcite or biomarkers in lake sediments (Bird et al., 2011; Leng

& Marshall, 2004; Zhang et al., 2011), tree ring cellulose (Brienen,

Helle, Pons, Guyot, & Gloor, 2012; McCarroll & Loader, 2004; Miller

et al., 2006), or coral records from across the tropical ocean (Cobb,

Charles, Cheng, & Edwards, 2003; Tudhope et al., 2001).

Although observational and paleoclimatic studies have signifi-

cantly advanced our understanding of the past and present tropical

hydrologic cycle, the advent of isotope‐enabled climate models has

revolutionized the field. Such models have proven key to advancing

our understanding of the dynamics and forcing mechanisms that drive

isotope variations across spatial and temporal scales, and opened up

new possibilities for detailed analyses of processes affecting the isoto-

pic composition of precipitation (Colose, LeGrande, & Vuille, 2016;

Hoffmann, Werner, & Heimann, 1998; Jouzel, Hoffmann, Koster, &

Masson, 2000; Risi, Bony, Vimeux, & Jouzel, 2010; Schmidt, LeGrande,

& Hoffmann, 2007; Vuille, Bradley, Werner, Healy, & Keimig, 2003).

Although less common, some modelling groups have also incorporated

stable isotopic tracers into regional isotope‐enabled climate and

hydrologic models (Belachew et al., 2016; Durán‐Quesada et al.,

2018; Stadnyk, Delavau, Kouwen, & Edwards, 2013; Sturm, Hoffmann,

& Langmann, 2007; Yoshimura, Kanamitsu, & Dettinger, 2010),

allowing for more detailed atmospheric studies over regions of com-

plex terrain or focusing on specific isotopic processes related to

streamflow and run‐off generation or spatially distributed isotopic lake

water balance. Because stable water isotopologues are tracers of the

hydrologic cycle, they are on the other hand also ideally suited to test

the realism of climate model parameterizations when simulating the

tropical hydrologic cycle (Schmidt, Hoffmann, Shindell, & Hu, 2005)

and can yield important modelling constraints for atmospheric water

vapour transport, mixing, and phase change.

Although the interpretation of paleoclimate records has benefitted

tremendously from the physical underpinning of isotope‐enabled

climate models, problems with scale‐mismatch and archive‐specific

interpretations remain. Climate models can provide the direct isotopic

composition of water vapour and precipitation, yet the mechanistic

processes affecting the isotopic composition during the formation of

the proxy itself are not simulated. Therefore, so‐called proxy system‐

models (isotopic forward models) are increasingly being developed to

simulate the actual proxy system, which senses and then archives the

isotopic composition (Baker & Bradley, 2010; Dee et al., 2015; Evans,

Tolwinski‐Ward, Thompson, & Anchukaitis, 2013; Hurley, Vuille, &

Hardy, 2016). This fairly new avenue holds considerable promise and

is a critical link, required to accurately compare and constrain the

isotopic composition simulated in climate models with the actual

measured values in natural archives.
2 | FUTURE CHALLENGES

Although the progress in tropical isotope hydrology over the past

50 years is impressive, there are also significant challenges that

remain. For example, little work has so far been dedicated towards
understanding of isotopic proxies of the hydrologic cycle other than

the most commonly analysed isotope ratios δ18O and δD. More

recent work focusing on the derivates d‐excess and the similar sec-

ond‐order variable 17O‐excess, derived from the combination of

δ17O and δ18O of water, are still in their infancy and their climatic

relevance and relationship with the tropical hydrologic cycle are still

uncertain and hard to come to grips with (Luz & Barkan, 2010).

Model results suggest that convective processes, relative humidity,

and raindrop re‐evaporation serve as dominant first‐order controls

on d‐excess and 17O‐excess in tropical precipitation (Risi, Landais,

Winkler, & Vimeux, 2013), but the processes are still poorly under-

stood and require further study. Nonetheless, the combined use of

these two proxies may prove to be very useful in future studies to

better constrain the isotopic processes associated with tropical

convection (Landais et al., 2010).

Perhaps the biggest issue facing the community today is the lack

of a spatially dense and temporally continuous observational isotopic

database. Unfortunately, the current measurement network is inade-

quate to address 21st century isotopic research challenges, and the

scarcity of the available observational data across the tropics is a real

hindrance for many studies and applications. Although the

International Atomic Energy Agency ‐ Global Network of Isotopes

in Precipitation (IAEA‐GNIP) network has proven invaluable for many

applications, it suffers from large gaps both in space and time. Many

additional data gathering efforts have been launched across the tro-

pics on a regional scale, with the goal of collecting and monitoring

the isotopic composition of tropical precipitation. However, most of

these activities were restricted to time‐limited campaigns or opportu-

nistic sampling strategies tagged on to other data collection pro-

grams. Hence, most of these efforts are not well coordinated; the

data are often collected using varying standards and techniques and

are often times not publicly accessible. Maintaining a dense network

over long periods of time across the tropics in a coordinated fashion

is, however, essential for understanding the influence of tropical cli-

mate variability on the isotopic composition at decadal‐ to multi‐

decadal timescales and for improving proxy calibration and model val-

idation. Furthermore, such a network is vital for detecting and

analysing the potential anthropogenic fingerprint in the isotopic com-

position of water vapour and precipitation as the tropical hydrologic

cycle adjusts to the atmospheric warming and the increase in the

amount of atmospheric water vapour. Indeed, stable water

isotopologues are extremely powerful tools that serve a large scien-

tific community including tropical hydrologists, atmospheric scientists,

glaciologists, climate modellers, ecologists, geochemists, and paleocli-

matologists. We therefore can ill afford to let another decade go by

without having an adequate observational in situ network in place.

Satellite observations from space have for the past 2 decades pro-

vided an additional avenue to provide denser sampling over the tropics

(e.g., Lee et al., 2012; Worden et al., 2012), but the data from these

satellite missions are limited to the isotopic composition of atmo-

spheric water vapour and do not provide a substitute for a dense in

situ network of actual surface measurements of precipitation. In

addition, the limited lifetime of satellite sensors requires continuous

deployment of follow‐up missions and careful calibration efforts to

maintain long and continuous data sets from space.
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Spatial interpolation techniques (Bowen & Revenaugh, 2003) and

isotope reanalyses (Steig, Anderson, & Hakim, 2017; Yoshimura,

Kanamitsu, Noone, & Oki, 2008) can also provide spatio‐temporally

complete data sets that are useful for some applications. Isotope

reanalyses have the added advantage of providing additional,

four‐dimensional, spatially complete, and physically consistent meteo-

rological data. Yet isotope data from reanalyses are model‐dependent

and although very useful, they are no substitute for in situ measure-

ments. In fact, maintaining such isotope reanalysis efforts into the

future implicitly requires dense and high‐quality observational data.
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